模块综合检测
高中数学人教A版选修1-1模块综合检测及答案

高中数学人教A 版选修1-1模块综合检测(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.命题“若A ⊆B ,则A =B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A .0B .2C .3D .42.已知命题p :若x 2+y 2=0 (x ,y ∈R ),则x ,y 全为0;命题q :若a >b ,则1a <1b .给出下列四个复合命题:①p 且q ;②p 或q ;③綈p ;④綈q .其中真命题的个数是( )A .1B .2C .3D .43.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( ) A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=14.已知a >0,则x 0满足关于x 的方程ax =b 的充要条件是( )A .∃x ∈R ,12ax 2-bx ≥12ax 20-bx 0B .∃x ∈R ,12ax 2-bx ≤12ax 20-bx 0C .∀x ∈R ,12ax 2-bx ≥12ax 20-bx 0D .∀x ∈R ,12ax 2-bx ≤12ax 20-bx 05.已知椭圆x 2a 2+y 2b 2=1 (a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .椭圆B .圆C .双曲线的一支D .线段6.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π) 7.已知a >0,函数f (x )=x 3-ax 在区间[1,+∞)上是单调递增函数,则a 的最大值是( ) A .1 B .3 C .9 D .不存在8.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( )A .10B .8C .6D .49.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B. 5C.62D.5210.若当x =2时,函数f (x )=ax 3-bx +4有极值-43,则函数的解析式为( )A .f (x )=3x 3-4x +4B .f (x )=13x 2+4 C .f (x )=3x 3+4x +4 D .f (x )=13x 3-4x +411.设O 为坐标原点,F 1、F 2是x 2a 2-y 2b 2=1(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠F 1PF 2=60°,|OP |=7a ,则该双曲线的渐近线方程为( )A .x ±3y =0 B.3x ±y =0 C .x ±2y =0 D.2x ±y =012.若函数f (x )=x 2+ax (a ∈R ),则下列结论正确的是( ) A .∀a ∈R ,f (x )在(0,+∞)上是增函数 B .∀a ∈R ,f (x )在(0,+∞)上是减函数 C .∃a ∈R ,f (x )是偶函数 D .∃a ∈R ,f (x )是奇函数 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每小题5分,共20分)13.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,那么实数m 的取值范 围是 ________________________________________________________________.14.已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________________________________________________________________________.15.若AB 是过椭圆x 2a 2+y 2b 2=1 (a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与坐标轴不平行,k AM 、k BM 分别表示直线AM 、BM 的斜率,则k AM ·k BM =________.16.已知f (x )=x 3+3x 2+a (a 为常数)在[-3,3]上有最小值3,那么在[-3,3]上f (x )的最大值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知p :2x 2-9x +a <0,q :⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0,且綈q 是綈p 的必要条件,求实数a 的取值范围.18.(12分)设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积.19.(12分)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN →||MP→|+MN →·NP →=0,求动点P (x ,y )的轨迹方程.20.(12分)已知函数f (x )=ax 2-43ax +b ,f (1)=2,f ′(1)=1. (1)求f (x )的解析式;(2)求f (x )在(1,2)处的切线方程.21.(12分)已知直线y =ax +1与双曲线3x 2-y 2=1交于A ,B 两点. (1)求a 的取值范围;(2)若以AB 为直径的圆过坐标原点,求实数a 的值.22.(12分)已知函数f (x )=ln x -ax +1-ax -1(a ∈R ).(1)当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)当a ≤12时,讨论f (x )的单调性.答案1.B [原命题为假,故其逆否命题为假;其逆命题为真,故其否命题为真;故共有2个真命题.]2.B [命题p 为真,命题q 为假,故p ∨q 真,綈q 真.]3.D [双曲线x 24-y 212=-1,即y 212-x 24=1的焦点为(0,±4),顶点为(0,±23).所以对椭圆y 2a 2+x 2b 2=1而言,a 2=16,c 2=12.∴b 2=4,因此方程为y 216+x 24=1.]4.C [由于a >0,令函数y =12ax 2-bx =12a (x -b a )2-b 22a ,此时函数对应的图象开口向上,当x =b a 时,取得最小值-b 22a ,而x 0满足关于x 的方程ax =b ,那么x 0=b a ,y min =12ax 20-bx 0=-b 22a ,那么对于任意的x ∈R ,都有y =12ax 2-bx ≥-b 22a =12ax 20-bx 0.]5.A [∵P 为MF 1中点,O 为F 1F 2的中点,∴|OP |=12|MF 2|,又|MF 1|+|MF 2|=2a ,∴|PF 1|+|PO |=12|MF 1|+12|MF 2|=a .∴P 的轨迹是以F 1,O 为焦点的椭圆.]6.D [∵y =4e x +1,∴y ′=-4e x (e x +1)2.令e x +1=t ,则e x =t -1且t >1,∴y ′=-4t +4t 2=4t 2-4t .再令1t =m ,则0<m <1,∴y ′=4m 2-4m =4(m -12)2-1,m ∈(0,1). 容易求得-1≤y ′<0,∴-1≤tan α<0,得34π≤α<π.]7.B [因为函数f (x )在区间[1,+∞)上单调递增,所以有f ′(x )≥0,x ∈[1,+∞),即3x 2-a ≥0在区间[1,+∞)上恒成立,所以a ≤3x 2.因为x ∈[1,+∞)时,3x 2≥3,从而a ≤3.] 8.B [由抛物线的定义, 得|AB |=x 1+x 2+p =6+2=8.]9.D [由题意知,过点(4,-2)的渐近线方程为y =-b a x ,∴-2=-ba ×4,∴a =2b ,设b =k ,则a =2k ,c =5k ,∴e =c a =5k 2k =52.] 10.D [因为f (x )=ax 3-bx +4, 所以f ′(x )=3ax 2-b .由题意得⎩⎪⎨⎪⎧f ′(2)=12a -b =0f (2)=8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13b =4,故所求函数解析式为f (x )=13x 3-4x +4.]11.D [如图所示,∵O 是F 1F 2的中点,PF 1→+PF 2→=2PO →,∴(PF 1→+PF 2→)2=(2PO →)2.即 |PF 1→|2+|PF 2→|2+2|PF 1→|·|PF 2→|·cos 60°=4|PO →|2. 又∵|PO |=7a ,∴ |PF 1→|2+|PF 2→|2+|PF 1→||PF 2→|=28a 2. ① 又由双曲线定义得|PF 1|-|PF 2|=2a , ∴(|PF 1|-|PF 2|)2=4a 2.即|PF 1|2+|PF 2|2-2|PF 1||PF 2|=4a 2. ② 由①-②得|PF 1|·|PF 2|=8a 2, ∴|PF 1|2+|PF 2|2=20a 2.在△F 1PF 2中,由余弦定理得cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|, ∴8a 2=20a 2-4c 2.即c 2=3a 2. 又∵c 2=a 2+b 2,∴b 2=2a 2. 即b 2a 2=2,ba = 2.∴双曲线的渐近线方程为2x ±y =0.]12.C [f ′(x )=2x -ax 2,故只有当a ≤0时,f (x )在(0,+∞)上才是增函数,因此A 、B 不对,当a =0时,f (x )=x 2是偶函数,因此C 对,D 不对.]13.[3,8)解析 因为p (1)是假命题,所以1+2-m ≤0, 即m ≥3.又因为p (2)是真命题,所以4+4-m >0, 即m <8.故实数m 的取值范围是3≤m <8. 14.x 24-y 212=1解析 由双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程为y =3x 得ba =3,∴b =3a . ∵抛物线y 2=16x 的焦点为F (4,0),∴c =4. 又∵c 2=a 2+b 2,∴16=a 2+(3a )2, ∴a 2=4,b 2=12.∴所求双曲线的方程为x 24-y 212=1.15.-b 2a 2解析 设A (x 1,y 1),M (x 0,y 0), 则B (-x 1,-y 1),则k AM ·k BM =y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21=⎝⎛⎭⎫-b 2a 2x 20+b 2-⎝⎛⎭⎫-b 2a 2x 21+b 2x 20-x 21=-b 2a 2. 16.57解析 f ′(x )=3x 2+6x ,令f ′(x )=0, 得x =0或x =-2.又∵f (0)=a ,f (-3)=a , f (-2)=a +4,f (3)=54+a ,∴f (x )的最小值为a ,最大值为54+a . 由题可知a =3,∴f (x )的最大值为57.17.解 由⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0,得⎩⎨⎧1<x <32<x <4,即2<x <3.∴q :2<x <3.设A ={x |2x 2-9x +a <0},B ={x |2<x <3}, ∵綈p ⇒綈q ,∴q ⇒p ,∴B ⊆A . 即2<x <3满足不等式2x 2-9x +a <0. 设f (x )=2x 2-9x +a ,要使2<x <3满足不等式2x 2-9x +a <0, 需⎩⎪⎨⎪⎧ f (2)≤0f (3)≤0,即⎩⎪⎨⎪⎧8-18+a ≤018-27+a ≤0. ∴a ≤9.故所求实数a 的取值范围是{a |a ≤9}. 18.解 如图所示,设|PF 1|=m ,|PF 2|=n ,则S △F 1PF 2=12mn sin π3=34mn .由椭圆的定义知 |PF 1|+|PF 2|=20,即m +n =20. ① 又由余弦定理,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos π3 =|F 1F 2|2,即m 2+n 2-mn =122. ②由①2-②,得mn =2563.∴S △F 1PF 2=643 3.19.