元素周期表中的潜在的规律汇总

合集下载

化学元素周期表的规律总结

化学元素周期表的规律总结

化学元素周期表的规律总结1、同一周期内,从左到右,元素核外电子层数相同,最外层电子数依次递增,原子半径递减,其中0族元素除外。

2、同一族中,由上而下,最外层电子数相同,核外电子层数逐渐增多,原子半径增大,原子序数也会随之递增,元素金属性递增,非金属性则递减。

元素周期表规律1、原子半径的规律(1)除了第1周期外,其他周期元素(惰性气体元素除外)的原子半径随原子序数的递增而减小;(2)同一族的元素从上到下,随着电子层数增多,原子的半径也会随之增大。

2、元素化合价的规律(1)除第1周期外,同周期从左到右,元素最高正价由碱金属+1递增到+7,非金属元素负价由碳族-4递增到-1(氟无正价,氧无+6价,除外);(2)同一主族的元素的最高正价、负价均相同。

3、单质的熔点规律(1)同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减;(2)同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增。

4、元素的金属性与非金属性规律(1)同一周期的元素从左到右金属性递减,非金属性递增;(2)同一主族元素从上到下金属性递增,非金属性递减。

5、最高价氧化物和水化物的酸碱性规律元素的金属性越强,其最高价氧化物的水化物的碱性越强;元素的非金属性越强,最高价氧化物的水化物的酸性越强。

6、非金属气态氢化物规律元素非金属性越强,气态氢化物越稳定。

同周期非金属元素的非金属性越强,其气态氢化物水溶液一般酸性越强;同主族非金属元素的非金属性越强,其气态氢化物水溶液的酸性越弱。

7、单质的氧化性、还原性规律一般元素的金属性越强,其单质的还原性越强,其氧化物的氧离子氧化性越弱;元素的非金属性越强,其单质的氧化性越强,其简单阴离子的还原性越弱。

8、热稳定性规律同一周期自左向右依次增加,同一族自上而下减少,与非金属元素电负性变化规律一样。

化学元素周期表的规律总结

化学元素周期表的规律总结

化学元素周期表的规律总结以《化学元素周期表的规律总结》为标题,本文将对化学元素周期表的规律进行综述性总结。

一、元素周期表的结构化学元素周期表是现代化学中重要的基本工具,也是学习和发现元素性质的最重要的手段之一。

化学元素周期表是按元素的原子序数对元素进行编排的一种构造,分为六排,每排又分为七组,是一个三维的结构。

每排的元素性质,有规则的变化。

每组元素的最外层电子排数相等,前五组为s、p、d、f、g,以此类推,形成“8-8-8”的结构。

二、元素周期表的规律1、周期定律:通过对比组内元素的某些性质,发现循环周期增加,这些性质变化的规律也随之而变化,形成“连续交替”现象。

2、元素排列规律:按照元素周期表的排布,原子序数从小到大,相邻元素之间性质有一定的变化规律,在同一个周期内电荷极性升高,从而可以以此确定元素的原子序数。

3、元素相似性质规律:元素周期表上的元素,在原子序数相同的情况下,性质也会大致相同,两两交替的元素的性质有如下的关系:电荷会比上一个元素的电荷增加1,原子体积比上一个元素减少,沸点会比上一个元素增加,熔点沿着周期横轴发生波动。

三、元素周期表的作用1、元素周期表可以对原子核结构、原子半径、离子解和化合价等元素性质直接起到概括汇总的作用,大大的提高了化学研究的效率,使我们更加清晰的认识化学元素的结构及性质,从而更好的研究化学反应。

2、化学元素周期表可以把元素根据某种规律排列,同一行元素相互比较,更为方便地发现它们之间的联系,比如确定元素的原子序数、确定多原子分子的分子结构。

四、结论化学元素周期表是我们进行化学研究实验时必不可少的工具,它可以把元素根据某种规律排列,研究元素的性质及结构,用于记忆元素的原子序数、元素的熔点、沸点等信息,从而使我们更加系统的理解元素的性质和结构。

