ZnO合成方法
木炭还原氧化锌化学方程式

木炭还原氧化锌化学方程式
木炭还原氧化锌(ZnO)作为一种重要的无机材料,有着广泛的应用前景。
近
些年,许多学者把重点放在 ZnO 的合成方法上,力图以更低成本获得高质量的
ZnO 材料。
木炭还原法可用以大量合成有机物、无机物和一些复杂的结构,是非常有效的材料合成方法。
木炭还原氧化锌的化学方程式为:
ZnO + C → Zn + CO2
木炭还原法既廉价且容易控制,可获得高品质 ZnO 材料。
该合成原理为:木
炭中的碳原子把氧化锌的氧原子脱落合成出金属锌和二氧化碳,使锌的氧化状态发生了还原,实现了木炭还原 ZnO 的化学反应。
该方法也可用来生产其他金属氧化物,如氧化亚铁等。
虽然木炭还原法制备 ZnO 材料操作非常简单,而且成本较低,但其有几个缺
点需要注意。
首先,木炭还原氧化锌时需要一定的温度,在高温下容易导致木炭体系中泄漏有毒气体,可能破坏环境。
其次,木炭释放出许多 I −和 OH −的离子,会减慢 ZnO 晶面形成的过程,从而显著降低 ZnO 的质量。
因此,木炭还原氧化锌是目前常用的低成本合成 ZnO 材料方法,但是需要在
操作过程中注意安全因素,确保获得高质量的 ZnO 材料。
氧化锌制备方法

将mol·L-1的NaOH乙醇溶液缓慢滴加到含有mol·L-1的Zn(NO3)2·6H2O乙醇溶液中. 将混合溶液转移至高压反应釜中, 在130℃下反应12 h, 将反应产物经二次去离子水、乙醇等洗涤后, 在130 摄氏度下干燥,即可获得纯ZnO纳米棒. 在 ZnCl2 溶液 mol/L) 中加入一定量的 SDS, 搅拌下于 65 ℃将 Na2CO3 溶液滴加到该溶液中 (120 滴/min, n(Na2CO3)/n(ZnCl2) = 2),恒温反应 h. 将反应液倒入聚四氟乙烯罐中, 在150~160 ℃进行水热反应 12 h, 自然冷却后离心分离, 用去离子水洗涤到无水Cl−离子, 再用无水乙醇洗涤 2~3 次, 50 ℃真空干燥 2 h, 300 ℃焙烧 3 h, 即制得 ZnO 纳米管.将0. 1 L0. 1 mo l/ L二水合醋酸锌的乙醇溶液置于带冷凝管和干燥管的0. 5 L 圆底烧瓶中, 在80 ℃搅拌3 h, 不断收集冷凝物, 最后可获得0. 04 L 中间物和0. 06 L 冷凝物. 将中间物迅速用冷的绝对乙醇稀释至0. 1 L, 冷至室温, 得0. 1 mol/ L 中间产物.氨水沉淀法制备纳米氧化锌在水——乙醇介质中用氨水沉淀法制备出了纳米Zn(OH)2和ZnO材料,讨论了介质组成对沉淀产物ZnO微粒的粒径范围及形貌的影响,并研究出由Zn(OH)2分解为纳米ZnO的最佳干燥脱水条件为200℃、2h。
表明本方法不需高温处理就可得到颗粒均匀且分布窄的ZnO纳米材料,粒径可达17~6nm。
一、试剂与仪器主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂。
仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱。
二、试验方法以水——乙醇为溶剂,其中醇的体积含量分别为0%(去离子水)、20%、60%、100%。
将氯化锌、氨水配制成不同浓度的溶液(不同浓度是多少)。