解 设 P =(x ,y ),则 MN →=(4,0),MP →=(x +2,y ), NP →=(x -2,y ).∴ |MN →|=4,|MP →|=(x +2)2+y 2, MN →·NP →=4(x -2),代入 |MN →|·|MP →|+MN →·NP →=0, 得4(x +2)2+y 2+4(x -2)=0, 即(x +2)2+y 2=2-x , 化简整理,得y 2=-8x .故动点P (x ,y )的轨迹方程为y 2=-8x .20.解 (1)f ′(x )=2ax -43a ,由已知得⎩⎨⎧f ′(1)=2a -43a =1f (1)=a -43a +b =2,解得⎩⎨⎧a =32b =52,∴f (x )=32x 2-2x +52.(2)函数f (x )在(1,2)处的切线方程为 y -2=x -1,即x -y +1=0.21.解 (1)由⎩⎪⎨⎪⎧y =ax +1,3x 2-y 2=1消去y ,得(3-a 2)x 2-2ax -2=0.依题意得⎩⎪⎨⎪⎧3-a 2≠0,Δ>0,即-6<a <6且a ≠±3.(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2a3-a 2,x 1x 2=-23-a 2.∵以AB 为直径的圆过原点,∴OA ⊥OB ,∴x 1x 2+y 1y 2=0,即x 1x 2+(ax 1+1)(ax 2+1)=0, 即(a 2+1)x 1x 2+a (x 1+x 2)+1=0.∴(a 2+1)·-23-a 2+a ·2a3-a 2+1=0, ∴a =±1,满足(1)所求的取值范围. 故a =±1.22.解 (1)当a =-1时,f (x )=ln x +x +2x -1, x ∈(0,+∞),所以f ′(x )=x 2+x -2x 2,x ∈(0,+∞), 因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1. 又f (2)=ln 2+2,所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -(ln 2+2)=x -2,即x -y +ln 2=0.(2)因为f (x )=ln x -ax +1-ax -1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞). 令g (x )=ax 2-x +1-a ,x ∈(0,+∞).①当a =0时,g (x )=-x +1,x ∈(0,+∞), 所以当x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;当x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增. ②当a ≠0时,由f ′(x )=0,即ax 2-x +1-a =0,解得x 1=1,x 2=1a -1. a .当a =12时,x 1=x 2,g (x )≥0恒成立,此时f ′(x )≤0,函数f (x )在(0,+∞)上单调递减.b .当0<a <12时,1a -1>1, x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈⎝⎛⎭⎫1,1a -1时,g (x )<0, 此时f ′(x )>0,函数f (x )单调递增;x ∈⎝⎛⎭⎫1a -1,+∞时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减.c .当a <0时,由于1a -1<0. x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减; x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增. 综上所述:当a ≤0时,函数f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递减;当0<a <12时,函数f (x )在(0,1)上单调递减,在⎝⎛⎭⎫1,1a -1上单调递增,在⎝⎛⎭⎫1a -1,+∞上单调递减.模块综合检测(B)(时间:120分钟 满分:150分)一、选择题(本大题12小题,每小题5分,共60分)1.已知命题“p :x ≥4或x ≤0”,命题“q :x ∈Z ”,如果“p 且q ”与“非q ”同时为假命题,则满足条件的x 为( )A .{x |x ≥3或x ≤-1,x ∉Z }B .{x |-1≤x ≤3,x ∉Z }C .{-1,0,1,2,3}D .{1,2,3}2.“a >0”是“|a |>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知2x +y =0是双曲线x 2-λy 2=1的一条渐近线,则双曲线的离心率是( ) A. 2 B. 3 C. 5 D .24.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 210-y 26=1 D.x 26-y 210=15.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .126.过点(2,-2)与双曲线x 2-2y 2=2有公共渐近线的双曲线方程为( ) A.x 22-y 24=1 B.x 24-y 22=1 C.y 24-x 22=1 D.y 22-x 24=17.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( ) A .y =3x -4 B .y =-3x +2 C .y =-4x +3 D .y =4x -5 8.函数f (x )=x 2-2ln x 的单调递减区间是( )A .(0,1]B .[1,+∞)C .(-∞,-1],(0,1)D .[-1,0),(0,1] 9.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为( ) A .3 2 B .2 3C.303D.32 610.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2 B.12 C .-12 D .-211.若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是( )12.已知函数f (x )的导函数f ′(x )=4x 3-4x ,且f (x )的图象过点(0,-5),当函数f (x )取得极小值-6时,x 的值应为( )A .0B .-1C .±1D .1题号1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每小题5分,共20分)13.已知双曲线x 2-y 23=1,那么它的焦点到渐近线的距离为________.14.点P 是曲线y =x 2-ln x 上任意一点,则P 到直线y =x -2的距离的最小值是________. 15.给出如下三种说法:①四个实数a ,b ,c ,d 依次成等比数列的必要而不充分条件是ad =bc . ②命题“若x ≥3且y ≥2,则x -y ≥1”为假命题. ③若p ∧q 为假命题,则p ,q 均为假命题. 其中正确说法的序号为________.16.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的两个焦点F 1、F 2,若P 为双曲线上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为________.三、解答题(本大题共6小题,共70分)17.(10分)命题p :方程x 2+mx +1=0有两个不等的负实数根,命题q :方程4x 2+4(m -2)x +1=0无实数根.若“p 或q ”为真命题,“p 且q ”为假命题,求m 的取值范围.18.(12分)F 1,F 2是椭圆的两个焦点,Q 是椭圆上任意一点,从任一焦点向△F 1QF 2中的∠F 1QF 2的外角平分线引垂线,垂足为P ,求点P 的轨迹.19.(12分)若r (x ):sin x +cos x >m ,s (x ):x 2+mx +1>0.已知∀x ∈R ,r (x )为假命题且s (x )为真命题,求实数m 的取值范围.20.(12分)已知椭圆x2a2+y2b2=1 (a>b>0)的一个顶点为A(0,1),离心率为22,过点B(0,-2)及左焦点F1的直线交椭圆于C,D两点,右焦点设为F2.(1)求椭圆的方程;(2)求△CDF2的面积.21.(12分)已知函数f(x)=x3+bx2+cx+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.(1)求函数y=f(x)的解析式;(2)求函数y=f(x)的单调区间.22.(12分)已知f(x)=23x3-2ax2-3x (a∈R),(1)若f(x)在区间(-1,1)上为减函数,求实数a的取值范围;(2)试讨论y=f(x)在(-1,1)内的极值点的个数.答案1.D2.A [因为|a |>0⇔a >0或a <0,所以a >0⇒|a |>0,但|a |>0 ⇒a >0,所以“a >0”是“|a |>0”的充分不必要条件.]3.C4.A [由题意知c =4,焦点在x 轴上,又e =c a =2,∴a =2,∴b 2=c 2-a 2=42-22=12,∴双曲线方程为x 24-y 212=1.]5.C [设椭圆的另一焦点为F ,由椭圆的定义知|BA |+|BF |=23,且|CF |+|AC |=23,所以△ABC 的周长=|BA |+|BC |+|AC |=|BA |+|BF |+|CF |+|AC |=4 3.]6.D [与双曲线x 22-y 2=1有公共渐近线方程的双曲线方程可设为x 22-y 2=λ,由过点(2,-2),可解得λ=-2.所以所求的双曲线方程为y 22-x 24=1.]7.B [y ′=3x 2-6x ,∴k =y ′|x =1=-3,∴切线方程为y +1=-3(x -1),∴y =-3x +2.]8.A [由题意知x >0,若f ′(x )=2x -2x =2(x 2-1)x ≤0,则0<x ≤1,即函数f (x )的递减区间是(0,1].]9.C [令直线l 与椭圆交于A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ x 21+2y 21=4 ①x 22+2y 22=4 ②①-②得:(x 1+x 2)(x 1-x 2)+2(y 1+y 2)(y 1-y 2)=0,即2(x 1-x 2)+4(y 1-y 2)=0,∴k l =-12,∴l 的方程:x +2y -3=0,由⎩⎪⎨⎪⎧x +2y -3=0x 2+2y 2-4=0,得6y 2-12y +5=0. ∴y 1+y 2=2,y 1y 2=56.∴|AB |=⎝⎛⎭⎫1+1k 2(y 1-y 2)2=303.] 10.D [y =x +1x -1, ∴y ′|x =3=-2(x -1)2|x =3=-12. 又∵-a ×⎝⎛⎭⎫-12=-1,∴a =-2.] 11.A [依题意,f ′(x )在[a ,b ]上是增函数,则在函数f (x )的图象上,各点的切线的斜率随着x 的增大而增大,观察四个选项中的图象,只有A 满足.]12.C [f (x )=x 4-2x 2+c .因为过点(0,-5),所以c =-5.由f ′(x )=4x (x 2-1),得f (x )有三个极值点,列表判断±1均为极小值点,且f (1)=f (-1)=-6.] 13. 3 解析 焦点(±2,0),渐近线:y =±3x ,焦点到渐近线的距离为23(3)2+1= 3. 14. 2解析 先设出曲线上一点,求出过该点的切线的斜率,由已知直线,求出该点的坐标,再由点到直线的距离公式求距离.设曲线上一点的横坐标为x 0 (x 0>0),则经过该点的切线的斜率为k =2x 0-1x 0,根据题意得,2x 0-1x 0=1,∴x 0=1或x 0=-12,又∵x 0>0,∴x 0=1,此时y 0=1,∴切点的坐标为(1,1),最小距离为|1-1-2|2= 2. 15.①②解析 对①,a ,b ,c ,d 成等比数列,则ad =bc ,反之不一定,故①正确;对②,令x =5,y =6,则x -y =-1,所以该命题为假命题,故②正确;对③,p ∧q 假时,p ,q 至少有一个为假命题,故③错误.16.(1,3]解析 设|PF 2|=m ,则2a =||PF 1|-|PF 2||=m ,2c =|F 1F 2|≤|PF 1|+|PF 2|=3m .∴e =c a =2c 2a ≤3,又e >1,∴离心率的取值范围为(1,3].17.