概率论与数理统计实验报告
《概率论与数理统计》实验报告答案

《概率论与数理统计》实验报告学生姓名李樟取学生班级计算机122学生学号************指导教师吴志松学年学期2013-2014学年第1学期实验报告一成绩 日期 年 月 日实验名称 单个正态总体参数的区间估计实验性质 综合性实验目的及要求1.了解【活动表】的编制方法;2.掌握【单个正态总体均值Z 估计活动表】的使用方法; 3.掌握【单个正态总体均值t 估计活动表】的使用方法; 4.掌握【单个正态总体方差卡方估计活动表】的使用方法; 5.掌握单个正态总体参数的区间估计方法.实验原理利用【Excel 】中提供的统计函数【NORMISINV 】和平方根函数【SQRT 】,编制【单个正态总体均值Z 估计活动表】,在【单个正态总体均值Z 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【总体标准差】的具体值,就可以得到相应的统计分析结果。
1设总体2~(,)X N μσ,其中2σ已知,12,,,n X X X 为来自X 的一个样本,12,,,n x x x 为样本的观测值于是得到μ的置信水平为1-α 的置信区间为利用【Excel 】中提供的统计函数【TINV 】和平方根函数【SQRT 】,编制【单个正态总体均值t 估计活动表】,在【单个正态总体均值t 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【样本标准差】的具体值,就可以得到相应的统计分析结果。
2.设总体2~(,)X N μσ,其中2σ未知,12,,,n X X X 为来自X 的一个样本,12,,,nx x x 为样本的观测值整理得/2/21X z X z n n P αασαμσ⎧⎫=-⎨⎬⎩⎭-<<+/2||1/X U z P n ασμα⎧⎫⎪⎪==-⎨⎬⎪⎪⎩⎭-</2/2,x z x z nn αασσ⎛⎫-+⎪⎝⎭22(1)(1)1/X P t n t n S nααμα⎧⎫---<<-=-⎨⎬⎩⎭22(1)(1)1S S P X t n X t n n n ααμα⎧⎫--<<+-=-⎨⎬⎩⎭故总体均值μ的置信水平为1α-的置信区间为利用【Excel 】中提供的统计函数【CHIINV 】,编制【单个正态 总体方差卡方估计活动表】,在【单个正态总体方差卡方估计活动 表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均 值】和【样本方差】的具体值,就可以得到相应的统计分析结果。
概率论与数理统计实验报告

概率论与数理统计实验报告概率论部分实验二《正态分布综合实验》实验名称:正态分布综合实验实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。
实验内容:实验分析:本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。
实验过程:1.直方图与累计百分比曲线1)实验程序m=[100,1000,10000]; 产生随机数的个数n=[2,1,0.5]; 组距for j=1:3for k=1:3x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个正态分布随机数a=min(x); a为生成随机数的最小值b=max(x); b为生成随机数的最大值c=(b-a)/n(k); c为按n(k)组距应该分成的组数 subplot(1,2,1); 图形窗口分两份hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图yy=hist(x,c)/1000; yy为各个分组的频率s=[];s(1)=yy(1);for i=2:length(yy)s(i)=s(i-1)+yy(i);end s[]数组存储累计百分比x=linspace(a,b,c);subplot(1,2,2); 在第二个图形位置绘制累计百分比曲线plot(x,s,x,s);xlabel('累积百分比曲线');grid on; 加网格figure; 另行开辟图形窗口,为下一个循环做准备endend2)实验结论及过程截图实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。
概率论与数理统计上机实验报告

