图形变化与图形上点的坐标之间的关系
九年级数学上学期《图形变换与坐标》说课稿

九年级数学上学期《图形变换与坐标》说课稿九年级数学上学期《图形变换与坐标》说课稿在教学工作者开展教学活动前,可能需要进行说课稿编写工作,借助说课稿可以有效提升自己的教学能力。
那么应当如何写说课稿呢?下面是小编为大家收集的九年级数学上学期《图形变换与坐标》说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
各位老师,各位评委大家好!今天我说课的课题是《图形的变换与坐标》,下面是我对本节课的简单分析。
一、说教材本节课是华师大版九年级数学上学期第24章的最后一节内容,是中学数学的重要内容之一。
一方面,这是在学习位似的基础上,对位似的进一步深入和拓展。
另一方面,又为学习二次函数的平移奠定了基础,是进一步研究二次函数平移的工具性内容。
鉴于这种认识,我认为,本节课不仅有着广泛的实际应用,而且起着承前启后的作用。
二、说教学目标根据对本教材的结构和内容分析,结合九年级学生的认知结构及心理特征,我制定了以下的教学目标:1、知识与技能:理解点或图形的变换引起的坐标的变化规律,以及图形上的点的坐标的变化引起的图形变换,并应用于实际问题中。
2、过程与方法:经历图形坐标变化与图形平移、轴对称、放大、缩小等之间的关系,发展学生的形象思维。
3、情感态度与价值观:培养数形结合的思想,感受图形上的点的坐标变化与图形变化之间的关系,认识其应用价值。
三、说教学的重点、难点本着数学新课程标准,在吃透教材的基础上,我确定了以下教学重点和难点。
教学重点:掌握图形坐标变化与图形变换之间的关系.(重点是依据只有掌握了图形坐标变化与图形变换之间的关系,才能理解和掌握图形的变换与坐标的变化。
)教学难点:图形坐标变化与图形变换的规律。
(难点是依据图形坐标变化与图形变换规律比较抽象,学生没有这方面的基础知识。
)为了讲清教材的重难点,使学生能够达到本节课设定的教学目标,我再从教法及学法上谈谈我的看法。
四、说教法结合本节的内容特点和学生的年龄特征,本节课我采用启发式、探究式、以及讨论式相结合的教学方法,以问题的提出,问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学。
冀教版数学八年级下册《图形变化与图形上点的坐标之间的关系》教学设计

冀教版数学八年级下册《图形变化与图形上点的坐标之间的关系》教学设计一. 教材分析冀教版数学八年级下册《图形变化与图形上点的坐标之间的关系》这一章节主要介绍了图形在坐标系中的变换,包括平移、旋转和轴对称等,以及这些变换与图形上点的坐标之间的关系。
通过本章的学习,学生能够理解图形变换的实质,掌握图形变换的方法,并能运用坐标表示和计算图形变换后点的坐标。
二. 学情分析学生在七年级已经学习了坐标系和坐标的概念,对坐标系有一定的认识,但对于图形变换和坐标之间的关系可能还没有完全理解。
因此,在教学过程中,需要引导学生通过实际操作和思考,逐步理解图形变换与坐标之间的关系。
三. 教学目标1.理解图形变换的实质,掌握图形变换的方法。
2.能够运用坐标表示和计算图形变换后点的坐标。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.图形变换的实质和方法的掌握。
2.图形变换与坐标之间的关系的理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际操作和思考,探索图形变换与坐标之间的关系。
2.运用多媒体辅助教学,直观展示图形变换的过程,帮助学生理解和掌握。
3.采用小组合作学习,鼓励学生互相讨论和交流,提高学生的合作能力和沟通能力。
六. 教学准备1.多媒体教学设备。
2.坐标纸、直尺、圆规等学习工具。
3.教学课件和练习题。
七. 教学过程1.导入(5分钟)通过一个简单的图形变换实例,引导学生思考图形变换的过程和坐标的变化。
例如,将一个点(2,3)进行平移,让学生观察坐标的变化。
2.呈现(15分钟)利用多媒体展示各种图形变换的实例,包括平移、旋转和轴对称等,并引导学生思考这些变换与坐标之间的关系。
3.操练(15分钟)让学生分组进行实际操作,利用坐标纸和学具进行图形变换,并记录变换后点的坐标。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成一些图形变换的练习题,巩固所学知识。
教师选取部分学生的作业进行点评和讲解。
图形在坐标中的平移(基础)知识讲解

图形在坐标中的平移(基础)知识讲解【学习目标】1. 能在直角坐标系中用坐标的方法研究图形的平移变换,掌握图形在平移过程中各点的变化规律,理解图形在平面直角坐标系上的平移实质是点坐标的对应变换.2. 运用点的坐标的变化规律来进行简单的平移作图.【要点梳理】要点一、点在坐标中的平移在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).要点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.要点二、图形在坐标中的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.要点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、点在坐标中的平移1.