解 命题p :方程x 2+mx +1=0有两个不等的负实根⇔⎩⎪⎨⎪⎧ Δ=m 2-4>0m >0⇔m >2. 命题q :方程4x 2+4(m -2)x +1=0无实根⇔Δ′=16(m -2)2-16=16(m 2-4m +3)<0⇔1<m <3.∵“p 或q ”为真,“p 且q ”为假,∴p 为真、q 为假或p 为假、q 为真,则⎩⎪⎨⎪⎧ m >2m ≤1或m ≥3或⎩⎪⎨⎪⎧m ≤21<m <3, 解得m ≥3或1<m ≤2.18.解 设椭圆的方程为x 2a 2+y 2b 2=1 (a >b >0),F 1,F 2是它的两个焦点,Q 为椭圆上任意一点,QP 是△F 1QF 2中的∠F 1QF 2的外角平分线(如图),连结PO ,过F 2作F 2P ⊥QP 于P 并延长交F 1Q 的延长线于H ,则P 是F 2H 的中点,且|F 2Q |=|QH |,因此|PO |=12|F 1H |=12(|F 1Q |+|QH |)=12(|F 1Q |+|F 2Q |)=a ,∴点P 的轨迹是以原点为圆心,以椭圆半长轴长为半径的圆(除掉两点即椭圆与x 轴的交点).19.解 由于sin x +cos x =2sin ⎝⎛⎭⎫x +π4∈[-2,2], ∀x ∈R ,r (x )为假命题即sin x +cos x >m 恒不成立.∴m ≥ 2. ①又对∀x ∈R ,s (x )为真命题.∴x 2+mx +1>0对x ∈R 恒成立.则Δ=m 2-4<0,即-2<m <2. ②故∀x ∈R ,r (x )为假命题,且s (x )为真命题, 应有2≤m <2.20.解 (1)由题意知b =1,e =c a =22,又∵a 2=b 2+c 2,∴a 2=2.∴椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2,由⎩⎪⎨⎪⎧y =-2x -2x 22+y 2=1,得9x 2+16x +6=0. ∵Δ=162-4×9×6=40>0,∴直线与椭圆有两个公共点,设为C (x 1,y 1),D (x 2,y 2), 则⎩⎨⎧ x 1+x 2=-169x 1x 2=23,∴|CD |=1+(-2)2|x 1-x 2|=5·(x 1+x 2)2-4x 1x 2=5·⎝⎛⎭⎫-1692-4×23=1092, 又点F 2到直线BF 1的距离d =455,故S △CDF 2=12|CD |·d =4910.21.解 (1)由f (x )的图象经过P (0,2)知d =2,∴f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c .由在点M (-1,f (-1))处的切线方程是6x -y +7=0,知-6-f (-1)+7=0,即f (-1)=1,f ′(-1)=6.∴⎩⎪⎨⎪⎧ 3-2b +c =6,-1+b -c +2=1,即⎩⎪⎨⎪⎧ b -c =0,2b -c =-3, 解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2.(2)f ′(x )=3x 2-6x -3,令3x 2-6x -3=0,即x 2-2x -1=0.解得x 1=1-2,x 2=1+ 2.当x <1-2或x >1+2时,f ′(x )>0.当1-2<x <1+2时,f ′(x )<0.故f (x )=x 3-3x 2-3x +2在(-∞,1-2)和(1+2,+∞)内是增函数,在(1-2,1+2)内是减函数.22.解 (1)∵f (x )=23x 3-2ax 2-3x ,∴f ′(x )=2x 2-4ax -3,∵f (x )在区间(-1,1)上为减函数,∴f ′(x )≤0在(-1,1)上恒成立;∴⎩⎪⎨⎪⎧f ′(-1)≤0f ′(1)≤0 得-14≤a ≤14. 故a 的取值范围是⎣⎡⎦⎤-14,14. (2)当a >14时,∵⎩⎨⎧ f ′(-1)=4⎝⎛⎭⎫a -14>0f ′(1)=-4⎝⎛⎭⎫a +14<0,∴存在x 0∈(-1,1),使f ′(x 0)=0,∵f ′(x )=2x 2-4ax -3开口向上,∴在(-1,x 0)内,f ′(x )>0,在(x 0,1)内,f ′(x )<0,即f (x )在(-1,x 0)内单调递增,在(x 0,1)内单调递减,∴f (x )在(-1,1)内有且仅有一个极值点,且为极大值点.当a <-14时,∵⎩⎨⎧ f ′(-1)=4⎝⎛⎭⎫a -14<0f ′(1)=-4⎝⎛⎭⎫a +14>0,∴存在x 0∈(-1,1)使f ′(x 0)=0.∵f ′(x )=2x 2-4ax -3开口向上,∴在(-1,x 0)内f ′(x )<0,在(x 0,1)内f ′(x )>0.即f (x )在(-1,x 0)内单调递减,在(x 0,1)内单调递增,∴f (x )在(-1,1)内有且仅有一个极值点,且为极小值点.当-14≤a ≤14时,由(1)知f (x )在(-1,1)内递减,没有极值点.综上,当a >14或a <-14时,f (x )在(-1,1)内的极值点的个数为1,当-14≤a ≤14时,f (x )在(-1,1)内的极值点的个数为0.模块综合检测(C)(时间:120分钟 满分:150分)一、选择题(本大题12小题,每小题5分,共60分)1.方程x =1-4y 2所表示的曲线是( )A .双曲线的一部分B .椭圆的一部分C .圆的一部分D .直线的一部分2.若抛物线的准线方程为x =-7,则抛物线的标准方程为( )A .x 2=-28yB .x 2=28yC .y 2=-28xD .y 2=28x3.双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,那么该双曲线的离心率是( )A .2 B. 3 C. 2 D.324.用a ,b ,c 表示三条不同的直线,γ表示平面,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b .其中真命题的序号是( )A .①②B .②③C .①④D .③④5.已知a 、b 为不等于0的实数,则a b >1是a >b 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.若抛物线y 2=4x 的焦点是F ,准线是l ,点M (4,m )是抛物线上一点,则经过点F 、M 且与l 相切的圆一共有( )A .0个B .1个C .2个D .4个7.若双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左、右焦点分别为F 1,F 2.线段F 1F 2被抛物线y 2=2bx 的焦点分成5∶3两段,则此双曲线的离心率为( ) A. 3 B. 6 C.233 D.263 8.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为245,则此双曲线方程是( )A.x 212-y 24=1 B .-x 212+y 24=1C.x 24-y 212=1 D .-x 24+y 212=19.下列四个结论中正确的个数为( )①命题“若x 2<1,则-1<x <1”的逆否命题是“若x >1或x <-1,则x 2>1”;②已知p :∀x ∈R ,sin x ≤1,q :若a <b ,则am 2<bm 2,则p ∧q 为真命题;③命题“∃x ∈R ,x 2-x >0”的否定是“∀x ∈R ,x 2-x ≤0”;④“x >2”是“x 2>4”的必要不充分条件.A .0个B .1个C .2个D .3个10.设f (x )=x (ax 2+bx +c ) (a ≠0)在x =1和x =-1处有极值,则下列点中一定在x 轴上的是( )A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c )11.函数y =ln x x 的最大值为( )A .e -1B .eC .e 2 D.10312.已知命题P :函数y =log 0.5(x 2+2x +a )的值域为R ;命题Q :函数y =-(5-2a )x 是R 上的减函数.若P 或Q 为真命题,P 且Q 为假命题,则实数a 的取值范围是( )A .a ≤1B .a <2C .1<a <2D .a ≤1或a ≥2二、填空题(本大题共4小题,每小题5分,共20分)13.若函数f (x )=x 3+x 2+mx +1是R 上的单调函数,则m 的取值范围是________.14.一动圆圆心在抛物线x 2=8y 上,且动圆恒与直线y +2=0相切,则动圆必过定点________.15.已知F 1、F 2是椭圆C x 2a 2+y 2b 2=1 (a >b >0)的两个焦点,P 为椭圆C 上一点,PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.16.设f (x )、g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是________________________________________________________________________.三、解答题(本大题共6小题,共70分)17.(10分)已知p :x 2-12x +20<0,q :x 2-2x +1-a 2>0 (a >0).若綈q 是綈p 的充分条 件,求a 的取值范围.18.(12分)已知函数f (x )=x 3+bx 2+cx +d 在(-∞,0)上是增函数,在[0,2]上是减函数,且方程f (x )=0的一个根为2.(1)求c 的值;(2)求证:f (1)≥2.19.(12分) 如图,M 是抛物线y 2=x 上的一个定点,动弦ME 、MF 分别与x 轴交于不同的点A 、B ,且|MA |=|MB |.证明:直线EF 的斜率为定值.20.(12分)命题p :关于x 的不等式x 2+2ax +4>0,对一切x ∈R 恒成立,命题q :指数函数f (x )=(3-2a )x 是增函数,若p 或q 为真,p 且q 为假,求实数a 的取值范围.21.(12分)已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,求实数a 的取值范围.22.(12分)如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p>0)交于A ,B 两点,O 为坐标原点,OA →+OB →=(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.答案1.B [x =1-4y 2,∴x 2+4y 2=1 (x ≥0).即x 2+y 214=1 (x ≥0).]2.D3.C [由已知,b 2a 2=1,∴a =b ,∴c 2=2a 2,∴e =c a =2a a = 2.]4.C5.D [如取a =-3,b =-2,满足a b >1,但不满足a >b .反过来取a =1,b =-5,满足a >b ,但不满足a b >1,故答案为D.]6.D [因为点M (4,m )在抛物线y 2=4x 上,所以可求得m =±4.由于圆经过焦点F 且和准线l 相切,由抛物线的定义知圆心在抛物线上.又因为圆经过抛物线上的点M ,所以圆心在线段FM 的垂直平分线上,即圆心是线段FM 的垂直平分线与抛物线的交点,结合图形易知对于点M (4,4)和(4,-4),都各有两个交点,因此一共有4个满足条件的圆.]7.C8.B [由已知得椭圆中a =5,b =3,∴c =4,且它的焦点在y 轴上,故双曲线的焦点也应在y 轴上且为(0,4)和(0,-4),又椭圆的离心率为e =c a =45,所以双曲线的离心率为2,即c a =2,又c =4,∴它的实半轴为2,虚半轴平方为b 2=c 2-a 2=16-4=12, 则双曲线方程为y 24-x 212=1.]9.B [只有③中结论正确.]10.A11.A [令y ′=(ln x )′x -ln x ·x ′x2=1-ln x x 2=0,x =e ,当x >e 时,y ′<0;当x <e 时,y ′>0,y 极大值=f (e)=1e ,在定义域内只有一个极值,所以y max =1e .]12.C [先化简P 与Q ,建构关于a 的关系式;由函数y =log 0.5(x 2+2x +a )的值域为R 知:内层函数u (x )=x 2+2x +a 恰好取遍(0,+∞)内的所有实数⇔Δ=4-4a ≥0⇔a ≤1,即P ⇔a ≤1;同样由y =-(5-2a )x 是减函数⇔5-2a >1,即Q ⇔a <2;由P 或Q 为真,P 且Q 为假知,P 与Q 中必有一真一假.故答案为C.]13.