概率论与数理统计上机实验报告实验一【实验目的】熟练掌握 MATLAB 软件的关于概率分布作图的基本操作会进行常用的概率密度函数和分布函数的作图绘画出分布律图形【实验要求】掌握 MATLAB 的画图命令 plot掌握常见分布的概率密度图像和分布函数图像的画法【实验容】2 、设X : U (−1,1)(1 )求概率密度在 0 ,0.2 ,0.4 ,0.6 ,0.8,1 ,1.2 的函数值;(2 )产生 18 个随机数(3 行 6 列)(3 )又已知分布函数F ( x) = 0.45 ,求x(4 )画出X 的分布密度和分布函数图形。
【实验方案】熟练运用基本的MATLAB指令【设计程序和结果】1.计算函数值Fx=unifcdf(0, -1,1)Fx=unifcdf(0.2, -1,1)Fx=unifcdf(0.4, -1,1)Fx=unifcdf(0.6, -1,1)Fx=unifcdf(0.8, -1,1)Fx=unifcdf(1.0, -1,1)Fx=unifcdf(1.2, -1,1)结果Fx =0.5000Fx =0.6000Fx =0.7000Fx =0.8000Fx =0.9000Fx =1Fx =12.产生随机数程序:X=unifrnd(-1,1,3,6)结果:X =0.6294 0.8268 -0.4430 0.9298 0.9143 -0.7162 0.8116 0.2647 0.0938 -0.6848 -0.0292 -0.1565 -0.7460 -0.8049 0.9150 0.9412 0.6006 0.83153.求x程序:x=unifinv(0.45, -1,1)结果:x =-0.10004.画图程序:x=-1:0.1:1;px=unifpdf(x, -1,1);fx=unifcdf(x, -1,1);plot(x,px,'+b');hold on;plot(x,fx,'*r');legend('均匀分布函数','均匀分布密度');结果:【小结】运用基本的MATLAB指令可以方便的解决概率论中的相关问题,使数学问题得到简化。
概率论与数理统计实验报告

概率论与数理统计实验报告一、实验目的1.学会用matlab求密度函数与分布函数2.熟悉matlab中用于描述性统计的基本操作与命令3.学会matlab进行参数估计与假设检验的基本命令与操作二、实验步骤与结果概率论部分:实验名称:各种分布的密度函数与分布函数实验内容:1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设定)。
2.向空中抛硬币100次,落下为正面的概率为0.5,。
记正面向上的次数为x,(1)计算x=45和x<45的概率,(2)给出随机数x的概率累积分布图像和概率密度图像。
3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。
程序:1.计算三种随机变量分布的方差与期望[m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3[m1,v1]=poisstat(5> %泊松分布,取lambda=5[m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12计算结果:m0 =3 v0 =2.1000m1 =5 v1 =5m2 =1 v2 =0.01442.计算x=45和x<45的概率,并绘图Px=binopdf(45,100,0.5> %x=45的概率Fx=binocdf(45,100,0.5> %x<45的概率x=1:100。
p1=binopdf(x,100,0.5>。
p2=binocdf(x,100,0.5>。
subplot(2,1,1>plot(x,p1>title('概率密度图像'>subplot(2,1,2>plot(x,p2>title('概率累积分布图像'>结果:Px =0.0485 Fx =0.18413.t(10>分布与标准正态分布的图像subplot(2,1,1>ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]>title('标准正态分布概率密度曲线图'>subplot(2,1,2>ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。
大学本科概率论与数理统计实验报告

xx大学xx学院数学类课程实习报告课程名称:概率论与数理统计实习题目:概率论与数理统计姓名:系:信息与计算科学系专业:信息与计算科学年级:2010学号:指导教师:职称:讲师年月日福建农林大学计算机与信息学院数学类课程实习报告结果评定目录1实习的目的和任务 (2)2实习要求 (2)3实习地点 (2)4主要仪器设备(实验用的软硬件环境) (2)5实习内容 (2)5.1 MATLAB基础与统计工具箱初步 (2)5.2 概率分布及应用实例 (4)5.3 统计描述及应用实例 (5)5.4 区间估计及应用实例 (8)5.5 假设检验及应用实例 (11)5.6 方差分析及应用实例 (13)5.7 回归分析及应用实例 (15)5.8 数理统计综合应用实例 (18)6 结束语 (26)7 参考文献 (27)概率论与数理统计(Probabilily theroy and Mathemathical Statistics)1.实习的目的和任务目的:通过课程实习,让学生巩固所学的理论知识并且能够应用MATLAB数学软件来解决实际问题。
任务:通过具体的案例描述,利用MATLAB软件计算问题的结果,作出图形图象分析问题的结论。
2.实习要求要求:学生能够从案例的自然语言描述中,抽象出其中的数学模型,能够熟练应用所学的概率论与数理统计知识,能够熟练使用MATLAB软件。
3.实习地点:校内数学实验室,宿舍4.主要仪器设备计算机Microsoft Windows XPMatlab 7.05.实习内容5.1 MATLAB基础与统计工具箱初步一、目的:初步了解和掌握MATLAB的操作和统计工具箱的简单应用.二、任务:熟悉MATLAB的基本命令的调用和基本函数及其基本操作.三、要求:掌握安装MATLAB的方法,并运用统计工具箱进行简单MATLAB编程.四、项目:(一)、实例:产生一组试验,假设随机变量X的分布函数为X~N(10,42)的随机数,并绘出该正态分布的图像。
概率论与数理统计实验报告

