(完整版)初一下册数学培优代数几何易错题
七年级数学代数式易错题(Word版 含答案)

3.某校要将一块长为 a 米,宽为 b 米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图 1,在空地上横、竖各铺一条宽为 4 米的石子路,其余空地种植花草. 方案二:如图 2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地 铺筑成石子路.
(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有 π,则保留) (2)若 a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π 取 3.14). 【答案】 (1)解:方案一:∵ 石子路宽为 4, ∴ S 石子路面积=4a+4b-16,
与 的差一定是 9 的倍数
(4)解:∵ + + + + + =3470+
∴ 222(a+b+c)=222×15+140+
∵ 100< <1000, ∴ 3570<222(a+b+c)<4470, ∴ 16<a+b+c≤20. 尝试发现
只有 a+b+c=19,此时 =748 成立, 这个三位数为 748.
一、初一数学代数式解答题压轴题精选(难)
1.任何一个整数 N,可以用一个的多项式来表示:
N=
.
例如:325=3×102+2×10+5. 一个正两位数的个位数字是 x,十位数字 y. (1)列式表示这个两位数; (2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明 新数与原数的和能被 11 整除. (3)已知 是一个正三位数.小明猜想:“ 与 的差一定是 9 的倍数。”请你帮助
2.|a|的几何意义是数轴上表示数 a 的点与原点 O 的距离,例如:|3|=|3﹣0|,即|3﹣0| 表示 3、0 在数轴上对应两点之间的距离.一般地,点 A、B 在数轴上分别表示数 a、b,那 么 A、B 之间的距离可表示为|a﹣b|,解决下面问题: (1)数轴上表示﹣1 和 2 的两点之间的距离是________;数轴上 P、Q 两点的距离为 6, 点 P 表示的数是 2,则点 Q 表示的数是________; (2)点 A 在数轴上表示数为 x,点 B、C 在数轴上表示的数分别为多项式 2m2n+mn﹣2 的 常数项和次数.________ ①若 B、C 两点分别以 3 个单位长度/秒和 2 个单位长度/秒的速度同时向右运动 t 秒.当 OC =2OB 时,求 t 的值;________ ②用含 x 的绝对值的式子表示点 A 到点 B、点 A 到点 C 的距离之和为________,直接写出
几何大概率错题整理(初一下学期)(答案)

初一下学期几何题集一、选择题1.如果两条平行线被第三条直线所截,那么同位角的平分线(A )A.互相平行B.互相垂直C.交角是锐角D.交角是钝角2.如图,图中∠1与∠2是同位角的是(C )12121212A.(2)(3)B.(2)(3)(4C.)(1)(2)(4)D.(3)(4)3.下列说法正确的是(B )A.直线AB 和直线BA 是两条直线 B.射线AB 和射线BA 是两条射线C.线段AB 和线段BA 是两条直线 D.直线AB 和直线α不能是同一条直线二、填空题1.已知数轴的原点为O ,如图所示,若点A 表示3,点B 表示-52,问:12345-1-2-3-4-5-66OAB(1)射线OB 上的点表示什么数?端点表示什么数?答:非正数(2)数轴上表示不小于-52,且不大于3的部分是什么图形?答:线段AB2.观察图①,由点A 和点B 可确定一条直线;观察图②,由不在同一直线上的三点A 、B 和C 最多能确定三条直线;(1)动手画一画图③中经过A 、B 、C 、D 四点的所有直线,最多共可作6条直线;(2)在同一平面内任三点不在同一直线的五个点最多能确定10条直线;(3)n 个点(n ≥2)最多能确定n (n -1)2条直线。
ABABCABCD3.在一条直线上取两点A 、B ,共有一条线段;在一条直线上取三个点A 、B 、C ,共有三条线段,在一条直线上取A 、B 、C 、D 四个点时,共有六条线段。
在一条直线上取n 个点时,共有n (n -1)2条线段。
A B A B C A B C D4.如图,EF ⏊AB 于点F ,CD ⏊AB 于点D ,E 是AC 上一点,∠1=∠2,则图中互相平行的直线是EF ⎳CD 、ED ⎳BCABCDEF125.工人师傅在用方砖铺地时,常常打两个木桩,然后沿着拉紧的线铺砖,这样地砖就铺得整齐。
这个事实说明的原理是两点确定一条直线,经过两点有且只有一条直线6.如图,射线DE ,DC 被直线AB 所截得的用数字表示的角中,∠4的同旁内角是∠5,∠3ABC DE123457.互为余角的两个角之差为35°,则较大角的补角是117.5°【解析】①α+β=90°②α-β=35°式子①+②α+β+α-β=90°+35°2α=125°α=62.5°180°-62.5°=117.5°8.如图,在射线CD 上取三点D 、E 、F ,则图中共有射线4条C D E F9.如图,已知∠AOB =120°,射线OC 从OA 位置处罚,绕点O 以每秒5°的速度顺时针方向旋转,同时射线OD 从OB 位置出发,绕点O 以每秒1°的速度逆时针方向旋转,当射线OC 与射线OB 重合时,运功停止,在运动过程中,当射线OC 旋转1207秒时,OD 平分∠BOC .三、解答题1.如图,B 处在A 处的南偏西45°方向上,C 处在A 处的南偏东30°方向,C 处在B 处的北偏东60°方向,求∠ACB 的度数。
代数式易错题(Word版 含答案)