写出下列各点平移后的点的坐标:(1)将A(-3,2)向右平移3个单位;(2)将B(1,-2)向左平移3个单位;(3)将C(4,7)向上平移2个单位;(4)将D(-1,2)向下平移1个单位.(5)将E(2,-3)先向右平移1个单位,再向下平移1个单位.【思路点拨】根据平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.即可得出平移后点的坐标.【答案与解析】解:由题意可得:(1)平移后点的坐标为:(0,2);(2)平移后点的坐标为:(-2,-2);(3)平移后点的坐标为:(4,9);(4)平移后点的坐标为:(-1,1);(6)平移后点的坐标为:(3,-4).【总结升华】本题考查了点的平移及平移特征,掌握平移中点的变化规律是关键.2.(荆门)将点P向左平移2个单位,再向上平移1个单位得到P′(-1,3),则点P 的坐标是.【思路点拨】在平面直角坐标系中,图形的平移与图形上某点的平移相同,本题需注意的是已知新点的坐标,求原来点的坐标,注意平移的顺序的反过来的运用.【答案】(1,2).【解析】新点P′的横坐标是-1,纵坐标是3,点P′向右平移2个单位,再向下平移1个单位得到原来的点P,即点P的横坐标是-1+2=1,纵坐标为3-1=2.则点P的坐标是(1,2).【总结升华】左右平移的单位数是平移后点的横坐标减去平移前对应点的横坐标,上下平移的单位数是平移后点的纵坐标减去对应平移前点的纵坐标.举一反三:【高清课堂:第二讲平面直角坐标系2 369935 练习4 】【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).【变式2】(2015•海安县校级二模)在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.【答案】(0,﹣3).解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).类型二、图形在坐标中的平移3.(2015春•邵阳县期末)在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣3,1),B(1,3).把线段AB平移后得到线段A′B′,A与A′对应,B与B′对应.若点A′的坐标是(﹣1,﹣1),则点B′的坐标为.【思路点拨】各对应点之间的关系是横坐标加2,纵坐标减2,那么让点B的横坐标加2,纵坐标减2即为点B′的坐标.【答案】(3,1).【解析】解:由A(﹣3,1)的对应点A′的坐标为(﹣1,﹣1 ),坐标的变化规律可知:各对应点之间的关系是横坐标加2,纵坐标减2,∴点B′的横坐标为1+2=3;纵坐标为3﹣2=1;即所求点B′的坐标为(3,1).故答案为(3,1).【总结升华】此题主要考查了坐标与图形的变化﹣平移,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.举一反三:【变式】按要求平移下面的图形.(1)将图形①先向右平移3个格,再向下平移5个格.(2)将图形②先向左平移2个格,再向上平移3个格.【答案】解:作图如下:4. 如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(6,0),C(5,5).(1)求△ABC的面积;(2)如果将△ABC向上平移1个单位长度,得△A1B1C1,再向右平移2个单位长度,得到△A2B2C2,试求A2、B2、C2的坐标;(3)△A2B2C2与△ABC的大小、形状有什么关系.【思路点拨】 (1)已知AB=6,故只要求得C到x轴距离即可.(2)在平面直角坐标系中,将图形向右(或左)平移a个单位长度,那么图形的点(x,y)向右(或向左)平移a个单位长度,可得对应点(x+a,y)或(x-a,y),将图形向上(或向下)平移b个单位长度,可得到对应点(x,y+b)或(x,y-b).(3)可根据平移的性质进行分析和判断.【答案与解析】解:(1)点C到x轴的距离为5,所以11651522ABCS AB h==⨯⨯=△;(2)根据题意求出三角形A2B2C2各顶点的坐标为A2(2,1),B2(8,1),C2(7,6);(3)连接A2B2C2三点可以看出△A2B2C2与△ABC的大小、形状相等或相同.【总结升华】平移只改变图形的位置,不改变图形的形状和大小.举一反三:【变式】如图,三角形DEF经过平移后得到三角形ABC,则点D坐标为,点E的坐标为.【答案】D(2,2),E(3,-2).。
图形变化与图形上点的坐标之间的关系

A1(3,-3)
点(x,y) 向右平移a个单位 (x+a,y) 点(x,y) 向左平移a个单位 (x-a,y)
点(x,y) 向上平移b个单位 (x,y+b) 点(x,y) 向下平移b个单位 (x,y-b)
巩固应用
在平面直角坐标系中,有一点P(-4,2),若将P:
(1)向左平移2个单位长度,所得点的坐标为(_-_6_,__2_); (2)向右平移3个单位长度,所得点的坐标为(_-_1_,__2_); (3)向下平移4个单位长度,所得点的坐标为(_-_4_,__-_2;) (4)先向右平移3个单位长度,再向下平移4个单位长
点(x,y)向上平移b个单位 (x,y+b) 点(x,y)向下平移b个单位 (x,y-b)
巩固应用
1.Q(2,-5)平移后得到Q1(-2,-5),点Q是如 何平移的?
2.R(3,-5)平移后得到R1(3,0),点R是 如何平移的? 3.P(2,3)平移后得到P1(-3,-3),点P是如 何平移的?