通过学习化学元素周期表,还能更好的研究化学反应,更加清晰的认识原子结构,进而为我们未来的化学应用奠定基础。

元素周期表的规律总结

元素周期表的规律总结

元素周期表的规律总结元素周期表是化学中最基本的知识之一,它展示了元素的基本属性和规律。

通过对元素周期表的规律进行总结,我们可以更好地理解元素之间的关系,为化学研究和应用提供基础支持。

首先,元素周期表是按照元素的原子序数从小到大排列的。

原子序数是指元素原子核中质子的数量,也是元素在周期表中的位置。

这种排列方式使得具有相似性质的元素出现在同一周期或同一族中,方便我们对元素的性质进行比较和分析。

其次,元素周期表中的周期性规律是指在元素周期表中,元素的性质随着原子序数的增加而呈现出规律性的变化。

比如,同一周期内的元素具有相似的化学性质,而同一族内的元素具有相似的原子结构和化学性质。

这种周期性规律的存在,为我们预测元素性质提供了重要的依据。

另外,元素周期表中的主族元素和过渡金属元素也呈现出不同的规律性。

主族元素的化合价主要取决于它们所在族的序数,而过渡金属元素的化合价则受到配位数和氧化态的影响。

这些规律性的变化,使得元素周期表成为了化学研究和实践中不可或缺的工具。

此外,元素周期表中的稀有气体元素和稀土金属元素也具有自己的特殊性。

稀有气体元素具有非常稳定的原子结构和化学性质,几乎不与其他元素发生化学反应,因此被称为稀有气体。

而稀土金属元素则具有复杂的原子结构和多样的化学性质,广泛应用于工业生产和科学研究领域。

总的来说,元素周期表的规律总结包括了元素的周期性规律、主族元素和过渡金属元素的规律性变化,以及稀有气体元素和稀土金属元素的特殊性。

通过对这些规律的深入理解,我们可以更好地掌握元素的性质和变化规律,为化学实验和工程技术提供更可靠的理论依据。

总的来说,元素周期表的规律总结为我们提供了深刻的化学知识,为我们理解元素之间的关系和性质变化提供了重要的依据。

通过对元素周期表规律的探索和总结,我们可以更好地应用化学知识,推动化学科学的发展,为人类社会的进步做出更大的贡献。

元素周期表规律总结

元素周期表规律总结

元素周期表规律总结元素周期表是由俄罗斯化学家门捷列夫·门捷列耶夫在 1869 年首次提出的,它是化学中最常用的工具之一。

元素周期表将所有已知元素按照原子序数的顺序排列,使得相似性质的元素能够放在一起。

这个表格也展示了元素的化学性质和一些其他的信息。

在元素周期表中,元素周期的重复性是其最显著和最重要的特征之一。

这是由于元素周期表中每一行被称为一个周期,每一列被称为一个族。

每一个周期都有相似的化学性质,而这种相似性质的变化又会在下一个周期中重复。

元素周期表的规律主要有以下几个方面:1. 原子序数:元素周期表按照原子序数的递增顺序排列,即从左到右,从上到下。

原子序数是指元素中原子核中质子的数量,也就是元素的标志性数字。

元素周期表的原子序数从 1 开始,依次增加。

这样的排列方式使得元素周期表更具有系统性,并且便于进行比较和分类。

2. 原子量:元素周期表中的元素按照原子量的递增顺序排列。

原子量是指元素一个原子中质子和中子的总质量。

原子量的增加与元素的原子序数相关。

原子量也是元素周期表中元素分类的重要依据之一。

3. 周期性规律:元素周期表的周期性规律是其最重要的特征之一。

每一个周期都有相似的化学性质,包括和其他元素的反应性、化合价的变化等。

这使得元素周期表成为预测和研究元素性质的重要工具。

其中,周期性规律最为明显的是周期表的主族元素和周期表的过渡元素。

4. 原子半径:元素周期表中,原子半径随着电子层的增加而增加。

这是由于原子核的吸引力减弱、电子云的层次结构变得更复杂而导致的。

原子半径的大小不仅与元素的位置有关,还与周期表中元素的族别、主族元素和过渡元素等有关。

5. 电子亲和能和电离能:元素周期表中,原子的电子亲和能和电离能通常随着元素的原子序数的增加而变化。

电子亲和能是指一个原子在气态中获得一个电子成为阴离子时所释放出的能量,而电离能是指一个原子失去一个电子成为阳离子时所需的能量。

这些性质的变化与元素的电子结构和原子核的吸引力有关。

化学元素周期表中的规律与趋势

化学元素周期表中的规律与趋势

化学元素周期表中的规律与趋势化学元素周期表是一种系统性的、可视化的化学元素分类表格,它将所有已知元素按照一定的顺序排列在一起,元素周期表的排列方式是基于元素的原子性质而展开的,通过它我们可以清楚地看出各种元素之间的关系,探究元素之间的规律和趋势。