一、初一数学代数式解答题压轴题精选(难)1.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.2.如图(1)2020年9月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为________;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为________(2)如图2,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为96?如果存在,请求出这四个数中的最小的数字;如果不存在,请说明理由(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2.若|a1﹣a2|=6,请求出正方形框中位于最中心的数字m的值.【答案】(1)3x+3;3y+21(2)解:设所框出的四个数最小的一个为a,则另外三个分别是:(a+1)、(a+7)、(a+8),则a+(a+1)+(a+7)+(a+8)=96,解得,a=20,由图2知,所框出的四个数存在,故存在被框住的4个数的和为96,其中最小的数为20(3)解:根据题意得,a1=m+(m﹣1)+(m+1)+(m﹣7)+(m﹣6)+(m﹣8)=6m ﹣21,a2=(m+7)+(m+6)+(m+8)=3m+21,∵|a1﹣a2|=6,∴|(6m﹣21)﹣(3m+21)|=6,即|3m﹣42|=6,解得,m=12(因12位于最后一竖列,不可能为9数的中间一数,舍去)或m=16,∴m=16.【解析】【解答】(1)解:如果任意圈出一横行左右相邻的三个数,设最小的数为x,则三数的和为:x+(x+1)+(x+2)=x+x+1+x+2=3x+3;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,则三数和为:y+(y+7)+(y+14)=y+y+7+y+14=3y+21.故答案为:3x+3;3y+21【分析】(1)由三个数的大小关系,表示另两个数,再求和并化简即可;(2)设最小数为a,并用a的代数式表示所框出的四个数的和,再根据四个数和为96可列方程,解方程,若方程有符合条件的解,则存在,反之不存在;(3)且m表示出a1和a2,再由|a1−a2|=6列方程求解.3.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收贵的价目表如下(注:水费按月份结算,m3表示立方米)超出10m3的部分6元/m35m3和8m3,则应收水费分别是________元和________元.(2)若该户居民3月份用水量am3(其中6<a≤10),则应收水费多少元?(用含a的式子表示,并化简)(3)若该户层民4、5两个月共用水14m3(5月份用水量超过4月份),设4月份用水xm3,求该户居民4、5两个月共交水费多少元?(用含x的式子表示,并化简)【答案】(1)10;20(2)解:由依题意得:6×2+(a﹣6)×4=4a﹣12(元)答:应收水费(4a﹣12)元。
七年级(下)易错题和典型题期末复习专练一 代数部分

易错题和典型题专练一 代数部分一、填空题:1、在△ABC 中,若AB =5,AC =3,则中线AD 的长的取值范围是______________。
2、若22=nx,则()()=-22332nn x x ;若()()()xx23222-÷-=-,则=x 。
3、已知192221232=-++x x ,则=x ;()201120100.1258⋅-= 。
4、计算:()322m m x xx -∙÷= ;()()42242332a a a a a -++⋅⋅= 。
5、计算:=++--210)2.022(,=÷÷÷)()(6735m m m m 。
6、要使()()211-+--x x 有意义,x 的取值应满足: 。
7、若二项式142+m 加上一个单项式后是一个含m 的完全平方式,则单项式为 。
8、若0134622=++-+m n n m ,则22n m -=_________。
9、已知x m=3,19+=y m,用含有字母x 的代数式表示y ,则y =_________。
已知x m =3,131+=+y m ,用含有字母x 的代数式表示y ,则y =_________。
10、已知012=-+m m ,则=++2009223m m 。
11、三个多项式32,12,2223--+++x x x x x x 的公因式是___________。
12、若()()1212222=-++y xyx , 则22y x +=___________。
13、如果=+=+-==+2222,6,1y x xy y x xy y x ,则。
14、已知:132=--+yx y x ,用含x 的代数式表示y ,得 。
15、如果关于x 的方程2324+=-x m x 和m x x 32-=的解相同,则m = 。
16、已知关于y x ,的方程组y x ,ay x a y x -⎩⎨⎧-=++-=+则3242的值为 。
(易错题精选)初中数学代数式易错题汇编含答案(1)

(易错题精选)初中数学代数式易错题汇编含答案(1)一、选择题1.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b -B .29bC .29aD .22a b -【答案】B【解析】【分析】 根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +∴阴影部分的面积为:22(2)8(2)a b ab a b +-=-∵35a b =,即53a b = ∴阴影部分的面积为:222(2)()39b b a b -=-= 故选:B .【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.2.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a ,较短直角边为b ,则ab 的值是( )A .4B .6C .8D .10【答案】A【解析】【分析】 根据勾股定理可以求得a 2+b 2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值.【详解】解:根据勾股定理可得a 2+b 2=9, 四个直角三角形的面积是:12ab×4=9﹣1=8, 即:ab=4.故选A .考点:勾股定理.3.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.4.下列运算正确的是( )A .3a 3+a 3=4a 6B .(a+b )2=a 2+b 2C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A .3a 3+a 3=4a 3,故A 错误;B .