回顾旧知 引入新课
把一个图形整体沿某一方向移动一定的距离, 图形的这种移动,叫做平移。
平移后图形的形状、大小不变,图形的位置改变。
想一想
图形平移后,图形的形状、大小不变, 但位置发生了变化,那图形上点的坐标也 随着发生了怎样的变化呢?
1、掌握点平移前后坐标的变化规律。 2、根据点的坐标的变化,得出点的平移变化。
(1)如图,将点A(-2,-3) 向右平移5个单位长度,得 到点A1,在图上标出它的 坐标,观察坐标的变化,你
能从中发现什么规律吗?
A1(3,-3)
(2)点A向左平移1个单位长度得到A2。 (3)点A向上平移4个单位长度得到A3。 (4)点A向下平移4个单位长度得到A4。
图形与坐标(含答案)

第26课时图形与坐标【基础知识梳理】 1.位置的确定一般地,在平面内确定物体的位置需要个数据. 2.平面直角坐标系 在平面内,两条互相垂直有的数轴组成平面直角坐标系。
通常把其中水平的一条数轴叫做(或),取为正方向;铅直的数轴叫做(或),取为正方向;x 轴和y 轴统称为,它们的公共原点O 叫做直角坐标系的。
3.a 、b 分别叫做点P 4._______x (3)(4)点点点5.(1)x (2)y (3). 6.(1). (2)关于(3)横向拉长(压缩)坐标不变,坐标分别乘以1(1)n n n〉或;纵向拉长(压缩)坐标不变,坐标分别乘以1(1)n n n 〉或.【基础诊断】1、在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为() A .(3-,5-)B .(3,5)C .(3.5-)D .(5,3-)2、在平面直角坐标系中,将点A(-2,1)向左平移2个单位到点Q ,则点Q 的坐标为A.(-2,3) B.(0,1) C.(-4,1) D.(-4,-1)3、如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在点B′处.则点B′的坐标为()A.(1,2).B.(2,1).C.(2,2).D.(3,1).【精典例题】例1如果点P(-3,2m-1)关于原点的对称点在第四象限,求m的取值范围;如果Q(m+1,3m-5)到x轴的距离与到y轴的距离相等,求m的值。
号为正,的值。
要例2、(为.【点拨】并1,纵例3△ABC①把△②以原点平【1A2(A)(-3图23、若点P(a,a﹣2)在第四象限,则a的取值范围是()A 、﹣2<a <0B 、0<a <2C 、a >2D 、a <04、在平面直角坐标系中,?AB CD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4.2),则顶点D 的坐标为()A.(7,2)B.(5,4)C.(1,2)D.(2,1)5、以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是() A 、(3,3)B 、(5,3)C 、(3,5)D 、(5,5)6则点A A .(-47.已知点8.点(1P 9.已知点5,那么点N 10.三、解答题11、△ABC 在平面直角坐标系中的位置如图所示.(1)作出△ABC 关于x 轴对称的的坐标; (22C .12的中心在直角坐标系的原点,一条边AD 与x 轴平行,已知点的坐标分别是(-13、(夹角为B 提升训练 一、选择题1、点P (m -1,2m +1)在第二象限,则m 的取值范围是()A.121>->m m 或B.121<<-m C.m<1D.21->m第6题图第10题图第10题2、点M (﹣sin60°,cos60°)关于x 轴对称的点的坐标是() A.12)B.(12-)C.(12)D.(12-, 3、在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为()??三、解答题11、如图,已知平行四边形ABCD 的对角线AC 、BD 相交于坐标原点O ,AC 与x 轴夹角∠COF =30°,DC ∥x 轴,AC =8,BD =6.求平行四边形ABCD 的四个顶点的坐标.12.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA ,OC 分别落在x 轴、y 轴上,连接AC ,将矩形纸片OABC 沿AC 折叠,使点B 落在点D 的位置,若B (1,2),求点D 的坐标. 13、【阅读】 第8题图 第10题第9题图在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(,).【运用】(1)如图,矩形ONEF的对角线交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为______;(2)在直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C 第261、B2、7、-1811、12、B(13.∵矩形BE=2∴则点B,)B提升训练一、选择题1、B2、B3、B4、D5、D二、填空题6、-4或67、18、(3,4)9、(12,)10、210三、解答题11、55,-2) 12、过点D 作DF⊥OA 于F ,∵四边形OABC 是矩形,∴OC∥AB 。