⎣⎡⎭⎫13,+∞解析 f ′(x )=3x 2+2x +m ,依题意可知f (x )在R 上只能单调递增,所以Δ=4-12m ≤0,∴m ≥13.14.(0,2)解析 动圆一定过抛物线x 2=8y 的焦点.15.3解析 由已知,得⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a |PF 1|·|PF 2|=18, ∴|PF 1|2+|PF 2|2+36=4a 2,又|PF 1|2+|PF 2|2=4c 2,∴4a 2-4c 2=36,∴b =3.16.(-∞,-3)∪(0,3)解析 设F (x )=f (x )g (x ),由已知得,F ′(x )=f ′(x )g (x )+f (x )g ′(x ).当x <0时,F ′(x )>0,∴F (x )在(-∞,0)上为增函数.又∵f (x )为奇函数,g (x )为偶函数.∴F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ),∴F (x )为奇函数.∴F (x )在(0,+∞)上也为增函数.又g (-3)=0,∴F (-3)=0,F (3)=0.∴f (x )g (x )<0的解集为(-∞,-3)∪(0,3).17.解 p :{x |2<x <10},q :{x |x <1-a ,或x >1+a }.由綈q ⇒綈p ,得p ⇒q ,于是1+a <2,∴0<a <1.18.(1)解 ∵f (x )在(-∞,0)上是增函数,在[0,2]上是减函数,∴f ′(0)=0.∵f ′(x )=3x 2+2bx +c ,∴f ′(0)=c =0.∴c =0.(2)证明 ∵f (2)=0,∴8+4b +2c +d =0,而c =0,∴d =-4(b +2).∵方程f ′(x )=3x 2+2bx =0的两个根分别为x 1=0,x 2=-23b ,且f (x )在[0,2]上是减函数,∴x 2=-23b ≥2,∴b ≤-3.∴f (1)=b +d +1=b -4(b +2)+1=-7-3b ≥-7+9=2.故f (1)≥2.19.证明 设M (y 20,y 0),直线ME 的斜率为k (k >0),则直线MF 的斜率为-k ,直线ME 的方程为y -y 0=k (x -y 20).由⎩⎪⎨⎪⎧ y -y 0=k (x -y 20)y 2=x 得ky 2-y +y 0(1-ky 0)=0.于是y 0·y E =y 0(1-ky 0)k. 所以y E =1-ky 0k .同理可得y F =1+ky 0-k. ∴k EF =y E -y F x E -x F =y E -y F y 2E -y 2F=1y E +y F =-12y 0(定值). 20.解 设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴-2<a <2.函数f (x )=(3-2a )x 是增函数,则有3-2a >1,即a <1.又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.①若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥1, ∴1≤a <2.②若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2,或a ≥2,a <1, ∴a ≤-2.综上可知,所求实数a 的取值范围为{a |1≤a <2或a ≤-2}.21.解 由f (x )>1,得ax -ln x -1>0.即a >1+ln x x 在区间(1,+∞)内恒成立.设g (x )=1+ln x x ,则g ′(x )=-ln x x 2,∵x >1,∴g ′(x )<0.∴g (x )=1+ln x x 在区间(1,+∞)内单调递减.∴g (x )<g (1)=1,即1+ln x x <1在区间(1,+∞)内恒成立,∴a ≥1.22.解 (1)由⎩⎪⎨⎪⎧ y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.因为 OA →+OB →=(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以⎩⎪⎨⎪⎧ -2pk =-4,-2pk 2-4=-12. 解得⎩⎪⎨⎪⎧p =1,k =2. 所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,抛物线过点P 的切线与l 平行时,△ABP 的面积最大, y ′=-x ,所以-x 0=2⇒x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d =|2×(-2)-(-2)-2|22+(-1)2=45=455, 由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0, |AB |=1+k 2·(x 1+x 2)2-4x 1x 2=1+22·(-4)2-4×(-4)=410.∴△ABP 面积的最大值为410×4552=8 2.。
高中数学模块综合检测新人教A版选择性必修第一册

模块综合检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设x ,y ∈R ,向量a =(x,1,1),b =(1,y,1),c =(2,-4,2),a ⊥c ,b ∥c ,则|a +b |=( )A .2 2B .10C .3D .4【答案】C【解析】∵b ∥c ,∴y =-2.∴b =(1,-2,1).∵a ⊥c ,∴a ·c =2x +1·()-4+2=0,∴x =1.∴a =(1,1,1).∴a +b =(2,-1,2).∴|a +b |=22+-12+22=3.2.如图,在空间四边形ABCD 中,设E ,F 分别是BC ,CD 的中点,则AD →+12(BC →-BD →)等于( )A .AD →B .FA →C .AF →D .EF →【答案】C【解析】∵BC →-BD →=DC →,12(BC →-BD →)=12DC →=DF →,∴AD →+12(BC →-BD →)=AD →+DF →=AF →.3.若直线l 1:mx +2y +1=0与直线l 2:x +y -2=0互相垂直,则实数m 的值为( ) A .2 B .-2 C .12 D .-12【答案】B【解析】直线l 1:y =-m 2x -12,直线l 2:y =-x +2,又∵直线l 1与直线l 2互相垂直,∴-m2×(-1)=-1,即m =-2.4.已知直线l :x -2y +a -1=0与圆(x -1)2+(y +2)2=9相交所得弦长为4,则a =( )A .-9B .1C .1或-2D .1或-9【答案】D【解析】由条件得圆的半径为3,圆心坐标为(1,-2),因为直线l :x -2y +a -1=0与圆(x -1)2+(y +2)2=9相交所得弦长为4,所以9-⎝ ⎛⎭⎪⎫422=⎝ ⎛⎭⎪⎫|1+4+a -1|52,所以a 2+8a -9=0,解得a =1或a =-9.5.已知M (x 0,y 0)是双曲线C :x 2a 2-y 2b2=1上的一点,半焦距为c ,若|MO |≤c (其中O 为坐标原点),则y 20的取值范围是( )A .⎣⎢⎡⎦⎥⎤0,b 4c 2 B .⎣⎢⎡⎦⎥⎤0,a 4c 2C .⎣⎢⎡⎭⎪⎫b 4c 2,+∞ D .⎣⎢⎡⎭⎪⎫a 2c 2,+∞ 【答案】A【解析】因为|MO |≤c ,所以|MO |≤a 2+b 2,所以x 20+y 20≤a 2+b 2,又因为x 20a 2-y 20b2=1,消去x 2得0≤y 20≤b 4a 2+b 2,所以0≤y 20≤b 4c2.6.已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,直线l :y =24x 与椭圆C 相交于A ,B 两点,若|AB |=2c ,则椭圆C 的离心率为( )A .32B .34C .12D .14【答案】A【解析】设直线与椭圆在第一象限内的交点为A (x ,y ),则y =24x ,由|AB |=2c ,可知|OA |=x 2+y 2=c ,即x 2+⎝⎛⎭⎪⎫24x 2=c ,解得x =223c ,所以A ⎝ ⎛⎭⎪⎫223c ,13c .把点A 代入椭圆方程得到⎝ ⎛⎭⎪⎫223c 2a2+⎝ ⎛⎭⎪⎫13c 2b2=1,整理得8e 4-18e 2+9=0,即(4e 2-3)(2e 2-3)=0,因为0<e <1,所以可得e =32. 7.在空间直角坐标系Oxyz 中,O (0,0,0),E (22,0,0),F (0,22,0),B 为EF 的中点,C 为空间一点且满足|CO →|=|CB →|=3,若cos 〈EF →,BC →〉=16,则OC →·OF →=( )A .9B .7C .5D .3【答案】D【解析】设C (x ,y ,z ),B (2,2,0),OC →=(x ,y ,z ),BC →=(x -2,y -2,z ),EF →=(-22,22,0),由cos 〈EF →,BC →〉=EF →·BC→|EF →||BC →|=-22,22,0·x -2,y -2,z 4×3=16,整理可得x -y =-22,由|CO →|=|CB →|=3,得x 2+y 2=x -22+y -22,化简得x +y =2,以上方程组联立得x =24,y =324,则OC →·OF →=(x ,y ,z )·(0,22,0)=22y =3. 8.已知点M ,N 是抛物线y =4x 2上不同的两点,F 为抛物线的焦点,且满足∠MFN =135°,弦MN 的中点P 到直线l :y =-116的距离为d ,若|MN |2=λ·d 2,则λ的最小值为( )A .22B .1-22C .1+22D .2+ 2【答案】D【解析】抛物线y =4x 2的焦点F ⎝ ⎛⎭⎪⎫0,116,准线为y =-116.设|MF |=a ,|NF |=b ,由∠MFN =135°,得|MN |2=|MF |2+|NF |2-2|MF |·|NF |·cos ∠MFN =a 2+b 2+2ab .由抛物线的定义,得点M 到准线的距离为|MF |,点N 到准线的距离为|NF |.由梯形的中位线定理,得d =12(|MF |+|NF |)=12(a +b ).由|MN |2=λ·d 2,得14λ=a 2+b 2+2ab a +b 2=1-2-2aba +b 2≥1-2-2ab 2ab2=1-2-24=2+24,得λ≥2+2,当且仅当a =b 时取得最小值2+2.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线l :(a 2+a +1)x -y +1=0,其中a ∈R ,下列说法正确的是( ) A .当a =-1时,直线l 与直线x +y =0垂直 B .若直线l 与直线x -y =0平行,则a =0C .直线l 过定点(0,1)D .当a =0时,直线l 在两坐标轴上的截距相等 【答案】AC【解析】对于A 项,当a =-1时,直线l 的方程为x -y +1=0,显然与x +y =0垂直,所以正确;对于B 项,若直线l 与直线x -y =0平行,可知(a 2+a +1)·(-1)=1·(-1),解得a =0或a =-1,所以不正确;对于C 项,当x =0时,有y =1,所以直线过定点(0,1),所以正确;对于D 项,当a =0时,直线l 的方程为x -y +1=0,在x 轴、y 轴上的截距分别是-1,1,所以不正确.故选AC .10.已知F 1,F 2是双曲线C :y 24-x 22=1的上、下焦点,点M 是该双曲线的一条渐近线上的一点,并且以线段F 1F 2为直径的圆经过点M ,则下列说法正确的是( )A .双曲线C 的渐近线方程为y =±2xB .以F 1F 2为直径的圆的方程为x 2+y 2=2 C .点M 的横坐标为± 2 D .△MF 1F 2的面积为2 3 【答案】ACD【解析】由双曲线方程y 24-x 22=1知a =2,b =2,焦点在y 轴,渐近线方程为y =±abx =±2x ,A 正确;c =a 2+b 2=6,以F 1F 2为直径的圆的方程是x 2+y 2=6,B 错误;由⎩⎨⎧x 2+y 2=6,y =2x ,得⎩⎨⎧x =2,y =2或⎩⎨⎧x =-2,y =-2,由对称性知点M 横坐标是±2,C 正确;S △MF 1F 2=12|F 1F 2||x M |=12×26×2=23,D 正确.故选ACD .11.已知点A 是直线l :x +y -2=0上一定点,点P ,Q 是圆x 2+y 2=1上的动点,若∠PAQ 的最大值为90°,则点A 的坐标可以是( )A .(0,2)B .(1,2-1)C .(2,0)D .