在这篇文章中,我们将从各个方面来探讨化学元素周期表中的规律与趋势。

一、周期性规律元素周期表最显著的特点就是周期性规律,这种周期性规律基本上是由原子结构中的电子构型和原子半径的变化所决定的。

1. 原子半径的变化原子半径是指原子核和最外层电子之间的距离,它是一个用来描述原子大小的物理量。

通常,我们可以使用原子半径的大小来解释周期表的一些规律和趋势。

在元素周期表的左上角,是元素周期表中最小的元素氢和最小的原子半径。

随着原子核的电子层不断增加,原子半径也会逐渐增大。

这就是为什么周期表中的元素从上到下大致是递增的。

然而,在周期表中,原子半径的变化不是一直递增的,有时候它也会出现“跳跃”的状况。

例如,在同一周期内,原子半径会随着元素原子序数的增加而减小。

这个现象是由于不同元素的原子核和电子的结构以及电子云分布方式不同所导致的。

2. 电子构型的变化元素周期表的周期性规律还涉及到原子的电子构型。

元素周期表中每个元素都有特定的电子构型,这种电子构型决定了元素的化学性质。

当我们检查周期表中元素的电子构型时,我们会发现,元素周期表中同一周期的元素在原子内部的电子分布模式是相似的。

例如,第一周期的所有元素在原子内部的电子层次结构都是相同的,每个元素都只有一个电子层。

这种相似性导致这些元素具有类似的化学性质,这也是为什么这些元素被归类为同一周期的原因。

二、族性规律除了周期性规律,元素周期表还有族性规律。

族性规律是指元素周期表中相邻的两个元素在化学性质方面往往非常相似,通常归为同一族或同一列。

族性规律是由一些共同的原子结构引起的,比如有相同的外层电子数或电子层的相似性。

元素周期表的族性规律主要有两类。

元素周期表的排列规律

元素周期表的排列规律

元素周期表的排列规律元素周期表是化学领域中最为重要的工具之一,它以一种系统和有序的方式展示了元素的特性和性质。

元素周期表的排列规律不仅反映了元素的相似性,还揭示了元素的电子结构和化学行为。

本文将探讨元素周期表的排列规律,并分析其背后的科学原理。

一、周期与族元素周期表按照元素的原子序数(即元素的核中所含的质子数)从小到大排列。

元素周期表中的水平行称为周期,垂直列称为族。

每个周期包含一系列元素,而每个族则包含具有类似特性的元素。

根据元素周期表的排列规律,我们可以总结出以下几个规律。

1. 周期数与能级元素周期表中的周期数与元素的能级有关。

第一周期中只有两个元素,氢和氦,对应于它们所拥有的一个和两个能级。

第二周期中有8个元素,这些元素所拥有的能级增加到了2个。

依此类推,以往的周期表中一共有7个周期,分别对应着元素所拥有的能级数。

2. 周期趋势周期表中的周期趋势指的是元素特性随周期数变化的规律。

对于大部分元素而言,原子半径和离子半径随着周期数的增加而减小。

这是由于原子核中的质子数量增加,吸引电子的能力增强所致。

另外,原子电负性和电离能则呈现出相反的趋势,随周期数增加而增大。

3. 族特性元素周期表中的族特性指的是同一个族中元素的类似性。

同一族中的元素具有相似的化学性质,这是由于它们的电子结构相似。

典型的例子是1A族(碱金属)中的元素,它们都是非常活泼的金属。

而8A族(稀有气体)中的元素则非常稳定和不活泼。

二、元素的电子结构元素周期表的排列规律也反映了元素的电子结构。

每个元素都有一个原子核和围绕核旋转的电子。

这些电子分布在不同的能级和轨道中。

按照泡利不相容原理和阻塞原理,每个轨道能容纳的电子数是有限的。

元素周期表的排列方式确保了每个周期中的轨道数和能级数是与元素的电子结构相对应的。

例如,第一周期中的元素氢只有一个电子,它的电子结构为1s1。

第二周期中的元素锂具有3个电子,电子结构为1s2 2s1。