(a +b )2=a 2+b 2+2ab ,故B 错误;C .5a ﹣3a =2a ,故C 正确;D .(﹣a )2•a 3=a 5,故D 错误;故选C .【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.5.下列运算正确的是()A .336a a a +=B .632a a a ÷=C .()235a a a -⋅=-D .()336a a = 【答案】C【解析】【分析】分别求出每个式子的值,3332a a a +=,633a a a ÷=,()235a a a -⋅=-,()339a a =再进行判断即可.【详解】解:A: 3332a a a +=,故选项A 错;B :633a a a ÷=,故选项B 错;C :()235aa a -⋅=-,故本选项正确; D.:()339a a =,故选项D 错误.故答案为C.【点睛】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概念,即求n 个相同因数的乘积的运算叫乘方,乘方的结果叫做幂;分清()22n n a a -=,()2121n n a a ++-=-.6.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.7.计算 2017201817(5)()736-⨯ 的结果是( ) A .736- B .736 C .- 1 D .367【答案】A【解析】【分析】根据积的乘方的逆用进行化简运算即可.【详解】2017201817(5)()736-⨯ 20172018367()()736=-⨯ 20173677()73636=-⨯⨯ 20177(1)36=-⨯ 736=- 故答案为:A .【点睛】本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.8.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.9.计算3x2﹣x2的结果是()A.2 B.2x2 C.2x D.4x2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x2﹣x2=(3-1)x2=2x2,故选B.【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.10.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.11.按如图所示的运算程序,能使输出y的值为1的是()A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.12.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.13.已知a +b +c =1,22223+-+=a b c c ,则ab 的值为( ).A .1B .-1C .2D .-2 【答案】B【解析】【分析】将a +b +c =1变形为a +b =1- c ,将22223+-+=a b c c 变形为222221+=+--a b c c ,然后利用完全平方公式将两个式子联立即可求解.【详解】∵22223+-+=a b c c∴()222221=12+=--+-a b c c c∵a +b +c =1∴1+=-a b c∴()()221+=-a b c∴()2222+=+-a b a b展开得222222++=+-a b ab a b∴1ab =-故选B .【点睛】本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.14.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( ) A .5,3B .5,−3C .−5,3D .−5, −3【答案】D【解析】【分析】 此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值.【详解】由于()()2x 1x 3+-=2x 2-6x+x-3=2 x 2-5x-3=22x px q ++, 则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.15.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a =【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.16.如图,是一个运算程序的示意图,若开始输入x 的值为81,则第2018次输出的结果是( )A .3B .27C .9D .1【答案】D【解析】【分析】 根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,13×81=27, 第2次,13×27=9, 第3次,13×9=3, 第4次,13×3=1, 第5次,1+2=3,第6次,13×3=1, …,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2018是偶数,∴第2018次输出的结果为1.故选D .【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.17.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.18.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.19.若代数式()212323aa x y xy -+-是五次二项式,则a 的值为( ) A .2B .2±C .3D .3± 【答案】A【解析】【分析】根据多项式的次数与项数的定义解答.【详解】∵()212323a a x y xy -+-是五次二项式,∴2125a -+=,且20a +≠,解得a=2,故选:A.【点睛】此题考查多项式的次数与项数的定义,熟记定义是解题的关键.20.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( ) A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12, ∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .。