取一定体积(一定体积是多少)的氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度的氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应。
ZnO纳米材料的合成与应用研究

ZnO纳米材料的合成与应用研究概述:ZnO纳米材料作为一种具有广泛应用前景的半导体材料,其合成与应用研究一直备受关注。
本文旨在探讨ZnO纳米材料的合成方法以及其在各个领域的应用,从而深入了解其在科学研究和工业应用中的潜力。
一、ZnO纳米材料的合成方法1. 水热法合成水热法是一种常用的制备ZnO纳米材料的方法。
它通过调节反应条件和反应时间,可以获得具有不同形貌和尺寸的ZnO纳米颗粒。
水热法合成ZnO纳米材料具有简单、低成本、可扩展性强等优点,因此受到了广泛关注。
2. 溶胶-凝胶法合成溶胶-凝胶法是一种通过溶胶中的化学反应和胶体形成过程制备纳米材料的方法。
在ZnO纳米材料的合成中,可以通过溶胶-凝胶法控制反应条件,如温度、浓度和PH值等,以实现获得具有不同形貌和尺寸的纳米颗粒。
3. 气相法合成气相法是制备ZnO纳米材料的一种常用方法。
它通过将金属有机化合物或金属化合物加热到高温,然后通过氧化反应生成ZnO纳米颗粒。
气相法合成的ZnO纳米材料具有高纯度、高晶度和尺寸可控性好等特点。
二、ZnO纳米材料在光电子领域的应用1. 光催化应用ZnO纳米材料具有优异的光催化性能,可以利用其吸收紫外光的特性来分解有害有机物和杀灭细菌。
因此,ZnO纳米材料被广泛应用于光催化净化空气、水处理和消毒等领域。
2. 光电器件应用由于ZnO纳米材料的特殊电学性质和优异的光电性能,它在光电器件领域具有广泛应用潜力。
例如,ZnO纳米材料可以用于制备光电传感器、光电调制器、太阳能电池等。
三、ZnO纳米材料在生物医学领域的应用1. 抗菌材料ZnO纳米材料具有较高的抗菌性能,可以通过抑制细菌的生长来达到消毒和杀菌的目的。
因此,在生物医学领域,ZnO纳米材料被广泛应用于医疗设备、外科用品和医疗纺织品等。
2. 肿瘤治疗由于ZnO纳米材料的优异光学性质,在肿瘤治疗中可以利用其光热效应。
将ZnO纳米材料注入肿瘤组织,并利用红外激光的吸收来使其产生局部高温,从而实现对肿瘤的治疗。
氧化锌靶材制备工艺

氧化锌(ZnO)靶材是一种常用的功能材料,常用于薄膜沉积、光电子器件等领域。以下 是一种常见的氧化锌靶材制备工艺:
1. 原料准备:准备高纯度的氧化锌粉末作为原料。这些粉末应具有较小的颗粒大小和较高 的纯度,通常通过化学合成或物理方法制备。
2. 混合和压制:将氧化锌粉末与一定比例的有机粘结剂混合,以形成均匀的混合物。混合 物通常会在球磨机中进行混合和细磨,以确保颗粒的均匀性。然后,将混合物放入模具中, 使用高压机将其压制成所需形状的靶材。
5. 清洗和包装:最后,对精加工后的氧化锌靶材进行清洗,以去除表面的杂质和污染物。 清洗后,将靶材进行包装,以保护其免受环境中的污染和损伤。
氧化锌靶ቤተ መጻሕፍቲ ባይዱ制备工艺
需要注意的是,不同的制备工艺可能会有所差异,具体的工艺参数和步骤可能会根据实际 情况进行调整。
氧化锌靶材制备工艺
3. 烧结:将压制得到的氧化锌靶材放入烧结炉中进行烧结。烧结过程中,靶材会在高温下 进行结晶和致密化,以提高其力学性能和结构稳定性。烧结温度和时间会根据具体的工艺要 求进行调控。