华东师大初中数学九上《23.6.2 图形的变换与坐标教案

图形的交换与坐标【知识与技能】在同一直角坐标系中,感受到图形经过平移、旋转、轴对称、放大或缩小的变换之后,点的坐标相应发生变化.探索图形平移、轴对称、放大或缩小的变换中,它们点的坐标变化规律.【过程与方法】培养学生转化思想和知识迁移能力.【情感态度】让学生体悟数学变化中的规律,感受数学的乐趣.【教学重点】图形运动与坐标变换的关系.【教学难点】图形运动与坐标变换的具体应用,通过比较放大或缩小后的图形与原图形,归纳位似放大或缩小图形的规律.一、情境导入,初步认识思考在同一个平面直角坐标系中,图形经过平移、旋转、轴对称、放大或缩小之后,点的坐标会如何变化呢?二、思考探究,获取新知现在我们带着问题来一起探究.1.平移变换的坐标变化规律例1 如图,△AOB沿x轴向右平移3个单位之后,得到△A′O′B′,三个顶点的坐标有什么变化?【归纳结论】三个顶点的纵坐标都没有改变,而横坐标都增加了3.例2 如图,△ABC的三个顶点的坐标分别为(-3,4)、(-4、3)和(-1,3),将△ABC 沿y轴向下平移3个单位得到△A′B′C′,然后再将△A′B′C′沿x轴向右平移4个单位得到△A″B″C″,试写出现在三个顶点的坐标,看看发生了什么变化.【归纳结论】经过两次平移后,三角形三个顶点的横坐标都增加了4,纵坐标都减少了3.【思考】通过以上例1、例2的探究你发现经过平移变换,点的坐标变化有什么特点?【归纳结论】(1)左、右平移,它们的纵坐标都不变,横坐标有变化,向右平移几个单位,横坐标就增加几个单位,向左平移几个单位,横坐标就减少几个单位.(2)上、下平移,它们的横坐标都不变,纵坐标有变化,向上平移几个单位,纵坐标就增加几个单位,向下平移几个单位,纵坐标就减少几个单位.2.轴对称变换的点的坐标变化规律例3 如图,△AOB关于x轴的轴对称图形是△A′OB,关于y轴的轴对称图形是△A″OB″,它们对应顶点的坐标有什么变化?【归纳结论】(1)关于x轴对称,横坐标不变,纵坐标互为相反数;(2)关于y轴对称,纵坐标不变,横坐标互为相反数.3.位似变换的点的坐标变化规律.例4 如图,将△AOB缩小后得到△COD,(1)它们的相似比是多少?(2)△AOB 的顶点坐标发生了什么变化?【归纳结论】横纵坐标都变为原来的21. 思考 将例4中的△AOB 以O 为位似中心,将△AOB 放大到原来的2倍得到△A ′OB ′.(1)△A ′OB ′可以画几个?(2)△AOB 的顶点坐标发生了什么变化?4.概括:填充完成教材92页的表格.三、运用新知,深化理解1.如图,在对Rt △OAB 依次进行位似、轴对称和平移变换后得到Rt △O ′A ′B ′.(1)在坐标纸上画出这几次变换相应的图形;(2)设P (x,y )为△AOB 边上任一点,依次写出这几次变换后点P 对应点的坐标.【教学说明】教师适当点拨,学生分组讨论.四、师生互动,课堂小结这节课你学到哪些知识?有哪些收获?还有哪些疑问?1.布置作业:从教材相应练习和“习题23.6”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课采用集体讨论和活动探究`的数学方法,“以教师为主导,学生为主体”,教师的“导”立足于学生的学,以学为重心,放手让学生自主探索、归纳结论,体验学习的快乐,从而激发学生的学习兴趣.。
22.1.3 二次函数y=a(x-h)2+k的图象和性质
二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质教学目标1.能解释二次函数y=ax2+k和y=ax2的图象的位置关系.2.掌握y=ax2上、下平移规律.3.体会图形的变化与图形上的点的坐标变化之间的关系,领悟y=ax2与y=ax2+k相互转化的过程.教学重难点重点:抛物线y=ax2+k的图象与性质.难点:理解抛物线y=ax2与y=ax2+k之间的位置关系.教学过程与方法知识点一:y=ax2+k的图象1.回顾与思考(5分钟)(1)回顾:抛物线y=x2和y=-x2的图象和性质及它们之间的关系.(2)思考:y=x2+1,y=x2-1的图象怎样?它们与y=x2之间又有怎样的关系呢?2.自主学习(15分)(1)参照教材P32例2的填表、描点.(2)讨论①抛物线y=x2+1,y=x2-1的开口方向、对称轴、顶点各是什么?②抛物线y=x2+1,y=x2-1与抛物线y=x2有什么位置关系?(3)归纳与交流①把抛物线y=x2向__上__平移__1__个单位,就得到抛物线y=x2+1,把抛物线y=x2向__下__平移__1__个单位,就得到抛物线y=x2-1.②一般情况:当k>0,把抛物线y=ax2向__上__平移__k__个单位,可得y=ax2+k;当k<0时,把抛物线y=ax2向__下__平移__|k|或-k__个单位,可得y=ax2+k.③y=ax2+k的开口方向、对称轴、顶点坐标、最值分别是什么?解:a>0时,开口向上,对称轴是y轴,顶点(0,k),最小值为k.a<0时,开口向下,对称轴是y轴,顶点(0,k),最大值为k.