(2-1,1)【答案】AC【解析】如图所示,原点到直线l 的距离为d =212+12=1,则直线l 与圆x 2+y 2=1相切.由图可知,当AP ,AQ 均为圆x 2+y 2=1的切线时,∠PAQ 取得最大值.连接OP ,OQ ,由于∠PAQ 的最大值为90°,且∠APO =∠AQO =90°,|OP |=|OQ |=1,则四边形APOQ 为正方形,所以|OA |=2|OP |=2.设A (t ,2-t ),由两点间的距离公式,得|OA |=t 2+2-t2=2,整理得2t 2-22t =0,解得t =0或t =2,因此,点A 的坐标为(0,2)或(2,0).故选AC .12.关于空间向量,以下说法正确的是( )A .空间中的三个向量,若有两个向量共线,则这三个向量一定共面B .若对空间中任意一点O ,有OP →=16OA →+512OB →+512OC →,则P ,A ,B ,C 四点共面C .设{}a ,b ,c 是空间中的一组基底,则{2a ,-b ,c }也是空间的一组基底D .若a ·b <0,则〈a ,b 〉是钝角 【答案】ABC【解析】对于A 中,根据共线向量的概念,可知空间中的三个向量,若有两个向量共线,则这三个向量一定共面,所以是正确的;对于B 中,若对空间中任意一点O ,有OP →=16OA →+13OB →+12OC →,因为16+512+512=1,所以P ,A ,B ,C 四点一定共面,所以是正确的;对于C 中,由{}a ,b ,c 是空间中的一组基底,则向量a ,b ,c 不共面,可得向量2a ,-b ,c 也不共面,所以{2a ,-b ,c }也是空间的一组基底,所以是正确的;对于D 中,若a ·b <0,又由〈a ,b 〉∈[0,π],所以〈a ,b 〉∈⎝ ⎛⎦⎥⎤π2,π,所以不正确. 三、填空题:本题共4小题,每小题5分,共20分.13.在空间直角坐标系Oxyz 中,点M (1,-1,1)关于x 轴的对称点坐标是__________;|OM |=________.【答案】(1,1,-1)3【解析】在空间直角坐标系Oxyz 中,点M (1,-1,1)关于x 轴的对称点坐标是M ′(1,1,-1),|OM |=12+-12+12=3.14.(2021年惠州期末)圆C :(x -1)2+y 2=1关于直线l :x -y +1=0对称的圆的方程为______________.【答案】(x +1)2+(y -2)2=1【解析】圆C :(x -1)2+y 2=1圆心C (1,0),半径r =1,设圆C 关于直线l :x -y +1=0的对称点C ′(a ,b ),则⎩⎪⎨⎪⎧a +12-b2+1=0,ba -1=-1,解得a =-1,b =2,即圆C 的圆心关于直线l 的对称圆心为C ′(-1,2),而圆关于直线对称得到的圆的半径不变,所以所求的圆的方程为(x +1)2+(y -2)2=1.15.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点M ,N 分别是线段BB 1,B 1C 1的中点,则直线MN 到平面ACD 1的距离为________.【答案】32【解析】如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则D (0,0,0),C (0,1,0),D 1(0,0,1),M ⎝ ⎛⎭⎪⎫1,1,12,A (1,0,0).∴AM →=⎝⎛⎭⎪⎫0,1,12,AC→=(-1,1,0),AD 1→=(-1,0,1).设平面ACD 1的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧-x +y =0,-x +z =0,令x =1,则y =z =1,∴n =(1,1,1).∴点M 到平面ACD 1的距离d =|AM →·n ||n |=32.又∵MN →綉12AD 1→,∴MN ∥平面ACD 1.∴直线MN 到平面ACD 1的距离为32.16.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为该双曲线上一点且2|PF 1|=3|PF 2|,若∠F 1PF 2=60°,则该双曲线的离心率为________.【答案】7【解析】2|PF 1|=3|PF 2|,|PF 1|-|PF 2|=2a ,故|PF 1|=6a ,|PF 2|=4a .在△PF 1F 2中,利用余弦定理得4c 2=36a 2+16a 2-2·6a ·4a cos60°,化简整理得到c =7a ,故e =7.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在△ABC 中,A (2,-5,3),AB →=(4,1,2),BC →=(3,-2,5). (1)求顶点B ,C 的坐标; (2)求CA →·BC →.解:(1)设点O 为坐标原点,OB →=OA →+AB →=(2,-5,3)+(4,1,2)=(6,-4,5), 则B (6,-4,5).OC →=OB →+BC →=(6,-4,5)+(3,-2,5)=(9,-6,10),则C (9,-6,10).(2)AC →=AB →+BC →=(7,-1,7),则CA →=(-7,1,-7),又因为BC →=(3,-2,5),所以CA →·BC →=-7×3+1×(-2)+(-7)×5=-58. 18.(12分)菱形ABCD 的顶点A ,C 的坐标分别为A (-4,7),C (6,-5),BC 边所在直线过点P (8,-1).求:(1)AD 边所在直线的方程; (2)对角线BD 所在直线的方程.解:(1)k BC =-5--16-8=2,∵AD ∥BC ,∴k AD =2.∴AD 边所在直线的方程为y -7=2(x +4),即2x -y +15=0. (2)k AC =-5-76--4=-65.∵菱形的对角线互相垂直,∴BD ⊥AC ,∴k BD =56.∵AC 的中点(1,1),也是BD 的中点,∴对角线BD 所在直线的方程为y -1=56(x -1),即5x -6y +1=0.19.(12分)已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. (1)证明:圆C 1的圆心C 1(1,3),半径r 1=11. 圆C 2的圆心C 2(5,6),半径r 2=4.两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4,|r 1-r 2|=4-11, ∴|r 1-r 2|<d <r 1+r 2. ∴圆C 1和圆C 2相交.(2)解:圆C 1和圆C 2的方程相减, 得4x +3y -23=0,∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.20.(12分)如图,过抛物线C :x 2=2py (p >0)的焦点F 的直线交C 于M (x 1,y 1),N (x 2,y 2)两点,且x 1x 2=-4.(1)求抛物线C 的标准方程;(2)R ,Q 是C 上的两动点,R ,Q 的纵坐标之和为1,R ,Q 的垂直平分线交y 轴于点T ,求△MNT 的面积的最小值.解:(1)由题意,设直线MN 的方程为y =kx +p2,由⎩⎪⎨⎪⎧y =kx +p 2,x 2=2py ,得x 2-2pkx -p 2=0,由题意知x 1,x 2是方程两根,所以x 1x 2=-p 2=-4, 所以p =2,抛物线的标准方程为x 2=4y .(2)设R (x 3,y 3),Q (x 4,y 4),T (0,t ),因为点T 在RQ 的垂直平分线上,所以|TR |=|TQ |, 得x 23+(y 3-t )2=x 24+(y 4-t )2.因为x 23=4y 3,x 24=4y 4,所以4y 3+(y 3-t )2=4y 4+(y 4-t )2, 即4(y 3-y 4)=(y 3+y 4-2t )(y 4-y 3), 所以-4=y 3+y 4-2t .又因为y 3+y 4=1,所以t =52,故T ⎝ ⎛⎭⎪⎫0,52.于是S △MNT =12|FT ||x 1-x 2|=34|x 1-x 2|.由(1)得x 1+x 2=4k ,x 1x 2=-4, 所以S △MNT =34|x 1-x 2|=34x 1+x 22-4x 1x 2=3416k 2-4×-4=3k 2+1≥3. 所以当k =0时,S △MNT 有最小值3.21.(12分)如图,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,AB ∥CD ,AB =2AD =2CD =2,E 是PB 上的点.(1)求证:平面EAC ⊥平面PBC ; (2)二面角P -AC -E 的余弦值为63,求直线PA 与平面EAC 所成角的正弦值.(1)证明:∵PC ⊥底面ABCD ,AC ⊂底面ABCD , ∴PC ⊥AC .∵AB =2,AD =CD =1,∴AC =BC =2. ∴AC 2+BC 2=AB 2,∴AC ⊥BC . 又∵BC ∩PC =C ,∴AC ⊥平面PBC . ∵AC ⊂平面EAC ,∴平面EAC ⊥平面PBC .(2)解:如图,以C 为原点,取AB 中点F ,CF →,CD →,CP →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,则C (0,0,0),A (1,1,0),B (1,-1,0). 设P (0,0,a )(a >0),则E ⎝ ⎛⎭⎪⎫12,-12,a 2,CA →=(1,1,0),CP →=(0,0,a ),CE →=⎝ ⎛⎭⎪⎫12,-12,a 2,设m =(x 1,y 1,z 1)为平面PAC 的法向量, 由⎩⎪⎨⎪⎧m ·CA →=x 1+y 1=0,m ·CP →=az 1=0,所以可取x 1=1,y 1=-1,z 1=0,即m =(1,-1,0). 设n =(x 2,y 2,z 2)为平面EAC 的法向量, 则n ·CA →=n ·CE →=0,即⎩⎪⎨⎪⎧x 2+y 2=0,x 2-y 2+az 2=0,取x 2=a ,y 2=-a ,z 2=-2,则n =(a ,-a ,-2),依题意,|cos 〈m ,n 〉|=|m ·n ||m ||n |=a a 2+2=63,则a =2.于是n =(2,-2,-2),PA →=(1,1,-2). 设直线PA 与平面EAC 所成角为θ,则sin θ=|cos 〈PA →,n 〉|=|PA →·n ||PA →||n |=23,即直线PA 与平面EAC 所成角的正弦值为23. 22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且经过点⎝⎛⎭⎪⎫-1,32.(1)求椭圆C 的方程.(2)过点(3,0)作直线l 与椭圆C 交于A ,B 两点,试问在x 轴上是否存在定点Q 使得直线QA 与直线QB 恰关于x 轴对称?若存在,求出点Q 的坐标;若不存在,说明理由.解:(1)由题意可得32=c a ,1a 2+34b2=1, 又因为a 2-b 2=c 2, 解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1.(2)存在定点Q ⎝⎛⎭⎪⎫433,0,满足直线QA 与直线QB 恰关于x 轴对称,理由如下: 设直线l 的方程为x +my -3=0,与椭圆C 联立,整理得(4+m 2)y 2-23my -1=0. 设A (x 1,y 1),B (x 2,y 2),定点Q (t,0)(依题意t ≠x 1,t ≠x 2),则由韦达定理可得,y 1+y 2=23m 4+m 2,y 1y 2=-14+m2. 直线QA 与直线QB 恰关于x 轴对称,等价于AQ ,BQ 的斜率互为相反数. 所以y 1x 1-t +y 2x 2-t=0,即y 1(x 2-t )+y 2(x 1-t )=0.又因为x 1+my 1-3=0,x 2+my 2-3=0, 所以y 1(3-my 2-t )+y 2(3-my 1-t )=0, 整理得(3-t )(y 1+y 2)-2my 1y 2=0. 从而可得(3-t )·23m 4+m 2-2m ·-14+m2=0,11 即2m (4-3t )=0,所以当t =433,即Q ⎝ ⎛⎭⎪⎫433,0时,直线QA 与直线QB 恰关于x 轴对称成立.特别地,当直线l 为x 轴时,Q ⎝ ⎛⎭⎪⎫433,0也符合题意. 综上所述,存在x 轴上的定点Q ⎝⎛⎭⎪⎫433,0,满足直线QA 与直线QB 恰关于x 轴对称.。
模块综合检测(一)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