4. 精加工:经过烧结后的氧化锌靶材可以进行精加工,以获得所需的尺寸和表面质量。常 见的精加工方法包括切割、研磨和抛光等。
均匀共沉淀法制取zno

均匀共沉淀法制取zno1. 简介均匀共沉淀法是一种常用的制备纳米氧化锌(ZnO)的方法。
该方法具有操作简单、反应时间短、较高产率和纯度等特点。
因此被广泛应用于氧化锌的制备。
2. 均匀共沉淀法的原理均匀共沉淀法是一种通过均匀混合两种不同用途的盐溶液制备氧化锌纳米粒子的方法。
在该方法中,先将氧化锌前体溶于溶液中,然后加入NH4OH,用于提高pH值,促进Zn2+ 沉淀生成Zn(OH)2,并形成胶体粒子。
接着,将其他金属离子的溶液与Zn(OH)2混合,进一步沉淀形成氧化物混合物。
最后,为了获得氧化锌,还需要将混合物进行煅烧处理。
3. 实验过程在实验过程中,首先需要制备两种不同的盐溶液,一种是氧化锌前体,另一种是含其他金属离子的盐溶液。
然后将两个溶液均匀混合,再利用氨水溶液调节pH值。
当pH值为8左右时,混合物开始沉淀。
接着需要连续搅拌20-30分钟,以保证混合物充分均匀混合。
此时,将混合物加入醇类溶剂中,然后以高温(> 300°C)煅烧,在高温下还原并生成氧化锌样品。
4. 实验优势该方法有许多实验优势,包括:4.1 粒子的尺寸和分散性较好,分布范围窄,对于研究粒子的表面结构和性能具有优势;4.2 操作简单,适用于规模化制备;4.3 可以轻易地通过改变混合液体中含量和浓度,来调控最终得到的纳米ZnO的性质,并优化其光电性能;4.4 纳米氧化锌制备过程中的化学反应具有容易控制的化学反应动力学,可以通过单一反应温度调控合成过程。
5. 结论均匀共沉淀法制备氧化锌是一种非常普遍的方法,适用于制备纳米ZnO。
该方法具有高效、简单、灵活和易于控制反应动力学特性等优点。
在未来,该方法将继续被研究和改进,以提高其效率和应用范围,并促进氧化锌在各种领域中的使用。
CVD法制备ZnO微纳米材料

CVD法制备ZnO微纳米材料
摘要
本文首先简单介绍了ZnO纳米材料性能和各种制备方法的结构特点和研究进展。
由于它在化学、光学、生物和电学等方面表现出许多独特优异的物理和化学性能,在橡胶、涂料、塑料、陶瓷、等行业广泛应用,有着广阔的发展前景。
CVD法制备微纳米ZnO,主要利用Zn粉作为反应源。
首先让反应源在550℃~900℃的范围内得到产物ZnO;其次在Zn粉中添加催化剂在550℃~900℃的范围内得到不同形貌的ZnO;最后使用了Si片和Al片作为衬底,在上面得到了不同形貌的ZnO。
我们运用扫描电镜(SEM),X-射线衍射(XRD)等技术对产物进行了系统的表征和性能测试。
扫描电镜表明了微纳米ZnO的不同的形貌。
X-射线衍射结果证实了微纳米ZnO具有六晶系的纤锌矿结构。
本文的重点是利用Zn粉作为反应源生成ZnO,研究不同条件下生成的ZnO 是否存在差异,并对其进行了表征。
关键词:CVD法、ZnO的形貌结构、不同条件
参考文献:
[1]魏绍东.纳米氧化锌的现状与发展[J]化工设计通讯,2006,32(4):46-60
[2]王辉,朱俊杰.液相微波介电加热法制备纳米粒子的研究进展[J]无机化学学
报,2002,18(4):329-334.
[3]翟国钧,李从举,等ZnO微纳米纤维的静电纺丝及其表征[J]合成纤维工
业,2006,29(6): 6-8.