知识点二:y=ax2+k的性质3.合作与探究(5分钟)(1)抛物线y=ax2+k与y=ax2的图象的异同点是什么?(2)抛物线y=ax2+k与y=ax2的增减性又是怎样?4.课堂小结(5分钟)1.二次函数y=ax2+k的图象和性质(包括开口方向、对称轴、顶点坐标).2.抛物线y=ax2+k与y=ax2之间的联系与区别(包括平移、开口、对称轴、顶点等).处理方法:可以让学生围绕这两个问题先小结,然后教师进行补充或强调.5.独立作业(15分钟)(1)必做题:P33练习.(2)选做题:习题22.1第5题(1).(3)备用题:①二次函数y =ax 2+k 的图象经过点A (1,-3),B (-2,-6),求这个二次函数的解析式. 解:该二次函数的解析式为:y =-x 2-2.②已知二次函数y =-2x 2+3,当x 取何值时,y 随x 的增大而增大;当x 取何值时,y 随x 的增大而减小?解:当x <0时,y 随x 的增大而增大;当x >0时,y 随x 的增大而减小.③二次函数y =ax 2+k (a ,k 为常数),当x 取值x 1、x 2时(x 1≠x 2),函数值相等,则当x 取x 1+x 2时,函数值为__0__.④函数y =ax 2-a 与y =a x(a ≠0)在同一平面直角坐标系中的图象可能为( A )第2课时 二次函数y =a (x -h )2的图象和性质教学目标1.会用描点法画二次函数y =a (x -h )2的图象.2.理解抛物线y =a (x -h )2与y =ax 2之间的位置关系.3.在图象的平移过程中,渗透变与不变的辩证思想.教学重难点重点:二次函数y =a (x -h )2的图象和性质.难点:把握抛物线y =ax 2通过平移后得到y =a (x -h )2时平移的方向和距离.教学过程与方法1.师生互动,提出问题(3分钟)(1)抛物线y =-12x 2+3与y =-12x 2的位置有什么关系? (2)抛物线y =-12x 2+3的开口方向、对称轴、顶点坐标分别是什么? 2.探究新知(10分钟)知识点一:y =a (x -h )2的图象和性质(1)在同一坐标系中画出二次函数y =-12x 2、y =-12(x +1)2、y =-12(x -1)2的图象. ①列表时怎样取值才能使抛物线具有对称性?②这三条抛物线的对称轴、顶点坐标分别是什么?③这三条抛物线能否经过相互的平移得到?怎样平移?3.交流探究:教材P 34~P 35(5分钟)4.归纳总结(5分钟)抛物线y =a (x -h )2与抛物线y =ax 2的形状相同,只是位置不同,它可以由抛物线y =ax 2平移得到:当h >0时,向右平移h 个单位,当h <0时,向左平移|h |个单位,它的对称轴是直线x =h ,顶点坐标为(h ,0).知识点二:y =a (x -h )2的性质5.讨论(5分钟)(1)a >0,开口__向上__,当x =__h __时,函数y 有最__小__值=__0__,在对称轴的左侧,y 随x 的增大而__减小__,在对称轴的右侧,y 随x 的增大而__增大__.(2)a <0,开口__向下__,当x =__h __时,函数y 有最__大__值=__0__,在对称轴的左侧,y 随x 的增大而__增大__,在对称轴的右侧,y 随x 的增大而__减小__.6.课堂练习(3分钟)(1)抛物线y =2(x +1)2可以由抛物线__y =2x 2__向__左__平移1个单位得到.(2)抛物线y =-23(x -4)2可以由抛物线__y =-23x 2__向右平移__4__个单位得到. (3)已知二次函数y =-13(x -2)2,说出函数图象的对称轴和顶点及最值、增减性. 解:二次函数y =-13(x -2)2的对称轴为x =2,顶点为(2,0),有最大值0.当x <0时,y随x的增大而增大,当x>0时,y随x的增大而减小.7.课堂小结(3分钟)(1)抛物线y=a(x-h)2与y=ax2的关系.(2)抛物线y=a(x-h)2的对称轴、顶点.(3)平移规律:“左加右减”.(4)你还有哪些困惑和收获?8.独立作业(11分钟)(1)必做题:习题22.1第5题(2).(2)备用题:①已知抛物线y=a(x+h)2的顶点是(-3,0),它是由抛物线y=-4x2平移得到的,则a =__-4__,h=__3__.②把抛物线y=(x+1)2向__右__平移__4__个单位后得到抛物线y=(x-3)2.③把抛物线y=x2+mx+n向左平移4个单位,得到抛物线y=(x-1)2,则m=__-10__,n=__25__.第3课时二次函数y=a(x-h)2+k的图象和性质教学目标1.会用描点法画出二次函数y =a (x -h )2+k (a 、h 、k 是常数,a ≠0)的图象,掌握抛物线y =a (x -h )2+k 与y =ax 2的图象之间的关系,熟练掌握函数y =a (x -h )2+k 的有关性质,并能用函数y =a (x -h )2+k 的性质解决一些实际问题.2.