模块综合检测(一)选修3-3(90分钟 100分)1.(6分)关于布朗运动的说法正确的是( )A.布朗运动是液体分子的运动B.悬浮在液体中的颗粒越大,其布朗运动越明显C.布朗运动是悬浮颗粒内部分子无规则运动的反映D.悬浮在液体中的颗粒越小,液体温度越高,布朗运动越明显2.(2013·天水模拟)(6分)相互作用的分子间具有势能,规定两分子相距无穷远时两分子间的势能为零。
设分子a固定不动,分子b以某一初速度从无穷远处向a运动,直至它们之间的距离最小。
在此过程中,a、b之间的势能( )A.先减小,后增大,最后小于零B.先减小,后增大,最后大于零C.先增大,后减小,最后小于零D.先增大,后减小,最后大于零3.(6分)在下列叙述中正确的是( )A.物体的温度越高,分子热运动越剧烈,分子平均动能越大B.布朗运动就是液体分子的热运动C.对一定质量的气体加热,其内能一定增加D.当分子间距r<r0时,分子间斥力比引力变化得快;当r>r0时,引力比斥力变化得快4.(6分)下列说法正确的是( )A.某种液体的饱和蒸汽压与温度无关B.物体内所有分子热运动动能的总和就是物体的内能C.气体的温度升高,分子的平均动能增大D.所有晶体都具有各向异性的特点5.(6分)热力学第二定律常见的表述方式有两种,其一:不可能使热量由低温物体传递到高温物体而不引起其他变化;其二:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。
第一种表述方式可以用图甲来表示,根据你对第二种表述的理解,如果也用类似的示意图来表示,你认为图乙中正确的是( )6.(6分)设合力为零时分子间距为r0,分子之间既有引力也有斥力,它们与分子间距的关系有以下说法,其中正确的是( )A.随着分子间距的增加,分子间的引力减小得快,斥力减小得慢B.随着分子间距的增加,分子间的引力减小得慢,斥力减小得快C.分子间距大于r0时,距离越大,分子力越大D.分子间距等于r0时,分子力最大7.(2013·广州模拟)(6分)下列说法正确的是( )A.在黑暗、密闭的房间内,在窗外射入的阳光下,可以看到灰尘在飞舞,这些飞舞的灰尘在做布朗运动B.小木块浮在水面上是由于液体表面张力的作用C.大颗粒的盐磨成细盐,就变成了非晶体D.对于一定质量的饱和蒸汽,当温度不变,体积减小一半时,压强不变8.(6分)水蒸气达到饱和时,水蒸气的压强不再变化,这时( )A.水不再蒸发B.水不再凝结C.蒸发和凝结达到动态平衡D.以上都不对9.(6分)某充有足量空气的足球,在从早晨使用到中午的过程中,其体积的变化忽略不计,则其内部气体的压强随温度变化的关系图像应遵循图中的(设足球不漏气)( )10.(2013·潮州模拟)(6分)夏天将密闭有空气的矿泉水瓶放进低温的冰箱中会变扁,此过程中瓶内空气(可看成理想气体)( )A.内能减小,外界对其做功B.内能减小,吸收热量C.内能增加,对外界做功D.内能增加,放出热量11.(6分)如图所示,活塞将汽缸分成两个气室,汽缸壁、活塞、拉杆是绝热的,且都不漏气,U A和U B分别表示A、B气室中气体的内能。
人教版高中物理选择性必修第2册 模块综合检测

模块综合检测(时间:90分钟满分:100分)一、单项选择题(本题共7小题,每小题4分,共28分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.关于电磁感应现象的有关说法中,正确的是( )A.穿过闭合电路中的磁通量变化越快,闭合电路中感应电动势越大B.穿过闭合电路中的磁通量减小,则电路中感应电流就减小C.穿过闭合电路中的磁通量越大,闭合电路中的感应电动势越大D.只要穿过闭合电路中的磁通量不为零,闭合电路中就一定有感应电流产生解析:选A 穿过闭合电路中的磁通量变化越快,闭合电路中感应电动势越大,选项A正确;穿过闭合电路中的磁通量减小,但如果磁通量均匀减小,即磁通量的变化率恒定,则电路中感应电流就不变,选项B错误;磁通量很大,但变化较慢,则感应电动势也可能很小,故C错误;只有闭合回路中磁通量发生变化时,闭合回路中才会产生感应电流,故D错误。
2.LC振荡电路中,某时刻磁场方向如图所示,则下列说法错误的是( )A.若磁场正在减弱,则电容器上极板带正电B.若电容器正在放电,则电容器上极板带负电C.若电容器上极板带正电,则线圈中电流正在增大D.若电容器正在放电,则自感电动势正在阻碍电流增大解析:选C 题图中标明了电流的磁场方向,由安培定则可判断出电流在线圈中为逆时针(俯视)流动。
若该时刻电容器上极板带正电,则可知电容器处于充电阶段,电流正在减小,A选项正确,C选项错误;若该时刻电容器上极板带负电,则可知电容器正在放电,电流正在增大,B选项正确;由楞次定律知,D选项正确。
3.传感器是一种采集信息的重要器件,如图所示是一种测定压力的电容式传感器,当待测压力F作用于可动膜片的电极上时,以下说法正确的是( )①若F向上压膜片电极,电路中有从a到b的电流②若F向上压膜片电极,电路中有从b到a的电流③若F向上压膜片电极,电路中不会出现电流④若电流表有示数,则说明压力F发生变化⑤若电流表有示数,则说明压力F不发生变化A.②④B.①④C.③⑤D.①⑤解析:选A 当F向上压膜片电极时,由C=εS4πkd,知C增大,又Q =CU,故可知电容器充电,有充电电流,电流方向从b到a。
模块综合测试题检测A

模块综合测试题检测A一、选择题:(25个题,每题2分)1.现有一瓶混有酵母菌和葡萄糖的培养液,通入不 同浓度的氧气时,其产生的酒精和CO 2的量如图所示 (两种呼吸作用速率相等),问:在氧浓度为a 时 A.酵母菌只进行厌氧发酵 B.67%的酵母菌进行厌氧发酵 C.33%的酵母菌进行厌氧发酵 D.酵母菌停止厌氧发酵2.有一灌用用葡萄糖液培养的酵母菌,由于混入氧气,酵母菌就有了两种呼吸类型.假使全部酵母菌都在分解葡萄糖,且两种呼吸消耗葡萄糖的速度相等.当灌内产生的CO 2与酒精的mol 数之比为2:1时,有多少酵母菌在进行有氧呼吸A.1/2B.1/3C.1/4D.1/53.在消毒不彻底的密封肉类罐头中,肉毒杆菌能够迅速繁殖并产生大量的毒素,肉毒杆菌的代谢类型为A.自养需氧型B.自养厌氧型C.异养需氧型D.异养厌氧型4.研究认为,用固定化酶技术处理污染物是很有前途的。
如将从大肠杆菌得到的磷酸三酯酶固定到尼龙膜上制成制剂,可用于降解残留在土壤中的有机磷农药,与用微生物降解相比,其作用不需要适宜的A .温度B .pHC .水分D .营养5.发酵工程的第一个重要工作是选择优良的单一纯种。
消灭杂菌,获得纯种的方法包括A .根据微生物对碳源需要的差别,使用含不同碳源的培养基B .根据微生物缺乏生长因子的种类,在培养基中增减不同的生长因子C .根据微生物遗传组成的差异,在培养基中加入不同比例的核酸D .根据微生物对抗菌素敏感性的差异,在培养基中加入不同的抗菌素6.所有细菌都具有的特征是A .都是异养生物B .仅在有水条件下繁殖C .仅在有氧条件下生长D .生存温度都超过80℃7.下面关于植物细胞工程的叙述,正确的是( )A . 叶肉细胞脱分化后可形成无定形状态的薄壁细胞B . 叶肉细胞经再分化过程可形成愈伤组织C . 融合植物叶肉细胞时,应先去掉细胞膜D .植物体的任何一个体细胞经离体培养都能表现出全能性8.下列关于细胞工程的叙述中,错误的是( )A . 植物细胞融合必须先制备原生质体B . 试管婴儿技术包括人工授精和胚胎移植两方面C . 经细胞核移植培育出的新个体只具有一个亲本的遗传性状D .用于培养的植物器官或组织属于外植体9.人工种子是指植物离体培养中产生的胚状体,包裹在含有养分和具有保护功能的物质中,并在适宜的条件下能够发芽出苗的颗粒体。
苏教版数学选修2-1:模块综合检测

(时间:120分钟;满分:160分)模块综合检测一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.已知命题p :∀x ∈R ,x 2+x -1<0,则命题﹁p 是________. 解析:全称命题的否定是存在性命题. 答案:∃x ∈R ,x 2+x -1≥02.已知点A (1,-2,0)和向量a =(-3,4,12),若AB →=2a ,则点B 的坐标为________.解析:设B (x ,y ,z ),则AB →=(x -1,y +2,z ),又AB →=2a ,解得x =-5,y =6,z =24,所以B 点坐标为(-5,6,24).答案:(-5,6,24)3.若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1),满足条件(c -a )·(2b )=-2,则x =________.解析:c -a =(0,0,1-x ),(c -a )·(2b )=2(0,0,1-x )·(1,2,1)=2(1-x )=-2,解得x =2.答案:24.已知a ∈R ,则“a >2”是“1a <12”的________条件.解析:由1a <12可得a -22a >0,即得a >2或a <0,∴“a >2”是“1a <12”的充分不必要条件.答案:充分不必要5.已知双曲线x 2a 2-y 2b 2=1的离心率为2,焦点与椭圆x 225+y 29=1的焦点相同,那么双曲线的渐近线方程为________.解析:根据椭圆方程可得c =25-9=4,又椭圆与双曲线焦点相同,故其焦点坐标为(±4,0),又据已知得:⎩⎪⎨⎪⎧c a =2,c =4,故a =2,b =c 2-a 2=23,故其渐近线方程为y =±bax =±3x .答案:3x ±y =06.双曲线x 216-y 29=1上一点P 到右焦点的距离是实轴两端点到右焦点距离的等差中项,则P 点到左焦点的距离为________.解析:由a =4,b =3,得c =5.设左焦点为F 1,右焦点为F 2,则|PF 2|=12(a +c +c -a )=c =5,由双曲线的定义得:|PF 1|=2a +|PF 2|=8+5=13.答案:137.已知抛物线C :y 2=x 与直线l :y =kx +1,“k ≠0”是“直线l 与抛物线C 有两个不同交点”的____________条件.解析:当k =0时,直线y =1与抛物线C :y 2=x 只有一个交点;所以直线l 与抛物线C有两个不同交点必须k ≠0;当k ≠0时,由⎩⎪⎨⎪⎧y 2=x ,y =kx +1,得k 2x 2+(2k -1)x +1=0,Δ=(2k -1)2-4k 2=-4k +1,则Δ不一定大于零,此时直线l 与抛物线C ,可能没有交点,可能有一个交点,也可能有两个交点,所以“k ≠0”是“直线l 与抛物线C 有两个不同交点”必要不充分条件.答案:必要不充分8.抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是________.解析:设抛物线y =-x 2上一点为(m ,-m 2),该点到直线4x +3y -8=0的距离为|4m -3m 2-8|5,故当m =23时,取得最小值为43.答案:439.已知G 是△ABC 的重心,O 是平面ABC 外的一点,若λOG →=OA →+OB →+OC →,则λ=________.解析:如图,正方体中,OA →+OB →+OC →=3OG →,所以λ=3. 答案:310.若点P (2,0)到双曲线x 2a 2-y 2b2=1的一条渐近线的距离为2,则双曲线的离心率为________.解析:设过第一象限的渐近线倾斜角为α⇒sin α=22⇒α=45°⇒k =1;所以y =±bax=±x ⇒a =b ,因此c =2a ,e =ca= 2.答案: 211.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为________.解析:抛物线y 2=ax (a ≠0)的焦点F 坐标为(a 4,0),则直线l 的方程为y =2(x -a4),它与y 轴的交点为A (0,-a 2),所以△OAF 的面积为12|a 4|·|a2|=4,解得a =±8,所以抛物线方程为y 2=±8x .答案:y 2=±8x12.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →²FP →的最大值为________.解析:由题意,F (-1,0),设点P (x 0,y 0),则有x 204+y 203=1,解得y 20=3(1-x 204),因为FP →=(x 0+1,y 0),OP →=(x 0,y 0),所以OP →·FP →=x 0(x 0+1)+y 20=x 0(x 0+1)+3(1-x 204)=x 204+x 0+3,此二次函数对应的抛物线的对称轴为x 0=-2,因为-2≤x 0≤2,所以当x 0=2时,OP →·FP →取得最大值224+2+3=6.答案:613.