四、线性回归分析 4.为研究某一化学反应过程中温度 x 对产品质量指标 y 的影响,测得数据如下:
x C y
100 45
110 51
120 54
130 61
140 66
150 70
160 74
170 78
2
180 85
190 89
假设 x 和 y 之间呈线性相关关系,即 y 0 1 x , ~ N (0, ) 求(1) y 关于 x 的线性回归方程; (2) 的无偏估计; (3)检验 y 对 x 的线性回归是否显著(显著性水平 0.05 )
2
三、两个正态总体均值差的检验( t 检验) 。 3.在平炉上进行一项试验以确定改变操作方法的建议是否会增加钢的得率,试验是在同一 只平炉上进行的,每炼一炉钢时除操作方法外,其他条件都尽可能做到相同。先用标准方 法炼一炉,然后用建议的新方法炼一炉,以后交替进行,各炼 10 炉,其得钢率分别为 (1)标准方法 78.1 72.4 76.2 74.3 77.4 78.4 76.0 75.5 76.7 77.3 (2)新方法 79.1 81.0 77.3 79.1 80.0 79.1 79.1 77.3 80.2 82.1 设这两个样本相互独立,且分别来自正态总体 N (1 , 2 ) 和 N ( 2 , 2 ) ,1 , 2 , 2 均未知, 问新方法能否提高得钢率(取 0.05 )?
2
(4)求 1 的置信度为 95%置信区间; (5)求当 x0 200 C 时产质量指标 y0 的 95%置信区间。
自我创新实验:
教师评分:
二、 未知时的 检验。 2.某种电子元件的寿命 X (以小时计)服从正态分布, , 均未知,现测得 16 只元 , 件的寿命如下: 159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问:是否有理由认为元件的平均寿命大于 225(小时)?
概率论与数理统计MATLAB上机实验报告

《概率论与数理统计》MATLAB上机实验实验报告一、实验目的1、熟悉matlab的操作。
了解用matlab解决概率相关问题的方法。
2、增强动手能力,通过完成实验内容增强自己动手能力。
二、实验内容1、列出常见分布的概率密度及分布函数的命令,并操作。
概率密度函数分布函数(累积分布函数) 正态分布normpdf(x,mu,sigma) cd f(‘Normal’,x, mu,sigma);均匀分布(连续)unifpdf(x,a,b) cdf(‘Uniform’,x,a,b);均匀分布(离散)unidpdf(x,n) cdf(‘Discrete Uniform’,x,n);指数分布exppdf(x,a) cdf(‘Exponential’,x,a);几何分布geopdf(x,p) cdf(‘Geometric’,x,p);二项分布binopdf(x,n,p) cdf(‘Binomial’,x,n,p);泊松分布poisspdf(x,n) cdf(‘Poisson’,x,n);2、掷硬币150次,其中正面出现的概率为0.5,这150次中正面出现的次数记为X(1) 试计算X=45的概率和X≤45 的概率;(2) 绘制分布函数图形和概率分布律图形。
答:(1)P(x=45)=pd =3.0945e-07P(x<=45)=cd =5.2943e-07(2)3、用Matlab软件生成服从二项分布的随机数,并验证泊松定理。
用matlab依次生成(n=300,p=0.5),(n=3000,p=0.05),(n=30000,p=0.005)的二项分布随机数,以及参数λ=150的泊松分布,并作出图线如下。
由此可以见得,随着n的增大,二项分布与泊松分布的概率密度函数几乎重合。
因此当n足够大时,可以认为泊松分布与二项分布一致。
4、 设22221),(y x e y x f +−=π是一个二维随机变量的联合概率密度函数,画出这一函数的联合概率密度图像。
温州大学瓯江学院概率论与数理统计实验报告