经历探索y =a (x -h )2+k 的图象及性质的过程,体验y =a (x -h )2+k 与y =ax 2、y =ax 2+k 、y =a (x -h )2之间的转化过程,深刻理解数学建模思想及数形结合的思想方法.3.通过观察函数的图象,归纳函数的性质等活动,感受学习数学的价值.教学重难点重点:二次函数y =a (x +h )2+k 的性质.难点:教材P 36例4的解答需要选取合适的坐标系,有一定的难度,是本节教学的难点. 教学过程与方法1.回顾与思考(3分钟)我们已经学习了形如y =ax 2,y =ax 2+k ,y =a (x -h )2的函数,知道了它们可以经过互相平移得到.二次函数y =a (x -h )2+k 又是一条怎样的抛物线呢?它与这三条抛物线之间有什么关系?知识点一:y =a (x -h )2+k 的图象和性质2.合作与探究:教材P 35例3(15分钟)(1)在同一坐标系内,画出二次函数y =-12x 2,y =-12x 2-1,y =-12(x +1)2-1的图象. 处理方法:师生一起完成列表,再由学生画出图象,如图.(2)指出y =-12(x +1)2-1的开口方向、对称轴、顶点坐标、最值、增减性. (3)y =-12(x +1)2-1可以由y =-12x 2怎样平移而得到? (4)归纳:y =a (x -h )2+k 的图象和性质及由y =ax 2平移得到函数图象的规律.知识点二:y =a (x -h )2+k 的实际运用3.解决问题,交流思想(16分钟)(1)读懂教材P 36例4题意.(2)怎样建立平面直角坐标系?(3)怎样才能与二次函数联系起来?4.课堂练习:教材P 37练习(3分钟)5.课堂小结(4分钟)(1)本节课我们学习了哪些内容?引导学生从以下几个方面去回顾:①二次函数y =a (x -h )2+k 的性质;②抛物线y =a (x -h )2+k 与y =ax 2的平移关系;③选取坐标系的方法.(2)谈一谈你的收获或困惑.6.独立作业(10分钟)(1)必做题:习题22.1第5题(3),第7题(1).(2)备用题:已知y =a (x -h )2+k 是由抛物线y =-12x 2向上平移2个单位长度,再向右平移1个单位长度得到的抛物线.①求出a 、h 、k 的值;②在同一坐标系中,画出y =a (x -h )2+k 与y =-12x 2的图象; ③观察y =a (x -h )2+k 的图象,当x 取何值时,y 随x 的增大而增大;当x 取何值时,y 随x 的增大而减小,并求出函数的最值;④观察y =a (x -h )2+k 的图象,你能说出对于一切x 的值,函数y 的取值范围吗?解:①a =-12,h =1,k =2 ②图略 ③当x <1时,y 随x 的增大而增大;当x >1时,y 随x 的增大而减小;当x =1时,函数有最大值2 ④对于一切x 的值y ≤2.。
专题20 图形的变换与坐标(学生版)
知识点01:轴对称变换【高频考点精讲】1、轴对称图形把一个图形沿一条直线折叠,直线两边的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点。
常见的轴对称图形:等腰三角形,矩形,正方形,等腰梯形,圆等。
2、轴对称性质(1)关于直线对称的两个图形是全等图形。
(2)对称轴是对应点连线的垂直平分线。
(3)如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称。
3、关于x轴、y轴对称的点的坐标(1)关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y);(2)关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y)。
4、最短路线问题在直线l上方有两个点A、B,确定直线l上到A、B的距离之和最短的点,可以通过轴对称来确定,即作出其中一点关于直线l的对称点,对称点与另一点的连线与直线l的交点即为所求。
知识点02:平移变换【高频考点精讲】1、把一个图形整体沿某一直线方向移动一定的距离,得到一个新的图形,图形的这种移动,叫做平移。
2、平移的两个要素:(1)图形平移的方向;(2)图形平移的距离。
3、平移性质:对应点所连线段平行且相等。
4、平移变换与坐标变化(1)坐标点P(x,y)向右平移a个单位,得出P(x+a,y);(2)坐标点P(x,y)向左平移a个单位,得出P(x﹣a,y);(3)坐标点P(x,y)向上平移b个单位,得出P(x,y+b);(4)坐标点P(x,y)向下平移b个单位,得出P(x,y﹣b)。
知识点03:旋转变换【高频考点精讲】1、将一个图形绕一个定点沿某个方向转动一定的角度,这样的图形变换叫做旋转,这个定点叫做旋转中心,转动的角度叫做旋转角。
2、旋转性质(1)对应点到旋转中心的距离相等.(2)对应点与旋转中心所连线段的夹角等于旋转角。
坐标与图形的变化
缩放变换是图形变换中常用的一种,它通过改变图形上所有点的坐标值来实现放大或缩小。在缩放变 换中,图形上任意一点都按照相同的比例因子进行放大或缩小,保持了图形之间的相对关系不变。
旋转变换
总结词
旋转变换是指图形绕某一点旋转一定的角度,同时改变其方向和位置。