如图在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,∠BAC =30°,BC =1,A 1A =6,M 是CC 1的中点,则二面角B -AM -C 的大小为________.解析:以点C 为原点建立如图所示的空间直角坐标系,则B (1,0,0),A (0,3,0),A 1(0,3,6),M (0,0,62),所以A 1B →=(1,-3,-6),AM →=(0,-3,62),因为直三棱柱ABC -A 1B 1C 1,所以CC 1⊥面ABC ,所以CC 1⊥BC , 因为∠ACB =90°,即BC ⊥AC , 所以BC ⊥平面ACC 1, 即BC ⊥面AMC ,所以CB →=(1,0,0)是平面AMC 的一个法向量, 设n =(x ,y ,z )是平面BAM 的一个法向量,BA →=(-1,3,0),BM →=(-1,0,62).由⎩⎪⎨⎪⎧n ·BA →=0n ·BM →=0,得⎩⎪⎨⎪⎧-x +3y =0-x +62z =0, 取z =2,得n =(6,2,2),因为|CB →|=1,|n |=23,所以cos 〈CB →,n 〉=623=22,又二面角B -AM -C 的平面角是锐角, 因此二面角B -AM -C 的大小为45°. 答案:45°14.设x 1,x 2∈R ,常数a >0,定义运算“*”,x 1*x 2=(x 1+x 2)2-(x 1-x 2)2,若x ≥0,则动点P (x ,x *a )的轨迹是________.解析:因为x 1*x 2=(x 1+x 2)2-(x 1-x 2)2,所以x *a =(x +a )2-(x -a )2=2ax , 则P (x ,2ax ),设P (x 1,y 1),即⎩⎨⎧x 1=xy 1=2ax ,消去x 得y 21=4ax 1(x 1≥0,y 1≥0), 故点P 的轨迹为抛物线的一部分. 答案:抛物线的一部分二、解答题(本大题共6小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)已知p :(x +2)(x -10)≤0,q :[x -(1-m )][x -(1+m )]≤0(m >0),若﹁p 是﹁q 的必要不充分条件,求实数m 的取值范围.解:因为﹁p 是﹁q 的必要不充分条件, 则p 是q 的充分不必要条件,由p :(x +2)(x -10)≤0可得-2≤x ≤10, 由q :[x -(1-m )][x -(1+m )]≤0(m >0), 可得1-m ≤x ≤1+m (m >0), 因为p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧1-m ≤-21+m ≥10,得m ≥9,即实数m 的取值范围为m ≥9.16.(本小题满分14分)如图所示,在三棱柱ABC -A 1B 1C 1中,H 是正方形AA 1B 1B 的中心,AA 1=22,C 1H ⊥平面AA 1B 1B ,且C 1H = 5.(1)求异面直线AC 与A 1B 1所成角的余弦值; (2)求二面角A -A 1C 1-B 1的正弦值;(3)设N 为棱B 1C 1的中点,点M 在平面AA 1B 1B 内,且MN ⊥平面A 1B 1C 1,求线段BM 的长.解:如图所示,以点B 为坐标原点,建立空间直角坐标系,依题意,得A (22,0,0),B (0,0,0),C (2,-2,5),A 1(22,22,0),B 1(0,22,0),C 1(2,2,5).(1)易得AC →=(-2,-2,5),A 1B 1→=(-22,0,0),因为cos 〈AC →,A 1B 1→〉=AC →·A 1B 1→|AC →||A 1B 1→|=43³22=23.所以异面直线AC 与A 1B 1所成角的余弦值为23.(2)易知AA 1→=(0,22,0),A 1C 1→=(-2,-2,5). 设平面AA 1C 1的法向量m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m ·AA 1→=0,即⎩⎨⎧-2x 1-2y 1+5z 1=0,22y 1=0.不妨令x 1=5,可得z 1=2,即m =(5,0,2). 同样地,设平面A 1B 1C 1的法向量n =(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n ·A 1C 1→=0,n ·A 1B 1→=0.即⎩⎨⎧-2x 2-2y 2+5z 2=0,-22x 2=0.不妨令y 2=5,可得z 2=2,即n =(0,5,2).于是cos 〈m ,n 〉=m ·n |m ||n |=27³7=27,从而sin 〈m ,n 〉=357.所以二面角A -A 1C 1-B 1的正弦值为357.(3)由N 为棱B 1C 1的中点,得N (22,322,52).设M (a ,b ,0),则MN →=(22-a ,322-b ,52).由MN ⊥平面A 1B 1C 1,得 ⎩⎪⎨⎪⎧MN →·A 1B 1→=0,MN →·A 1C 1→=0.即⎩⎨⎧(22-a )·(-22)=0,(22-a )·(-2)+(322-b )·(-2)+52³5=0.解得⎩⎨⎧a =22,b =24.故M (22,24,0).因此BM →=(22,24,0),所以线段BM 的长为|BM →|=104.17.(本小题满分14分)已知椭圆与双曲线2x 2-2y 2=1共焦点,且过(2,0). (1)求椭圆的标准方程;(2)求斜率为2的一组平行弦的中点轨迹方程.解:(1)依题意得,将双曲线方程标准化为x 212-y 212=1,则c =1.∵椭圆与双曲线共焦点,∴设椭圆方程为x 2a 2+y 2a 2-1=1,∵椭圆过(2,0),∴2a 2+0a 2-1=1,即a 2=2,∴椭圆的标准方程为x 22+y 2=1.(2)依题意,设斜率为2的弦所在直线的方程为y =2x +b ,弦的中点坐标为(x ,y ),则⎩⎪⎨⎪⎧y =2x +b x 22+y 2=1得9x 2+8bx +2b 2-2=0, ∴⎩⎨⎧x 1+x 2=-8b 9,y 1+y 2=2b 9.即⎩⎨⎧x =-4b9,y =b9,∴y =-14x .令Δ=0,64b 2-36(2b 2-2)=0,即b =±3, 所以斜率为2且与椭圆相切的直线方程为y =2x ±3,即当x =±43时斜率为2的直线与椭圆相切.所以平行弦的中点轨迹方程为:y =-14x (-43≤x ≤43).18.(本小题满分16分)如图,在直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,AC =BC =CC 1,M 、N 分别是A 1B 、B 1C 1的中点.(1)求证:MN ⊥平面A 1BC ;(2)求直线BC 1和平面A 1BC 所成角的大小.解:(1)据题意CA 、CB 、CC 1两两垂直,以C 为原点,CA 、CB 、CC 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图.设AC =BC =CC 1=a ,则B (0,a ,0),B 1(0,a ,a ),A (a ,0,0),C (0,0,0),C 1(0,0,a ),A 1(a ,0,a ),M (a 2,a 2,a 2),N (0,a2,a ). 所以BA 1→=(a ,-a ,a ),CA 1→=(a ,0,a ),MN →=(-a 2,0,a 2).所以MN →·BA 1→=0,MN →·CA 1→=0, 即MN ⊥BA 1,MN ⊥CA 1. 又BA 1∩CA 1=A 1, 故MN ⊥平面A 1BC .(2)因为MN ⊥平面A 1BC , 则MN →为平面A 1BC 的法向量, 又BC 1→=(0,-a ,a ),则cos 〈BC 1→,MN →〉=BC 1→·MN →|BC 1→||MN →|=a 222a ³22a=12,所以〈BC 1,MN →〉=60°,故直线BC 1和平面A 1BC 所成的角为30°.19.(本小题满分16分)已知动点P 到定点F (2,0)的距离与点P 到定直线l :x =22的距离之比为22.(1)求动点P 的轨迹C 的方程;(2)设M 、N 是直线l 上的两个点,点E 与点F 关于原点O 对称,若EM →²FN →=0,求MN 的最小值.解:(1)设点P (x ,y ),依题意,有(x -2)2+y 2|x -22|=22,整理,得x 24+y 22=1.所以动点P 的轨迹C 的方程为x 24+y 22=1.(2)∵点E 与点F 关于原点O 对称, ∴点E 的坐标为(-2,0). ∵M 、N 是直线l 上的两个点,∴可设M (22,y 1),N (22,y 2)(不妨设y 1>y 2). ∵EM →·FN →=0, ∴(32,y 1)·(2,y 2)=0,则6+y 1y 2=0,即y 2=-6y 1.由于y 1>y 2,则y 1>0,y 2<0.∴MN =y 1-y 2=y1+6y 1≥2y 1²6y 1=2 6.当且仅当y 1=6,y 2=-6时,等号成立, 故MN 的最小值为2 6.20.(本小题满分16分)如图,抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足OA →+OB →=(-4,-12).(1)求直线l 和抛物线的方程;(2)当抛物线上一动点P 从点A 到B 运动时,求△ABP 面积的最大值.解:(1)据题意可设直线l 的方程为y =kx -2,抛物线方程为x 2=-2py (p >0). 由⎩⎪⎨⎪⎧y =kx -2x 2=-2py 得x 2+2pkx -4p =0. 设点A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.所以OA →+OB →=(x 1+x 2,y 1+y 2) =(-2pk ,-2pk 2-4).因为OA →+OB →=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1k =2. 故直线l 的方程为y =2x -2,抛物线为x 2=-2y .(2)由⎩⎪⎨⎪⎧y =2x -2x 2=-2y 得,x 2+4x -4=0.所以AB =1+k 2·(x 1+x 2)2-4x 1x 2 =1+22³(-4)2-4³(-4)=410.设点P (t ,-12t 2)(-2-22<t <-2+22),点P 到直线l 的距离为d ,则d =|2t +12t 2-2|22+(-1)2=|(t +2)2-8|25(-2-22<t <-2+22),当t =-2时,d max =455, 此时点P (-2,-2).故△ABP 面积的最大值12·AB ·d =12³410³455=8 2.。
新教材高中物理模块综合检测含解析必修3

模块综合检测(时间:90分钟满分:100分)一、单项选择题(本题共8小题,每小题3分,共24分.每小题只有一个选项符合题目要求)1。
下列关于电场和磁场的说法正确的是()A.电场对放入其中的电荷一定有静电力作用,磁场对放入其中的通电导线一定有磁场力作用B.正电荷所受静电力的方向与所在处的电场方向相同,一小段通电导线所受磁场力的方向与所在处的磁场方向相同C。
同一通电导线放在磁场中的不同位置,所受磁场力大的地方,该处磁感应强度一定大D.同一通电导线在磁场中的同一位置沿不同方向放置,所受磁场力最大时,导线与磁场方向垂直答案:D2。
假如有一航天员登月后,想探测一下月球表面是否有磁场,他手边有一只灵敏的电流表和一个小线圈,则下列推断正确的是()A。
直接将电流表放于月球表面,看是否有示数来判断有无磁场B。
将电流表与线圈组成闭合回路,使线圈沿某一方向运动,如电流表无示数,则可判断月球表面无磁场C.将电流表与线圈组成闭合回路,使线圈沿某一方向运动,如电流表有示数,则可判断月球表面有磁场D。
将电流表与线圈组成闭合回路,使线圈在某一平面内沿各个方向运动,如电流表无示数,则可判断月球表面无磁场答案:C3。
小张买了一个袖珍手电筒,它的电源是两节干电池.手电筒中的小灯泡上标有“2。
2 V0。
25 A”.小张认为产品设计人员的意图是使小灯泡在这两节干电池的供电下正常发光.已知每节干电池的电动势为1。
5 V,由此,他推算出了产品设计者设定的每节干电池的内阻为(不计导线电阻)()A。
1.6 ΩB。
3。
2 Ω C.4。
2 Ω D.8.8 Ω答案:A4。
如图所示,竖直实线表示匀强电场中的一簇等势面,一带电微粒在电场中从A到B做直线运动(如图中虚线所示),则该微粒()A.一定带正电B。
从A到B的过程中做匀速直线运动C。
从A到B的过程中电势能增加D.从A到B的过程中机械能守恒答案:C5。