[4]刘艳,夏宁,陈日耀,等静电纺丝法制备Zn0纳米纤维及其光催化性能的研究[J]
福建师范大学学报,2008,24(1):66-69
[5]杨森,倪永红.低维氧化锌纳米材料[J]化学进展,2007,19(10):1510-1516.。
量子点zno

量子点ZnO简介量子点ZnO是一种由氧化锌(ZnO)组成的纳米材料,具有特殊的光电性质和优异的应用潜力。
它的独特之处在于其尺寸在纳米级别,导致其电子结构和光学性质与大尺寸的ZnO材料不同。
量子点ZnO因其在能带结构和电荷传输方面的特殊性质而受到广泛关注。
量子效应量子点是指尺寸在纳米级别(通常小于10 nm)的微小晶体。
由于其尺寸相对较小,量子点材料表现出与大尺寸晶体不同的物理和化学性质。
其中之一就是量子效应。
在量子点中,电子和空穴被限制在三个空间维度上运动,形成了一个类似于三维势阱的结构。
这种限制导致了能带结构发生变化,使得材料呈现出禁带宽度随粒径变化而变化的特性。
当粒径减小到一定程度时,禁带宽度增加,能级间距减小,从而导致光学性质的变化。
ZnO的性质氧化锌(ZnO)是一种宽禁带半导体材料,具有优异的光电性能和化学稳定性。
它在紫外光区域具有高透过率,并且具有高载流子迁移率、快速载流子复合速率和良好的热稳定性。
这些特性使得ZnO在光电器件、传感器、催化剂等领域具有广泛的应用前景。
然而,普通尺寸的ZnO材料往往受到缺陷密度和表面态等问题的困扰,限制了其在某些应用中的效果。
量子点ZnO由于其特殊结构和尺寸效应,可以显著改善这些问题。
量子点ZnO制备方法制备量子点ZnO主要有物理法和化学法两种方法。
物理法物理法主要包括溅射法、蒸发-凝聚法和激光烧结法等。
这些方法通过控制材料蒸发和沉积过程中的温度、压力和气氛等参数来实现纳米级别尺寸的控制。
溅射法是一种常用的物理法,通过将靶材(通常为ZnO)置于真空腔室中,加热靶材并用惰性气体轰击使其蒸发,然后在基底上沉积形成纳米颗粒。
化学法化学法主要包括溶胶-凝胶法、水热合成法和热分解法等。
这些方法通过在溶液中控制反应条件来实现量子点ZnO的制备。
溶胶-凝胶法是一种常用的化学方法,通过将金属前驱体和溶剂混合并控制反应温度和时间等参数,在溶液中形成纳米颗粒。
量子点ZnO的应用量子点ZnO由于其特殊的光电性质,在多个领域具有广泛的应用潜力。
ZnO合成方法

存档日期:存档编号:北京化工大学研究生课程论文课程名称:纳米材料化学课程代号:ACh530任课教师:左胜利完成日期:2011 年12 月8 日专业:化学学号:2011200989姓名:李浩成绩:ZnO纳米材料的制备与应用摘要本篇综述从制备方法和应用领域出发,论述了制备ZnO纳米材料的一些常用方法如直接沉淀法、微乳液法、溶胶-凝胶法、模板法、水热合成法等,并简单介绍了氧化锌纳米材料在环境、食品、油漆涂料、橡胶、塑料、树脂、纺织品、化妆品等领域的应用。
关键词:ZnO纳米材料制备应用目录前言 (1)第1章氧化锌纳米材料的结构与性质 (2)1.1节氧化锌纳米材料的结构 (2)1.2节氧化锌纳米材料的主要性质 (2)第2章氧化锌纳米材料的制备方法及应用领域 (4)2.1节氧化锌纳米材料的制备方法 (4)2.2节氧化锌纳米材料的主要应用领域 (6)结论 (8)参考文献 (9)前言19世纪末到20世纪初,人类对微观世界的认识已经延伸到一定层次,时间上已经达到了纳秒、皮秒和微妙的数量级。
随着研究的深入,20世纪70年代,人类开启了规模生产纳米材料的历史。
纳米微粒狭义上是指有关原子团簇、纳米颗粒、纳米线、纳米薄膜、纳米碳管、纳米固体材料的总称,而广义上则指晶粒或晶界等显微构造能达到纳米尺寸材料。
该新型材料必将以其独特的量子尺寸效应、小尺寸效应、表面效应及宏观量子隧道效应等性质在各个领域崭露头角。
例如复合材料、大规模集成电路、超导线材料多相催化等方面的开发及应用。