这种按照能级和轨道排列的方式使得每个元素的电子结构可以直观地理解和推导。

化学元素周期表中的规律性总结

化学元素周期表中的规律性总结

化学元素周期表中的规律性总结化学元素周期表是化学中最重要的工具之一,它按照元素的原子序数和电子结构,将所有已知的化学元素有序地排列在一张表格上。

周期表展现了元素之间的关系和规律,对于理解化学性质和预测新的元素具有重要意义。

本文将对周期表中的规律性进行总结,帮助读者更好地了解元素周期表的结构与特点。

周期表的基本结构周期表通常由横行(周期)和列(族)构成。

横行表示元素的周期,每周期增加一层电子壳;列表示元素的族,同一族中元素拥有相似的化学性质。

周期表中的第一横行称为1周期,第二横行称为2周期,依次类推。

垂直列上的元素称为主族元素,分别由代表性元素(1A至7A族)和过渡元素(1B至10B族)组成。

周期表中的规律性总结1. 元素周期性元素周期表的最重要的特征之一是元素周期性。

元素周期性是指元素性质随着原子序数的增加而呈现出的周期重复性。

这种周期性主要源于电子结构的变化。

按照Aufbau原理,电子填充顺序是按照能级从低到高的顺序进行的。

随着原子序数的增加,元素的电子填充顺序也逐渐变化,因此元素的性质也会出现周期性的变化。

2. 原子半径的变化周期表中,原子半径表现出一定的规律性。

一般来说,原子半径随着原子序数的增加而增加。

在同一周期中,由于外层电子壳的电子数增加,原子核与电子云之间的吸引力减弱,电子云膨胀,原子半径增大。

在同一族中,原子半径随着原子序数的增加而减小。

这是因为在同一族中,原子核的电荷数增加,外层电子壳的电子数保持不变,原子半径随之减小。

3. 电子亲和能的变化电子亲和能是指一个原子吸收一个自由电子形成阴离子时释放的能量。

电子亲和能通常与原子的电负性有关,电负性越大,电子亲和能越大。

周期表中,电子亲和能通常随着原子序数的增加而增大,特别是在气体族。

这是因为随着原子序数的增加,原子核的电荷数增加,靠近原子核的电子相对稳定,吸收新的电子来形成阴离子需要克服较大的排斥力,因此电子亲和能增大。

4. 电离能的变化电离能是指从一个原子中移走最外层电子所需的能量。

元素周期表的全部规律总结

元素周期表的全部规律总结

元素周期表的全部规律总结元素周期表是化学中一个重要的基础工具,通过元素周期表可以展示元素的性质和规律。

在元素周期表中,元素按照其原子序数递增的顺序排列,同时具有一些规律,包括周期性表现和族内相似性等。

本文将总结元素周期表中的一些重要规律,帮助读者更深入地了解元素周期表的精彩之处。

周期性表现元素周期表中的元素按照原子序数大小排列,可以看到元素的性质会出现周期性变化。

其中,主要的周期性表现有原子半径、电离能、电负性和金属性等。

•原子半径:原子半径随着周期的增加而递减,在周期表的同一周期内,原子半径会从左至右递减。

这是因为原子核内的正电荷数目增加,吸引外层电子,使得原子半径减小。

而在周期表的同一族内,原子半径会从上至下递增。

原因是原子的外层电子层数增加,电子云外围更为扩散,导致原子半径增大。

•电离能:电离能是指从原子或离子中移去一个电子所需要的能量。

随着周期的增加,电离能会递增,在周期表的同一周期内,电离能会从左至右递增,而在同一族内,电离能会从上至下递减。

这是因为原子核的正电荷数目增加,电子与原子核之间的相互作用增强,因此需要更多的能量去移除外层电子。

•电负性:电负性是元素吸引电子的能力。

在周期表中,从左至右逐渐增大,从下至上逐渐减小。

在同一族内,电负性基本相同。

电负性高的元素更容易得到电子,而电负性低的元素更容易失去电子。

•金属性:元素周期表中,金属性随着周期的增加而递减。