温州大学瓯江学院
概率论与数理统计实验报告
实验名称:实验2 圆周率的近似计算——蒲丰投针问题
实验目的:
1.加深理解几何概型的概率的概念和计算方法
2.掌握无理数的近似计算方法
3.了解Excel软件在模拟仿真中的应用
实验要求:
1.掌握Excel自带的随机数发生器产生随机数——(a,b)区间上均匀分布的随机数
2.理解等可能产生区间之内任一个随机数函数命令
3理解条件检测函数命令if
4.理解条件计数函数命令countif
实验内容:
1. 1777年,法国科学家蒲丰(Buffon)提出了投针试验问题.平面上画有等距离
为
(0)
a a>
的一些平行直线,现向此平面任意投掷一根长为
()
b b a
<
的针,取4
a=, 3
b=,试求针与某一平行直线相交的概率,并计算圆周率的近似值.
实验步骤(实验代码):实验结果及分析、感想等:(将操作中打开的必要窗口界面抓图放到
R:
****************************************
谢翠华阅,2019年10月30日,成绩:90。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计
实验报告
概率论部分实验二
《正态分布综合实验》
实验名称:正态分布综合实验
实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。
实验内容:
实验分析:
本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,
故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。
实验过程:
1.直方图与累计百分比曲线
1)实验程序
m=[100,1000,10000]; 产生随机数的个数
n=[2,1,0.5]; 组距
for j=1:3
for k=1:3
x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个正态分布随机
数
a=min(x); a为生成随机数的最小值
b=max(x); b为生成随机数的最大值
c=(b-a)/n(k); c为按n(k)组距应该分成的组数
subplot(1,2,1); 图形窗口分两份
hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图
yy=hist(x,c)/1000; yy为各个分组的频率
s=[];
s(1)=yy(1);
for i=2:length(yy)
s(i)=s(i-1)+yy(i);
end s[]数组存储累计百分比
x=linspace(a,b,c);
subplot(1,2,2); 在第二个图形位置绘制累计百分比曲线
plot(x,s,x,s);xlabel('累积百分比曲线');
grid on; 加网格
figure; 另行开辟图形窗口,为下一个循环做准备
end
end
2)实验结论及过程截图
实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。
N=100,组距为2的频数分布图与累计百分比曲线
N=100,组距为1的频数分布图与累计百分比曲线
N=100,组距为0.5的频数分布图与累计百分比曲线
N=1000,组距为2的频数分布图与累计百分比曲线
N=1000,组距为1的频数分布图与累计百分比曲线
N=1000,组距为0.5的频数分布图与累计百分比曲线
N=10000,组距为2的频数分布图与累计百分比曲线
N=10000,组距为1的频数分布图与累计百分比曲线
N=10000,组距为0.5的频数分布图与累计百分比曲线
2.同期望不同标准差的密度函数和分布函数图像 1)实验程序
clear all;
x=[-0.15:0.000002:0.2]';
y1=[];y2=[];
mul=[0.05 0.05 0.05];
sigmal=[0.01 0.02 0.03];
for i=1:length(mul)
y1=[y1,normpdf(x,mul(i),sigmal(i))];
y2=[y2,normcdf(x,mul(i),sigmal(i))];
end
subplot(1,2,1);plot(x,y1);
xlabel('(a) 概率密度函数');
subplot(1,2,2);plot(x,y2);
xlabel('(b) 分布函数');
2)实验结果截图
3.同标准差不同期望的概率密度和分布函数图像1)实验程序
clear all;
x=[-0.15:0.000001:0.2]';
y1=[];y2=[];
mul=[0.03 0.05 0.07];
sigmal=[0.02 0.02 0.02];
for i=1:length(mul)
y1=[y1,normpdf(x,mul(i),sigmal(i))];
y2=[y2,normcdf(x,mul(i),sigmal(i))];
end
subplot(1,2,1);plot(x,y1);
xlabel('(a) 概率密度函数');
subplot(1,2,2);plot(x,y2);
xlabel('(b) 分布函数'); 2)实验结果截图。