近年来,纳米材料的合成方法及应用领域受到了研究者的广泛关注,TiO2、ZnO、CaF2、Al2O3纳米材料的研究成果及学术报告日益增多。
尤其是与人们日益提高的生活质量戚戚相关的纳米氧化锌材料制备及应用。
纳米氧化锌具有许多优良性能如压电性能、近紫外发射性、透明导电性、生物安全及适应性等,使其在非标柴油有害物质吸收、抑制食品污染菌、抗紫外线、压电材料、紫外光探测器、场效应管、表面声波、胎压、太阳能电池、气体传感器、生物传感器等领域有着广阔的发展前景而氧化锌复合材料的制备及研究也有着对人类生活不可估量的巨大作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
存档日期:存档编号:北京化工大学研究生课程论文课程名称:纳米材料化学课程代号:ACh530任课教师:左胜利完成日期:2011 年12 月8 日专业:化学学号:2011200989姓名:李浩成绩:ZnO纳米材料的制备与应用摘要本篇综述从制备方法和应用领域出发,论述了制备ZnO纳米材料的一些常用方法如直接沉淀法、微乳液法、溶胶-凝胶法、模板法、水热合成法等,并简单介绍了氧化锌纳米材料在环境、食品、油漆涂料、橡胶、塑料、树脂、纺织品、化妆品等领域的应用。
关键词:ZnO纳米材料制备应用目录前言 (1)第1章氧化锌纳米材料的结构与性质 (2)1.1节氧化锌纳米材料的结构 (2)1.2节氧化锌纳米材料的主要性质 (2)第2章氧化锌纳米材料的制备方法及应用领域 (4)2.1节氧化锌纳米材料的制备方法 (4)2.2节氧化锌纳米材料的主要应用领域 (6)结论 (8)参考文献 (9)前言19世纪末到20世纪初,人类对微观世界的认识已经延伸到一定层次,时间上已经达到了纳秒、皮秒和微妙的数量级。
随着研究的深入,20世纪70年代,人类开启了规模生产纳米材料的历史。
纳米微粒狭义上是指有关原子团簇、纳米颗粒、纳米线、纳米薄膜、纳米碳管、纳米固体材料的总称,而广义上则指晶粒或晶界等显微构造能达到纳米尺寸材料。
该新型材料必将以其独特的量子尺寸效应、小尺寸效应、表面效应及宏观量子隧道效应等性质在各个领域崭露头角。
例如复合材料、大规模集成电路、超导线材料多相催化等方面的开发及应用。
近年来,纳米材料的合成方法及应用领域受到了研究者的广泛关注,TiO2、ZnO、CaF2、Al2O3纳米材料的研究成果及学术报告日益增多。
尤其是与人们日益提高的生活质量戚戚相关的纳米氧化锌材料制备及应用。
纳米氧化锌具有许多优良性能如压电性能、近紫外发射性、透明导电性、生物安全及适应性等,使其在非标柴油有害物质吸收、抑制食品污染菌、抗紫外线、压电材料、紫外光探测器、场效应管、表面声波、胎压、太阳能电池、气体传感器、生物传感器等领域有着广阔的发展前景而氧化锌复合材料的制备及研究也有着对人类生活不可估量的巨大作用。
第1章氧化锌纳米材料的结构与性质1.1节氧化锌纳米材料的结构纳米ZnO是由三种不同结构组成,岩盐矿结构、闪锌矿结构以及纤新矿结构。
制备方法不同所得到的纳米ZnO材料的形貌及维数不同。
氧化锌纳米点、纳米微乳液、纳米悬浮液、纳米薄膜、纳米线、纳米管、纳米棒、纳米花、纳米弹簧、纳米环、纳米梳、纳米钉、以及复合物等已经被成功制备有望使纳米氧化锌的应用更加的广泛,独特的优异性使该材料应用于纳米器件及微电子设备的可能性增大。
纳米氧化锌粒子作为联系宏观物体及微观粒子的桥梁,在化学、物理学、光学、电学、磁性等方面具有广阔的发展空间。
1.2节氧化锌纳米材料的主要性质1.2.1氧化锌纳米粒子的表面效应ZnO纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。
纳米粒子表面原子与总原子数之比随粒径的变小而急剧增大会引起纳米材料性质上的变化。