2020-2021初中数学代数式易错题汇编附解析

2020-2021初中数学代数式易错题汇编附解析一、选择题1.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.2.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y = 【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;故选:D .本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.3.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅= 【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【详解】解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.4.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .5.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.6.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A 、x 3+x 5,无法计算,故此选项错误;B 、(y+1)(y-1)=y 2-1,正确;C 、a 10÷a 2=a 8,故此选项错误;D 、(-a 2b )3=-a 6b 3,故此选项错误.故选:B .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.7.如图,两个连接在一起的菱形的边长都是1cm ,一只电子甲虫从点A 开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm 时停下,则它停的位置是( )A .点FB .点EC .点AD .点C【答案】A分析:利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm(称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm,所以它停的位置是F点.详解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2014÷8=251……6,所以当电子甲虫爬行2014cm时停下,它停的位置是F点.故选A.点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.8.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(-10%)(+15%)万元B.(1-10%)(1+15%)万元C.(-10%+15%)万元D.(1-10%+15%)万元【答案】B【解析】列代数式.据3月份的产值是a万元,用a把4月份的产值表示出来a(1-10%),从而得出5月份产值列出式子a1-10%)(1+15%).故选B.9.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2【答案】C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.+为()10.已知单项式2m1-互为同类项,则m n3a b-与n7a bA.1 B.2 C.3 D.4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项,n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( )A .2017B .2016C .191D .190【答案】D【解析】试题解析:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a+b )20第三项系数为1+2+3+…+20=190,故选 D .考点:完全平方公式.12.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .224a a a +=【答案】B【解析】【分析】根据积的乘方运算法则和同底数幂的运算法则分别计算即可解答.解:A. 235a a a ⋅=,故A 错误;B. 222()ab a b =,正确;C. ()326a a =,故C 错误;D. 2222a a a +=,故D 错误.故答案为B .【点睛】本题主要考查了积的乘方和同底数幂的运算运算法则,掌握并灵活运用相关运算法则是解答本题的关键.13.若3,2x y xy +==, 则()()5235x xy y +--的值为( ) A .12B .11C .10D .9 【答案】B【解析】【分析】项将多项式去括号化简,再将3,2x y xy +==代入计算.【详解】 ()()5235x xy y +--=235()xy x y -++,∵3,2x y xy +==,∴原式=2-6+15=11,故选:B.【点睛】此题考查整式的化简求值,正确去括号、合并同类项是解题的关键.14.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯ 【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.15.已知x=2y+3,则代数式9-8y+4x 的值是( )A .3B .21C .5D .-15【答案】B【解析】直接将已知变形进而代入原式求出答案.【详解】解:∵x=2y+3∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21故选:B【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.16.