详细描述
旋转变换是图形变换中常用的一种,它通过旋转图形上所有点的坐标值来实现旋转。在旋转变换中,图形上任意 一点都绕着旋转中心按照相同的旋转角度进行旋转,保持了图形之间的相对关系不变。
在实际应用中,坐标与图形变化的应用非常广泛。例如,在计算机图形学中,坐标与图形变 化被用于生成和处理各种类型的图像;在物理学中,它们被用于描述物体的运动轨迹和状态 变化;在工程学中,它们被用于设计和分析各种机械系统和控制系统。
对未来研究的展望与建议
• 随着科技的不断发展,坐标与图形变化的应用前景将更加广阔。未来,我们可 以进一步探索如何将坐标与图形变化应用于更多领域,以解决更多实际问题。
在机械设计中,可以通过建立坐标系来描述机器部件的位置和运 动轨迹,从而进行精确的设计和制造。
航空航天
在航空航天领域,通过建立三维坐标系,可以描述飞行器的位置和 姿态,从而进行导航和控制。
自动化控制
在自动化控制领域,通过建立坐标系,可以描述机器的位置和状态, 从而进行精确的控制和监测。
05
总结与展望
• 总之,坐标与图形变化是一个充满活力和潜力的研究领域。未来,我们可以通 过不断深入研究和探索,推动该领域的发展和应用,为解决更多实际问题提供 更多有效的方法和工具。THAKS感谢观看04
坐标与图形变化的应用
在几何学中的应用
01
02
03
坐标变换
图形运动与坐标课件
缩放运动
定义
缩放运动是指图形在某一方向上 放大或缩小一定的比例,而不改
变其形状和大小。
特点
图形在缩放过程中,其内部任意两 点间的距离会发生变化,且与缩放 的比例和方向有关。
示例
将一个圆形横向缩小为原来的1/2, 得到一个新的圆形。
04
坐标变换
坐标变换基础
坐标系转换
理解不同坐标系之间的转换关系 ,如二维平面直角坐标系与极坐
详细描述
极坐标系由一个极点和一个极轴构成。极点是极坐标系的中心,极轴是经过极点的直线。每个点P在平面上都可 以用一个实数r表示点到极点的距离,用一个角度θ表示点P与极轴之间的夹角,这对数值(r, θ)称为点P的极坐标 。
参数坐标系
总结词
参数坐标系是一种通过设定参数方程来描述点的位置的坐标系,常用于描述曲线和曲面。
特点
图形在平移过程中,其内 部任意两点间的距离保持 不变,且与移动的方向和 距离有关。
示例
将一个三角形向右平移3个 单位,得到一个新的三角 形。
旋转运动
定义
示例
旋转运动是指图形绕某一点转动一定 的角度,而不改变其形状和大小。
将一个正方形绕其中心点顺时针旋转 90度,得到一个新的正方形。
特点
图形在旋转过程中,其内部任意两点 间的距离保持不变,且与旋转的中心 点和角度有关。
实世界的环境和物体的动态变化。通过实时追踪用户的头部、手部等运
动,实现沉浸式的交互体验。
03
游戏开发
在游戏开发中,图形运动与坐标用于控制角色的动作、场景的变换以及
碰撞检测等。通过精确的坐标计算,可以实现流畅的游戏动画和交互效
果。
物理学中的应用
经典力学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
-4- 3 -2 -1 0 1 2 3 4 5 x
-1
C
B
-2
-3 A (3 ,-2 )
-4
A(3,-2) 向左平移5个单位
A(3,-2) 向左平移7个单位
A(3,-2)
向左平移 a个单位
a >0
B(-2,-2) C(-4
B
1
-4- 3 -2
A(3,-1) 向上平移3个单位
-2
-3
(4,3)
A
B (3,1) 34 x
猜想: △ A1B1C1与△ABC的大小、 形状和位置 上有什么关系,为什么?
2. 例题探索
将△ABC三个顶点的 纵坐标都减去5,横坐标不变。
A(4,3) B(3,1) C(1,2)
A2(4,-2) B2(3,-4) C2(1,-3)
y
A
2C
1
B
-4 -3 -2 -1 01 -1
横坐标、 纵坐标分 别发生了 什么变化
y
1
-3 -2 -1 0 1 2 3 4 5 x
-1
A (-3 ,-2 )
-2
-3 B
C
-4
A(-3,-2) A(-3,-2) A(-3,-2)
向右平移5个单位
向右平移7个单位 向右平移 a个单位
a >0
B (2,-2) C (4,-2) (-3+a,-2)
y
A(3,-1) 向上平移5个单位
A(3,-1)
向上平移 b个单位
b >0
-1 0 1 2
-1
B(3,2) C(3,4) (3,-1+b)
3 4 5x
A (3 ,-1 )
y
A (3 ,4 )
4
3
2
1
B
-4- 3 -2 -1 0 1 2 3 4 5 x
-1
C
A(3,4) 向下平移3个单位 B(3,1)
小练习
1.有相距5个单位的两点 A(-3,a),B(b,4), AB//x轴,则a= _4__ ,b= __2_或。-8
A
Y
4
B1
3
2
1
-4 -3 -2 -1 0 1 2 3 4
-1
x
-2
-3
2.如图△ABC中任意一点 P(x0,y0)经平移后对应点为 P1(x0+5,y0+3),将△ABC作同样的平移到△ A1B1C1。
图形的这种移动,叫做平移。 2.平移后得到的新图形与原图形有什么关系?