温度自动报警器的工作原理图如图所示,图中1是电磁铁、2是衔铁、3是触点、4是水银温度计(水银导电),则下列说法正确的是()A.温度高于警戒温度时,电铃不报警、指示灯亮B.温度低于警戒温度时,电铃报警、指示灯熄灭C。
模块综合检测(二)

模块综合检测一、选择题1.(2013届湛江月考)1641年,长期议会通过了《大抗议书》。
《大抗议书》的出台实质上反映了英国资产阶级要求()A.废除王权B.废除封建特权C.进行改革D.掌握政权2.《独立宣言》中体现了下列哪些思想()①自由平等,天赋人权②主权在民③三权分立④人民革命权利A.①②③④B.①②③C.①②④D.②③④3.美国《独立宣言》宣称:“一切人生来就是平等的,他们被造物主赋予他们固有的、不可转让的权利,其中有生命、自由以及追求幸福的权利。
”这段话主要体现了什么民主思想() A.平等思想B.平等与天赋人权C.主权在民D.社会契约论4.英国资产阶级革命期间,进步的共和主义者赖德洛指出:“国家本来可能在一个短时期达到人类所向往的幸福境界的,然而却由于他一个人的野心而使所有善良的人的希望破灭了。
”他这句话是对()A.克伦威尔军事独裁的抨击B.查理一世专制统治的批判C.英国资产阶级革命的否定D.查理二世复辟统治的不满二、非选择题5.(2013届东莞测评)阅读下列材料:材料一我们视下列各点为不言而喻的真理:人人生而平等;人人生而具有造物主赋予的某些不可转让的权利,其中包括生命权、自由权和追求幸福的权利;为了保障这些权利,政府才在人们中间得以建立,而政府的正当权利则来自被其统治的人民的同意;但当任何一种形式的政府对政府的原来的目的造成损害时,人民有权来改变或废除它,以建立新的政府。
——美国《独立宣言》(1776年)材料二我们合众国人民,为了建立一个更完善的联邦,树立正义,确保国内安定和平,提供共同防务,促进公共福利,并保证我们自己及后代得享自由的恩赐,特为美利坚合众国颁布和制定本宪法。
——《美利坚合众国宪法》导言(1787年)材料三在美国两百多年的历史上不同的利益集团(或群体)因应不断变化的历史环境,利用宪法衍生的宪政机制,就各自的利益和联邦的“公共”利益的定义和定位,相互进行一种连续不停的谈判和妥协;谈判和妥协使旧的宪法原则和实践得以修正,使新的宪法原则和实践得以产生,宪法的生命力因此不断得到更新,成为一部“活着的”宪法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块综合检测[学生用书P90(单独成册)](时间:90分钟||,满分:100分)一、选择题(本题包括16小题||,每小题3分||,共48分)1.化学科学需要借助化学专用语言来描述||,下列化学用语的书写正确的是()A.基态Mg原子的核外电子排布图:B.过氧化氢电子式:C.As原子的简化电子排布式:[Ar]4s24p3D.原子核内有10个中子的氧原子:18 8O解析:选D||。
选项A中核外电子排布图违背了泡利原理(1个原子轨道里最多只能容纳2个电子且自旋方向相反)||。
选项B中正确的电子式为||。
选项C中As原子核外共有33个电子||,故简化的电子排布式为[Ar]3d104s24p3||。
2.下列关于能层与能级的说法中正确的是()A.原子核外电子的每一个能层最多可容纳的电子数为n2B.任一能层的能级总是从s能级开始||,而且能级数等于该能层序数C.同是s能级||,在不同的能层中所能容纳的最多电子数是不相同的D.1个原子轨道里最多只能容纳2个电子||,但自旋方向相同解析:选B||。
A项中应为“2n2”||,C项中不同能层中的s能级容纳的最多电子数都是2个||,D项中应为“自旋方向相反”||。
3.下列描述正确的是()A.3p2表示3p能级有两个轨道B.原子晶体中可能存在离子键C.分子晶体中一定存在共价键D.sp2杂化轨道模型为解析:选D||。
3p2表示3p轨道上有2个电子;原子晶体中只有共价键||,没有离子键;分子晶体中可能有共价键||,也可能没有(如He)||。
4.下列说法正确的是()A.N2分子中的π键与CO2分子中的π键的数目之比为2∶1B.稳定性:甲烷>乙烯C.强度:氢键>化学键>范德华力D.沸点:解析:选B||。
选项A||,N2的结构式为NN||,分子中含有一个σ键和两个π键||,CO2的结构式为OCO||,分子中含有两个σ键和两个π键||,故二者分子中π键数目之比为1∶1||。
选项B||,乙烯分子中的π键易断裂||,而甲烷分子中只含有σ键||,故甲烷分子稳定||。
选项C||,作用力的强度:化学键>氢键>范德华力||。
选项D||,存在分子内氢键||,存在分子间氢键||,沸点受分子间氢键的影响较大||,故的沸点较高||。
5.已知三角锥形分子E和直线形分子G反应||,生成两种直线形分子L和M(组成E、G、L、M分子的元素原子序数均小于10)||,如图所示||,则下列判断错误的是()A.G是最活泼的非金属单质B.L是极性分子C.E能使紫色石蕊溶液变蓝色D.M化学性质活泼解析:选D||。
由组成E、G、L、M分子的元素原子序数均小于10及E为三角锥形分子可知E为NH3||,组成L的元素除氢外另一元素为-1价的氟||,故G为F2||,L为HF||,M为N2||,故本题答案为D||。
6.下列描述正确的是()①CS2为V形的极性分子②ClO-3的立体构型为平面三角形③SF6中有6对完全相同的成键电子对④SiF4和SO2-3的中心原子均采用sp3杂化A.①③B.②④C.①②D.③④解析:选D||。
CS2和CO2的分子构型相同||,为直线形||,①错误;ClO-3的中心原子Cl 有一对孤电子对||,所以ClO-3的立体构型为三角锥形||,②错误;S原子最外层有6个电子||,正好与6个F原子形成6个共价键||,③正确;SiF4中Si形成4个σ键||,SO2-3中S有一对孤电子对||,价层电子对数为4||,所以Si、S均采用sp3杂化||,④正确||。
7.共价键、离子键和范德华力是粒子之间的三种作用力||。
下列晶体①Na2O2、②SiO2、③石墨、④金刚石、⑤NaCl、⑥白磷中||,含有以上其中两种作用力的是()A.①②③B.①③⑥C.②④⑥D.①②③⑥解析:选B||。
过氧化钠中有离子键和共价键;石墨和白磷中均存在共价键和范德华力||。
8.在半导体生产或灭火剂的使用中||,会向空气逸散气体||,如NF3、CHClFCF3、C3F8||,它们虽是微量的||,有些却是强温室气体||,下列推测不正确的是()A.熔点NF3>C3F8B.CHClFCF3存在手性异构C.C3F8在CCl4中的溶解度比在水中大D.由价层电子对互斥理论可确定NF3中N原子是sp3杂化||,分子呈三角锥形解析:选A||。
C3F8和NF3均为分子晶体||,C3F8的相对分子质量大于NF3||,故熔点C3F8高于NF3||,A项错误;CHClFCF3的结构简式可写为||,其中含有一个手性碳原子||,B项正确;根据“相似相溶”规律||,C3F8易溶于CCl4||,C项正确;NF3的价层电子对数为4||,且含有一对孤电子对||,故分子呈三角锥形||,D项正确||。
9.(2019·江西师大附中测试)下列判断错误的是()A.沸点:NH3>PH3>AsH3B.熔点:Si3N4>NaCl>SiI4C.酸性:HClO4>H2SO4>H3PO4D.碱性:NaOH>Mg(OH)2>Al(OH)3解析:选A||。
A项||,NH3分子间存在氢键||,沸点最高||,又因为相对原子质量:As>P||,所以沸点:AsH3>PH3||,即沸点:NH3>AsH3>PH3;B项||,Si3N4、NaCl、SiI4分别为原子晶体、离子晶体和分子晶体||,即熔点逐渐降低;C项||,Cl、S、P的非金属性逐渐减弱||,即最高价氧化物对应水化物的酸性逐渐减弱;D项||,由Na、Mg、Al的金属性递减可确定最高价氧化物对应水化物的碱性递减||。
10.胆矾(CuSO4·5H2O)可写成[Cu(H2O)4]SO4·H2O||,其结构示意图如下:下列有关胆矾的说法正确的是()A.所有氧原子都采取sp3杂化B.氧原子参与形成配位键和氢键两种化学键C.Cu2+的价电子排布式为3d84s1D.胆矾中的水在不同温度下会分步失去解析:选D||。
A项||,与S相连的氧原子没有发生轨道杂化;B项||,氢键不是化学键;C项||,Cu2+的价电子排布式为3d9;D项||,由图可知||,胆矾中有1个H2O与其他微粒通过氢键结合||,易失去||,有4个H2O与Cu2+通过配位键结合||,较难失去||。
11.下列物质性质变化规律不正确的是()A.金属Na、Mg、Al的硬度依次升高B.HI、HBr、HCl、HF的沸点依次降低C.干冰、冰、钠的熔点依次升高D.O、F、H的原子半径依次减小解析:选B||。
A中Na、Mg、Al均为金属晶体||,其硬度由金属键决定||,金属键越强||,硬度越大||,而金属键又与离子所带电荷和离子半径有关||,所带电荷越多||,半径越小||,金属键越强||,故A正确;B中因HF分子间存在氢键||,沸点高于HCl||,故B错误;C中干冰和冰为分子晶体||,常温时分别为气态和液态||,而钠为金属晶体||,常温下是固态||,故Na的熔点高于干冰和冰||,而冰又高于干冰||,故C正确;D中由原子半径比较知是正确的||。
12.据某科学杂志报道||,国外一研究所发现了一种新的球形分子||,它的分子式为C60Si60||,其分子结构好似中国传统工艺品“镂雕”||,经测定其中包含C60||,也有Si60结构||。
下列叙述正确的是()A.该物质有很高的熔点、很大的硬度B.该物质形成的晶体属于分子晶体C.该物质分子中Si60被包裹在C60里面D.该物质的相对分子质量为1 200解析:选B||。
由分子式及信息可知该物质为分子晶体||,A项错误||,B项正确;Si的原子半径大于C||,所以Si60的体积大于C60的||,C项错误;该物质的相对分子质量=(12+28)×60=2 400||,D项错误||。
13.(2019·合肥一中检测)美国某国家实验室成功地在高压下将CO2转化为具有类似SiO2结构的晶体||,下列关于CO2的原子晶体的说法正确的是()A.CO2的原子晶体和分子晶体互为同素异形体B.在一定条件下||,CO2的原子晶体转化为分子晶体是物理变化C.CO2的原子晶体和分子晶体具有相同的物理性质D.在CO2的原子晶体中||,每个C原子周围结合4个O原子||,每个O原子与2个碳原子结合解析:选D||。
A项||,同素异形体研究对象是单质;B项||,当CO2的原子晶体转化为分子晶体时||,必须破坏晶体中的共价键||,且有新化学键形成||,所以是化学变化;C项||,CO2的原子晶体和分子晶体结构不同||,则其物理性质有很大差异;D项||,结合SiO2晶体的结构||,可判断D项正确||。
14.下列有关说法不正确的是()A.四水合铜离子的模型如图甲所示||,1个四水合铜离子中有4个配位键B.CaF2晶体的晶胞如图乙所示||,每个CaF2晶胞平均占有4个Ca2+C.H原子的电子云如图丙所示||,H原子核外大多数电子在原子核附近运动D.金属Cu中Cu原子堆积模型如图丁所示||,该金属晶体为最密堆积||,每个Cu原子的配位数均为12解析:选C||。
图甲中大黑球代表铜离子||,与白球代表的氧原子形成4个配位键||,A项正确;图乙中CaF2晶胞平均占有的Ca2+个数为8×1/8+6×1/2=4||,B项正确;图丙中小黑点表示1s电子在原子核外出现的概率密度||,并不表示实际电子||,C项错误;图丁表示的堆积方式为面心立方最密堆积||,最密堆积的配位数均为12||,D项正确||。
15.(2019·玉山一中检测)元素X、Y、Z在周期表中的相对位置如图所示||。
已知Y元素原子的外围电子排布式为n s n-1n p n+1||,则下列说法不正确的是()A.Y元素原子的价电子排布式为4s24p4B.Y元素在元素周期表的第三周期第ⅥA族C.X元素所在周期中所含非金属元素最多D.Z元素原子的核外电子排布式为1s22s22p63s23p63d104s24p3解析:选A||。
因为Y元素原子的价电子排布式中出现了n p能级||,故其n s能级已经充满且只能为2个电子||,则n-1=2||,n=3||,即Y元素原子的外围电子排布式为3s23p4||,故A项错误||,B项正确||。
Y为S元素||,X为F元素||,第二周期所含非金属元素最多||,故C 项正确||。
Z为As元素||,核外电子排布式为1s22s22p63s23p63d104s24p3||,D项正确||。
16.配位化合物Pt(NH3)2Cl2有顺铂和反铂两种同分异构体||。
顺铂在水中的溶解度较大||,具有抗癌作用;反铂在水中的溶解度小||,无抗癌作用||。
下列说法正确的是() A.顺铂在苯等有机溶剂中溶解度小于反铂B.已知Pt位于元素周期表第10纵行||,则Pt是d区的ⅧB 族元素C.分子中Pt和N之间为离子键D.N原子杂化方式为sp2杂化解析:选A||。