已知112x y +=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+= ∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy ===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.17.下列计算正确的是()A .4482a a a +=B .236a a a •=C .4312()a a =D .623a a a ÷=【答案】C【解析】【分析】根据合并同类项、同底数幂的乘除法公式、幂的乘方公式逐项判断,即可求解.【详解】A 、4442a a a +=,故错误;B 、235a a a •=,故错误;C 、4312()a a =,正确;D 、624a a a ÷=,故错误;故答案为:C.【点睛】本题考查了整式的运算,解题的关键是熟练掌握合并同类项的运算法则、同底数幂的乘除法公式、幂的乘方公式.18.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是( )(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A .食指B .中指C .小指D .大拇指【答案】B【解析】【分析】 根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.又∵2019是奇数,201925283=⨯+,∴数到2019时对应的指头是中指.故选:B .【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.19.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x2+2(m+1)x+25是一个完全平方式,∴△=b2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m2+2m-24=0,解得m1=4,m2=-6,所以m的值为4或-6.故选A.20.多项式2a2b﹣ab2﹣ab的项数及次数分别是()A.2,3 B.2,2 C.3,3 D.3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】2a2b﹣ab2﹣ab是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.。
七年级(下)北师大版数学几何易错题集

北师大版七年级(下)数学几何易错题集班级:姓名:得分:1,已知△ABC与△DEF全等,∠A=∠D=90°,∠B=37°,则∠E的度数是;2,已知△DEF≌△ABC,AB=AC,且△ABC的周长为23cm,BC=4 cm,则△DEF(第3题图)(第4题图)(第5题图)7,长为3cm,4cm,6cm,8cm的木条各两根,小明与小刚分别取了3cm和4cm 的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为()A.一个人取6cm的木条,一个人取8cm的木条;B.两人都取6cm的木条;C.两人都取8cm的木条;D.B, C 两种取法都可以8,下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是()A. ①②B. ②③C. ①③D. ①②③9,如图所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交点为C,则图中全等三角形共有()A. 2对B. 2对C. 4对D. 5对10,下列说法中,正确的有()①三角对应相等的2个三角形全等;②三边对应相等的2个三角形全等;③两角、一边相等的2个三角形全等;④两边、一角对应相等的2个三角形全等.A. 1个B. 2个C. 3个D. 4个11,如图,D在AB上,E在AC上,且∠B=∠C,则在下列条件:①AB=AC;②AD=AE;③BE=CD.其中能判定△ABE≌△ACD的有()A. 0个B. 1个C. 2个D. 3个12,△ABC中,AB=AC,三条高AD,BE,CF相交于O那么图中全等的三角形有()A. 5对B. 6对C. 7对D. 8对13,如图,已知AB=AC,D是BC的中点,E是AD上的一点,图中全等三角形有几对()A.1B.2C.3D.414,不能判断△ABC≌△DEF的条件是()A.∠A=∠F,BA=EF,AC=FDB.∠B=∠E,BC=EF,高AH=DGC.∠C=∠F=90°,∠A=60°,∠E=30°,AC=DFD.∠A=∠D,AB=DE,AC=DF15,如图,在△ABC与△ADE中,∠BAD=∠CAE,BC=DE,且点C在DE上,若添加一个条件,能判定△ABC≌△ADE,这个条件是()A.∠BAC=∠DAE B.∠B=∠DC.AB=AD D.AC=AE16,如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=OFE.其中能够证明△DOF≌△EOF的条件的个数有()A.1个B.2个C.3个D.4个17,如图,AB=AC,AD=AE,∠B=50°,∠AEC=120°则∠DAC的度数等于()A.120° B.70° C.60° D.50°18,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等 B.互余 C.互补或相等 D.不相等19,七(7)班徐同学想利用下列长度的木棒制成一个三角形工具,下列各组你认为可行的是()A.5,2,2 B.2,3,6 C.5,3,4 D.7,13,6 20,在△ABC中,∠A=47°,高BE、CF所在直线交于点O,且点E、F不与点B、 C重合,则∠BOC= ;21, 下列说法中:①只有两个三角形才能完全重合;②如果两个图形全等,它们的形状和大小一定都相同;③两个正方形一定是全等图形;④边数相同的图形一定能互相重合; 错误的有()A.4个 B.3个 C.2个 D.1个22,对于条件:①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一直角边对应相等;④直角边和一锐角对应相等;以上能断定两直角三角形全等的有()A.1个 B.2个 C.3个 D.4个23,下列说法中,正确的个数是()○1斜边和一直角边对应相等的两个直角三角形全等;○2有两边和它们的对应夹角相等的两个直角三角形全等;○3一锐角和斜边对应相等的两个直角三角形全等;○4两个锐角对应相等的两个直角三角形全等;A.1个B.2个C.3个D.4个24,如图,∠1=70°,若m ∥n,则∠2= 度25,如图,AB∥CD,∠B=28°,∠D=47°,则∠BED= 度(第24题图)(第25题图)(第26题图)26,如图,直线l1∥l2,AB⊥l1,垂足为O,BC与l2相交于点E,若∠1=43°,则∠2= 度;27,如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.28,下列所示的四个图形中,∠1和∠2是同位角的是()A.