表面原子的周围缺少相邻的原子,所以会有许多悬空键,易与其它原子相结合而稳定,具有较高的化学活性。
1.2.2氧化锌纳米粒子的小尺寸效应随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变,由于颗粒尺寸变化引起的宏观物理性质的变化称为小尺寸效应。
当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,会声、光、电、磁、热、力学等特性呈现新的小尺寸效应。
1.2.3氧化锌纳米粒子强的吸附能力纳米ZnO粉末由于具有很高的比表面能,粉体表面含有羰基、羟基等多种官,因此具有优越的吸附性能[1]。
1.2.4氧化锌纳米粒子对紫外线的屏蔽纳米氧化锌由于具有较好的化学稳定性、热稳定性、不分解、不变质、无毒、无味、屏蔽紫外线波长范等特点,是一种广谱的无机紫外屏蔽剂。
第2章氧化锌纳米材料的制备方法及应用领域2.1节氧化锌纳米材料的制备方法对于纳米材料的制备方法,目前尚无明确的分类标准。
按照物质的原始状态可分为固相法,液相法和气相法;按研究纳米粒子的学科分类,可将其分为物理方法、化学方法和物理化学方法;按其制备技术分类,又可分为机械粉碎法、气体蒸发法、溶液法、激光合成法、溶胶-凝胶法[2]、等离子体合成法[3]、射线辐照合成法等。
但是就实际操作而言,经常采用的方法有微乳液法[4]、沉淀法、水热法模板法、溶胶-凝胶法、悬浮液法[5]、金属有机气相外延生长法、射频磁控溅射法等。
2.1.1微乳液法用油酸、正丁醇和氢氧化钠水溶液按10:10:9的比例制成微乳液,充分搅拌搅拌,再向烧杯中加入硫酸锌溶液,生成沉淀离心分离、干燥即得产品。
此法是由水、油、表面活性剂、助表面活性剂所形成的分散质点大小在仅为10~100nm热力学稳定分散体系,微乳液的水核或油核提供的纳米粒子形成了“微反应器”,所制得的粒子单分散性好。
2.1.2沉淀法沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合溶液中加入适当的沉淀剂制备纳米粒子的前驱体沉淀物,再将此沉淀物进行干燥或煅烧,从而制得相应的纳米粒子。
沉淀法制备纳米粒子主要分为直接沉淀法、共沉淀法、均相沉淀法、化合物沉淀法、水解沉淀法等多种。
直接沉淀法是在锌的可溶性盐中加入一种沉淀剂,首先制成另一种不溶于水的锌盐或锌的碱式盐、氢氧化锌等,即形成沉淀,然后对沉淀物进行洗涤、干燥、加热处理便制成了氧化锌纳米粒子。
直接沉淀法的具体过程如下:将硫酸锌和碳酸铵缓慢混合,用超声波分散及陈化一定时间,用稀氨水洗涤、无水乙醇脱氢,所得先驱物恒温干燥再煅烧即得纳米氧化锌粒子[6]。
用直接沉淀法制备纳米氧化锌时,方法比较简单,操作简单而且成本低,但是影响纳米颗粒粒度的因素很多,而且纯度低,因为在过滤、洗涤、烧结过程中会有大量的杂质,均匀性也不好,所以制得的氧化锌纳米颗粒是粗产品。
均匀沉淀法是利用某一化学反应使溶液中的构晶离子从溶液中缓慢地均匀地释放出来,通过控制溶液中沉淀剂的浓度,保证溶液中的沉淀处于一种平衡的状态,从而使构晶离子均匀的析出。
加入的沉淀剂不会立刻与被沉淀组分发生反应,而是通过化学反应使沉淀剂在整个溶液中缓慢生长,克服了由外部向溶液中直接加入沉淀剂而造成沉淀剂的局部不均匀性。
用均匀法制备纳米氧化锌时,以尿素为沉淀剂,尿素也是最常用的沉淀剂,与可溶性Zn2+反应制备纳米氧化锌。
从可溶性Zn2+盐中优化出最佳原料为硝酸锌。
筛选出最佳工艺条件为:尿素与硝酸锌的物质的量之比为35:1,反应时间为10h,反应温度为105℃,收率为93.80%,粒径为11~17nm。
均匀沉淀法是一种制备组成均匀的纳米粒子的理想方法,有较好的工业发展前景。
2.1.3水热合成法水热合成法是液相中制备纳米粒子的一种新方法。