(1)平移后图形的位置改变,形状、大小不变。 (2)对应点连线段平行且相等,对应线段平行且相 等,对应角相等。
3.坐标中,某一点关于 X轴,Y轴和原点的对称 点的特征分别是什么?
? 关于X轴对称的两点, X不变,Y互为相反数。 ? 关于Y轴对称的两点, Y不变,X互为相反数。 ? 关于原点对称的两点, X,Y都互为相反数。
123
4x
-2
A2
-3 C2
-4
B2
猜想: △ A2B2C2与△ ABC的大小、形状和位置上有什么关系?
2. 探究
( 3)将△ ABC 三个顶点的 ①
A1 y
横坐标都减 6,纵坐标 C1
22 C
减5,又能得到什么结论?
B1
11
-6
-4
-5 -4
-2
-3 -2
-1
0
1
-1-1
A1
-2-2
C1
-3 C -3
1
B1
-4-4
总结:图形的 斜向平移,可通过 左右平移
A
B
2
4
23 4 x
A1
②
B1
和上下 平移来完成。
总结规律2: 图形上点的坐标变化与图形平移间的关系
(1)横坐标变化 ,纵坐标不变: 原图形上的点 (x,y) ,(x+a,y) 向右平移 a个单位 原图形上的点 (x,y) ,(x-a,y) 向左平移 a个单位 (2)横坐标不变 ,纵坐标变化: 原图形上的点 (x,y) ,(x,y+b) 向上平移 b个单位
2.把点M(-3,1)平移后得到点 N(-1,4) 则平移的过程是: 向右平移2个单位,再向上平移 3个单位
或:向上平移 3个单位,再向右平移 2个单位
1.已知三角形 ABC,平移三角形 ABC使点A和点A′重合。 2.把鱼往左平移 6cm。(假设每小格是 1cm)
A
A′ .
B
C
A
B
二. 探索图形上点的坐标变化与图形平移间的关系
19.4 坐标与图形的变化
第1课时 图形变化和图形上点的坐标之间的关系
理解点和图形的变化引起的坐标的变 化规律,以及图形上点的坐标的平移 变换的作用。
图形坐标变化和图形平移变换之间的 关系。
图形坐标变化和图形平移变换规律的 探索。
体验回顾
1.什么叫做平移? 把一个图形整体沿一直线方向移动一定的距离,
求A1、B1、C1的坐标 A1(3,6) B1(1,4) C1(7,3)
A(3,4) 向下平移5个单位 C(3,-1)
A(3,4)
向下平移 b个单位
b >0
(3,4-b)
总结规律 1:图形平移与点的坐标变化间的关系
(1)沿X轴左、右平移: 原图形上的点 (x,y) 向右平移a个单位 (x+a,y) 原图形上的点 (x,y) 向左平移a个单位 (x-a,y) (2)沿Y轴上、下平移: 原图形上的点 (x,y) 向上平移b个单位 (x,y+b) 原图形上的点 (x,y) 向下平移b个单位 (x,y-b)
1.将点A(-3,2)向下平移 3个单位, 再向右平移 4个单位得点 B,则B点坐 标是(1,-1) .
2.将点P(0,-2)向左平移 2个单位, 再向上平移 4个单位得点 Q(x,y),则 xy= -4 .
1.把点M(1,2)平移后得到点 N(1,-2) 则平移的过程是: 向下平移4个单位 .
原图形上的点 (x,y) ,(x,y-b) 向下平移 b个单位
恭喜你,过关了!
回顾所学
对于
A(-2,4) Y 4 3 2 1
-4 -3 -2 -1 0 1 2 3 4
x
-1
-2
-3
你能运用图形尽可能具体地对 今天所学的知 识进行一番回顾吗 ?
(1)沿X轴左、右平移: 原图形上的点 (x,y) 向右平移a个单位 (x + a, y ) 原图形上的点 (x,y) 向左平移a个单位 (x - a, y ) (2)沿Y轴上、下平移: 原图形上的点 (x,y) 向上平移b个单位 (x ,y + b) 原图形上的点 (x,y) 向下平移b个单位 (x ,y - b)
1.例题探索
如图,△ABC三个顶点的坐 A(4,3),B(3,1),C(1,2) (-5,2)
(1)将三角形ABC三个顶点 C1 的横坐标都减去6,纵坐
y 4 A(1-2,3) 3(1,2)
C 2 B1 (-3,1) 1
标不变
-5 -4 -3 -2 -1
12
(2)依次连接A1,B1,C1,
-1
各点,得到三角形A1B1C1