②③ B.①②③ C.①②④ C.①②④29,在图中,∠1与∠2是同位角的有()A.①② B.①③ C.②③ D.②④30,已知:x+y=-1,xy=-6,求:x2+y2及x-y的值;31,解方程:(2x+3)(x-4)-(x+2)(x-3)= x2+6推理填空:32,已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC()∴∠2= ()∵∠1=∠2(已知)∴∠1=∠(等量代换)∴EF∥CD()∴EF∥CD()∴∠AEF=∠()∵EF⊥AB(已知)∴∠AEF=90°()∴∠ADC=90°()∴CD⊥AB()33,如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE;解:∵∠A=∠F()∴AC∥DF()∴∠D=∠1()又∵∠C=∠D()∴∠1=∠C()∴BD∥CE()。
(最新整理)初一下几何易错题

2021/7/26
等边三角形 25
钝角三角形的三条高
做一做
A
F
DB
C
E
2021/7/26
26
A
D
B
C
直角边BC边上的 高是 AB ; 直角边AB边上的 高是 CB ;
斜边AC边上的
2021/7/26
高是 BD ;
A
F
D
B
C
E
AB边上的高是 CE ;
BC边上的高是 AD ;
CA边上的高是 BF ;
9. 三角形的一个外角等于与它不相邻的两个内角的和。 10. 三角形的一个外角大于与它不相邻的任何一个内角。
2021/7/26
32
多边形的内角和公式: n边形的内角和等于 (n-2)×180°
2021/7/26
33
理解 “稳定性 ”
“只要三角形三条边的长度固
定,这个三角形的形状和大小也就
完全确定,三角形的这种性质叫做
(a-b)²+lb-cl=0
a-b=0且b-c=o
a=b且b=c
a=b=c
2021/7/26
41
三角形的三边长分别为a,b,c,化 简la+b-cl-lb-c-al
la+b-cl-lb-c-al =(a+b-c)-(-b+c+a)
=a+b-c+b-c-a
=2b-2c
2021/7/26
42
在∆ABC中,∠BAC=90°,AB=AC=2
三角形的稳定性。”这就是说,三
角形的稳定性不是“拉得动、拉不
动”的问题,其实质应是“三角形
边长确定,其形状和大小就确定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一下册数学培优习题
1、解方程:()οοο1803
1902180⨯=---αα,则α= 2、用10%和5%的盐水合成8%的盐水10kg ,问10%和5%的盐水各需多少kg ?
3、已知523x k +=的解为正数,则k 的取值范围是
4、(1)若204160x m x -≤⎧⎨+〉⎩
有解,则m 的取值范围 (2)若212(1)11x a x x
-〈⎧⎨+〉-⎩的解为x >3,则a 的取值范围
(3)若2123x a x b -〈⎧⎨
-〉⎩的解是-1<x <1,则(a+1)(b-2)= (4)若2x <a 的解集为x <2,则a=
5、已知32121
x y m x y m +=+⎧⎨+=-⎩,x >y ,则m 的取值范围 ;
6、已知同一坡路上山速度为600m/h ,下山的速度为400m/h ,则上下山的平均速度为?
7、已知2
4(3)0x y x y +-+-=,则x= ,y= ; 8、已知35303580x y z x y z ++=⎧⎨--=⎩
(0z ≠),则:x z = ,:y z = ; 9、当m= 时,方程262310x y x y m +=⎧⎨-=-⎩
中x 、y 的值相等,此时x 、y 的值= 。
10、已知点P(5a-7,-6a-2)在二、四象限的角平分线上,则a= 。
11、⎩⎨⎧=-=+m
y x m y x 932的解是3423=+y x 的解,求m m 12-。
12、若方程x x m x m 5)3(1)1(3--=++的解是负数,则m 的取值范围是 。
13、船从A 点出发,向北偏西60°行进了200km 到B 点,再从B 点向南偏东20°方向走500km 到C
点,则∠ABC= 。
14、
⎩
⎨
⎧
=
+
+
=
+
a
y
x
a
y
x
3
2
2
5
3
的解x和y的和为0,则a= 。
15、a、b互为相反数且均不为0,c、d互为倒数,则=
-
+
⨯
+cd
a
b
b
a
3
2
5
)
(。
a、b互为相反数且均不为0,则=
+
⨯
-
+)1
(
)1
(
b
a
b
a。
a、b互为相反数,c、d互为倒数,2
=
x,则=
+
+cdx
b
a10
10。
16、若1
=
m
m
,则m 0。
(填“>”、“<”或“=”)
17、计算:=
-
+
-
2
1
4
7
7
2
;=
⨯77
764
25
.0。
18、若5
+
m与()42-n互为相反数,则=n m。
19、倒数等于它本身的数是:;相反数等于它本身的数是:。
20、有23人在甲处劳动,17人在乙处劳动,现调20人去支援,使在甲处劳动的人数是在乙处劳动
的人数的2倍,应调往甲乙两处各多少人?
21、如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD ⊥AE于D, CE⊥AE于E.
图1 图2 图3
(1)试说明: BD=DE+CE.
(2) 若直线AE绕A点旋转到图(2)位置时(BD<CE), 其余条件不变, 问BD与DE、CE的关系如何? 不需说明.
(3) 若直线AE绕A点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD与DE、CE的关系如何?。