一般是在100~350℃下和高气压环境下,使无机或有机化合物与水化合,通过加速渗析反应和物理过程的控制,得到改进的无机物,再过滤、洗涤、干燥,从而制得高纯、超细的各类微粒子。
水热合成法制备纳米ZnO,是将双水醋酸锌在二乙烯乙二醇中加热并不断搅拌,经过在室温下冷却,再用离心机将水分离及得到ZnO粉末。
目前,水热合成法作为一种新技术已经引起人们的重视,此法制备的粉体具有极好的性能,晶粒发育完整,粒径小且分布均匀,团聚程度小[7]。
其中日本应用研发的水热合成法制备出了粒径、形状和成分均匀的高质量氧化锆、氧化铝和磁性氧化铁纳米粒子。
2.1.4模板法模板法是合成ZnO纳米材料较有效地一项技术,具有良好的可控性,可利用其空间限制作用和模板剂的调试作用对合成材料的大小、形貌、结构和排布等进行控制[8]。
常用的模板剂有两类:固体模板、软模板。
2.1.5溶胶-凝胶法溶胶-凝胶法已发展多年,国内外均开展了这方面的研究,并取得了很大的进展。
溶胶-凝胶法是制备纳米粒子的一种湿化学法。
它的基本原理是以液体的化学试剂配制成金属无机盐或金属醇盐前驱物,前驱物溶于溶剂中形成均匀的溶液,溶质与溶剂产生水解或醇解反应,反应生成物经聚集后,一般生成1nm左右的粒子并形成溶胶。
通常要求反应物在液相下均匀混合,均匀反应,反应生成物是稳定的溶胶体系。
溶胶-凝胶法制得的纳米粒子化学均匀性好,胶粒及胶粒间化学成分完全一致;高纯度,粉料制备过程中无需机械混合;颗粒细,胶粒尺寸小于0.1nm;可容纳不可溶性组分或不沉淀组成;化学反应容易进行,仅需要较低的合成温度;只要选择合适的条件可以制备各种新型材料。
溶胶-凝胶法也存在某些问题,目前所使用的原料价格比较昂贵,有些原料为有机物,对健康有害,在溶胶中存在大量微孔,在干燥过程中又将逸出许多气体及有机物并产生收缩;而且金属盐的水解反应对溶胶体系的影响也大,这些不足都有待我们去改善。
2.1.6激光加热法激光加热法是在空气气氛中用激光束直接照射锌片表面,经加热、汽化、蒸发、氧化等过程,来制备氧化锌纳米粉末。
激光加热法提高了原料的利用率以及相应的纳米粒子的产率。
2.2节氧化锌纳米材料的主要应用领域2.2.1纳米氧化锌在吸附非标柴油有害物质方面的应用随着我国经济的快速发展,柴油在日常生活中扮演着越来越重要的角色,然而,由于技术上的限制,我国的非标柴油质量状况非常令人担忧,硫、氮等含量大,沉渣多,色度、胶质含量也严重超标等现象屡见不鲜。
因此,除去油品中的有害物质变的十分迫切。
纳米氧化锌粉末由于具有很高的比表面能,粉体表面含有羰基、羟基等多种官能团,因此具有优越的吸附性能。
通过ICP分析发现,纳米氧化锌粉体对非标柴油中的钙、钠、铅等有较强的吸附[9],平均吸附率达到74.77%。
2.2.2纳米氧化锌在食品安全方面的应用近年,随着人们生活水平的提高,食品安全问题受到的越来越多人们的关注,食品中蛋白质丰富,水分含量高,很容易滋生微生物而引起食物腐败变质,大大的缩短了食品的保质期。
纳米氧化锌抗菌剂与现在普遍使用的可食用抗菌膜相比具有杀菌性强、安全性好的特点[10],是目前是食品保藏领域研究开发的热点。
2.2.3纳米氧化锌在橡胶轮胎中的应用橡胶工业是纳米氧化锌的最大用户。
纳米氧化锌与普通氧化锌对橡胶性能的影响是很大的。
纳米氧化锌胶料的拉伸强度及扯断伸长率在热空气老化后的保持率明显优于普通胶料,所以用纳米氧化锌代替普通氧化锌制造了高速耐磨橡胶制品,如飞机轮胎、高级轿车用的子午线胎。
将纳米氧化锌作为导电的白色颜料填充于橡胶中,研制出了导电性橡胶,用在制造静电屏蔽橡胶及制品。
2.2.4纳米氧化锌在屏蔽紫外线方面的应用纳米氧化锌是一种广谱的无机紫外屏蔽剂,具有较好的化学稳定性、热稳定性、不分解、不变质、无毒、无味、屏蔽紫外线波长范围广等特点,是一种光谱屏蔽剂,将来有望应用于化妆品、涂料、橡胶、塑料、树脂、纺织品等领域。