在周期表的左侧是金属性最强的元素,例如金属元素钠、铜等;而在周期表的右侧是非金属元素,如氧、氟等。

组和周期的特点元素周期表中,元素被按照周期数和组数分组。

每个周期表示一个主能级,组数表示元素的价电子数,组内元素有着相似的性质,包括外层电子排布和化学性质。

•主A族元素:主A族元素的元素化合物中,元素以价电子原子形式存在。

主A族元素的氧化状态为1+。

主A族元素在化学反应中往往失去一个电子,形成+1价阳离子。

•主B族元素:主B族元素的元素化合物中,元素以价电子离子形式存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

元素周期表中的潜在的规律汇总(张新风原创))对于元素周期表,在我上高中时只知道它里面有些元素,只知道它分为主族副族,三个短周期三个长周期一个不完全周期。

到了今天,我当了化学老师,我才真正理解了元素周期表,原来里面有很多潜在的规律,为什么当时我就没有用心去归纳和挖掘呢?我也没记得当时老师对它有多重视,可是今天的我才知道,必须让自己的学生对它足够重视,这样可以学习化学知识更容易更有趣更轻松。

以前做了很多习题,也不知道下一道题要考什么,可是领会了元素周期表的实质,应用元素周期表潜在的众多规律解题,我发现有事半功倍的效果!大家可以按照我的引导慢慢去琢磨,内化为自己的东西,相信你会发现这部分内容原来是如此的轻松有趣啊!推断题也不难了,原来考试题就是考电子排布规律、化合价变化规律、微粒半径比较规律、金属性非金属性变化规律。

所谓万变不离其宗!要想应用好元素周期表的规律,先得胸怀元素周期表,能背写元素周期表!根据考试规律,考试大纲只要求考生会书写1到36号元素以及各个主族元素的的元素符号和元素名称,熟记零族元素的原子序数,熟记每个周期有多少种元素,并且能熟悉元素周期表中各族的相对分布,知道从左往右第几列为什么族,知道各族的相对位置,知道过渡元素、镧系、锕系特点。

根据零族元素的原子序数,熟练推断一种已知原子序数的陌生的新元素在表中的位置,并能推断有关性质。

零碎规律1、最外层电子数规律:(1)最外层电子数为1的元素可能为:主族(IA族)、副族(IB、VIII族部分等)。

(2)最外层电子数为2的元素:主族(IIA族)、副族(IIB、IIIB、IVB、VIIB族)、0族(He)、VIII 族(26Fe、27Co等)。

(3)最外层电子数在3~7之间的元素一定是主族元素。

(4)最外层电子数为8的元素:0族(He除外)。

补充知识点1:主族元素的判断方法:符合下列情况的均是主族元素1. 有1~3个电子层的元素(除去He、Ne、Ar);2. 次外层有2个或8个电子的元素(除去惰性气体);3. 最外层电子多于2个的元素(除去惰性气体);补充知识点2:电子层结构相同的简单离子或原子(指核外电子数与某种惰性元素的电子数相同而且电子层排布也相同的单核离子或原子)(1)2个电子的He型结构的是:H-、He、Li+、Be2+;(2)10个电子的Ne型结构的是:N3-、O2-、F-、Ne、Na+、Mg2+、Al3+(3)18个电子的Ar型结构的是:S2-、Cl-、Ar、K+、Ca2+补充知识点3:电子数相同的微粒(包括单核离子、原子、也包括多原子分子、离子)1. 2e-的有:H-、H2、He、Li+、Be2+;2. 10e-的有:N3-、O2-、F-;Na+、Mg2+、Al3+;Ne、HF、H2O、NH3、CH4(与Ne同周期的非金属的气态氢化物)NH4+、NH2-、H3O+、OH-;其中考试经常考试的离子有:NH4+与OH-加热反应生成H2O和NH3都是10个电子的微粒;H3O+和OH-反应生成水,也都是10个电子的微粒;还有Mg2+、Al3+均可以与OH-形成沉淀等。

另外要分清单核和双核或多核指什么含义。

单核指只含一个原子核的微粒,比如N3-、O2-、F-;Na+、Mg2+、Al3+、Ne,双核指含2个原子核的微粒,如HF、OH-等。

三核如H2O 、NH2-,注意哪些是带正电荷的哪些是带负电荷的,应当把这些微粒牢牢记到脑子里,以备使用。

3. 18e-的有:S2-、Cl-、Ar、K+、Ca2+;SiH4、PH3、H2S、HCl(与Ar同周期的非金属的气态氢化物);HS-及H2O2、F2、O3、CH3OH、CH3CH3、CH3F、、NH2-NH2、O22-、CH3NH2、Ti4+、NH2OH-(红色的不常见)等。

2、数目规律:(1) 元素种类最多的是第IIIB族(32种)。

(2) 同周期第IIA族与第IIIA族元素的原子序数之差有以下三种情况:第2、3周期(短周期)相差1;第4、5周期相差11;第6、7周期相差25。

(3)设n为周期序数,每一周期排布元素的数目为:奇数周期为(n+1)2/2;偶数周期为(n+2)2/2。

如第3周期为种,第4周期为种。

(4) 同主族相邻元素的原子序数:第IA、IIA族,下一周期元素的原子序数=上一周期元素的原子序数+上一周期元素的数目;第IIIA~VIIA族,下一周期元素的原子序数=上一周期元素的原子序数+下一周期元素的数目。

(5)同一主族的两种元素的原子序数之差到底有多少组解?因为:各周期元素个数:2、8、8、18、18、32所以任意相邻周期元素个数相加都可以。

穷举法可知共有21组解。

分别为:2、8、10、16、18、26、32、34、36、44、50、52、54、64、68、76、82、84、86、100、108。

也就是结果可以是:一个周期:2、8、18、32,两个周期:10、16、26、50,三个周期:18、34、44、68,四个周期:36、52、76,五个周期:54、84。

另外还有IA族的特殊(因为有H):2、10、18、36、54、86。

3、化合价规律:(1) 同周期元素主要化合价:最高正价由+1→+7(注意O和F特殊,O没有最高正价,F和金属元素没有负价)(稀有气体为0价)递变、最低负价由-4→-1递变。

(2) 关系式:最高正化合价+|最低负化合价|=8;最高正化合价=主族族序数=最外层电子数=主族价电子数。

同一主族的元素的最高正价、负价均相同(3) 除第VIII族元素外,原子序数为奇(偶)数的元素,元素所在族的序数及主要化合价也为奇(偶)数。

4、对角线规律:金属与非金属分界线对角(左上角与右下角)的两主族元素性质相似,主要表现在第2、3周期(如Li和Mg、Be和Al、B和Si)。

5、分界线规律:位于金属与非金属之间的分界线,右上方的元素为非金属(周期表中的颜色为深绿色),在此可以找到制造农药的元素(如Cl、P等),左下角为金属元素(H除外),分界线两边的元素一般既有金属性,又有非金属性;能与酸和碱反应(如Be、Al等),还可找到制造半导体材料的元素(如Si、Ge等)。

6、金属性、非金属性变化规律:(1) 同一周期,从左到右(0族除外)金属性减弱,非金属性增强;同一主族,从上到下金属性增强,非金属性减弱。

金属性最强的位于左下角的铯,非金属性最强的是位于右上角的氟。

(2)金属性越强,单质越容易跟水或酸反应置换出氢,对应的最高价氧化物水化物碱性越强;非金属性越强,跟氢气反应越容易,生成的气态氢化物越稳定,对应的最高价氧化物水化物酸性越强。

补充:1:单质的熔点变化规律:同一主族金属单质的熔点从上到下依次降低,硬度依次减小;非金属单质的熔沸点依次升高,与金属单质的规律正好相反!同一周期金属单质的熔沸点依次升高。

(原因不同,选修3才讲)2:非金属性元素的气态氢化物的规律:同周期:越往右非金属元素的非金属性越强,气态氢化物越稳定、形成越容易、还原性越弱、气态氢化物水溶液酸性越强(注意此为无氧酸!酸性与非金属性无关!);同主族:越往上非金属元素的非金属性越强,气态氢化物越稳定、形成越容易、还原性越弱、气态氢化物水溶液酸性越弱(注意此为无氧酸!酸性与非金属性无关!对比废金属元素最高价含氧酸的酸性递变规律,发现有所不同。

)3、单质的还原性、氧化性规律同周期:从左到右,金属元素的金属性减弱,金属单质的还原性减弱,金属阳离子的氧化性增强;从左到右,非金属元素的非金属性增强,非金属单质的氧化性增强,非金属阴离子的还原性减弱。

同主族:从上到下,金属元素的金属性增强,金属单质的还原性增强,金属阳离子的氧化性减弱;从上到下,非金属元素的非金属性减弱,非金属单质的氧化性减弱,非金属阴离子的还原性反而增强。

7:半径大小规律:先比较电子层数,电子层数越大,微粒半径往往越大(原子半径不一定,要通过比较相对位置得出);当核外电子数一样多,只需要比较核电荷数即原子序数,序数大的离子半径小;当原子序数一样时(同种元素),只需要看电子数,电子数越多,离子半径越大。

具体:(1) 原子半径:同主族——从上到下逐渐增大;同周期——从左到右逐渐减小(0族除外)。

(实质考察主族元素在周期表中相对位置,越往左越往下原子半径越大,反之越小,所以大家要牢牢背会元素周期表,考试时熟练背写出考察元素的相对位置!既不在同周期也不在同主族的往往需要找一个桥梁。

))(2) 离子半径:同主族——同价离子从上到下逐渐增大;同周期——阴离子半径大于阳离子半径;具有相同的电子层结构的离子——核电荷数越大,离子半径越小。

(3) 同种元素的各种微粒,核外电子数越多,半径越大;反之,核外电子数越少,半径越小(如阳离子半径小于其原子的半径;阴离子的半径大于其原子的半径)。

(4)层异,层大半径大。

即当微粒的电子层数不同时,结构相似的微粒中,电子层数大的微粒半径大。

如:r(Cl)>r(F),r(S2-)>r(O2-)。

(5)核同,价高半径小。

即对同一种元素形成的不同的简单微粒中,化合价高的微粒的半径小。

如。

(7)电子层结构相同,核电荷数大,则半径小。

如。

8、主族族序数与周期序数的规律:(1) 关系式:主族族序数=最外层电子数;周期序数=电子层数。

(2)设主族族序数为a,周期数为b,则:当a:b<1时,为金属元素,且比值越小,元素的金属性越强;当a:b=1时,为两性元素(H除外),其最高价氧化物为两性氧化物,最高价氧化物的水化物为两性氢氧化物。

当a:b>1时,为非金属元素,且比值越大,元素的非金属性越强。

9、电子层与电子数的倍比关系(短周期元素):(1) 若原子的最外层电子数与最内层电子数的比值为a,则有:(1)a=1/2为第IA族元素;(2)a=1为第IIA族元素或H、He;(3)a=2为第IV A族元素;(4)a=3为第VIA族元素;(5)a=4为0族元素。

(2) 若原子的最外层电子数与次外层电子数的比值为b,则有:(1)b=1/8为Na;(2)b=1/4为Mg;(3)b=1/2为Li、Si;(4)b=1为Be、Ar;(5)b=2为C;(6)b=3为O;(7)b=4为Ne。

(3) 若原子的最外层电子数与电子总数的比值为c,则有:(1)c=1/6为Mg;(2)c=1/3为Li、P;(3)c=1/2为Be;(4)c=1为H、He。

(4) 原子的最外层电子数与核外电子层数相等为H、Be、Al。

元素周期表中位、构、性的规律一、位——元素在周期表中位置的规律1. 各周期最后一种元素(即稀有气体元素)核电荷数为2、10、18、36、54、86、(118);2. 周期表纵行行序数与主族族序数关系:1——IA、2——IIA、13——IIIA、14——IVA、15——VA、16——VIA、17——VIIA、18——0族。

相关文档
最新文档