3.1.1 随机事件的概率(共28).ppt
合集下载
人教版高中数学必修三3.随机事件的概率PPT课件(共30)

八、知识迁移:
例、 为了估计水库中的鱼的尾数, 先从水库中捕出2 000尾鱼,给每尾鱼作 上记号(不影响其存活),然后放回水 库.经过适当的时间,让其和水库中其 余的鱼充分混合,再从水库中捕出500尾 鱼,其中有记号的鱼有40尾,试根据上 述数据,估计这个水库里鱼的尾数.
课堂感悟
概率是一门研究现实世界中广泛存在的 随机现象的科学,正确理解概率的意义是认识 、理解现实生活中有关概率的实例的关键,学 习过程中应有意识形成概率意识,并用这种意 识来理解现实世界,主动参与对事件发生的概 率的感受和探索。
课堂小结
1.随机事件发生的不确定性及频率的稳定性. (对立统一)
2.随机事件的概率的统计定义:随机事件在相 同的条件下进行大量的试验时,呈现规律性, 且频率总是接近于常数P(A),称P(A)为事件的 概率.
3.随机事件概率的性质:0≤P(A)≤1.
作业:教材P123页T2,T3.
频率与概率的区别与联系:
√(2)明天本地下雨的机会是70%.
又例如生活中,我们经常听到这样的议论 :“天气预报说昨天降水概率为90%,结果根 本一点雨都没下,天气预报也太不准确了。” 学了概率后,你能给出解释吗?
解:天气预报的“降水”是一个随机事 件,概率为90%指明了“降水”这个随机事 件发生的概率,我们知道:在一次试验中, 概率为90%的事件也可能不出现,因此,“ 昨天没有下雨”并不说明“昨天的降水概率 为90%”的天气预报是错误的。
值. (2)频率本身是随机的,在试验前不能确定.
做同样次数的重复试验得到事件的频率会不同,比如全班每人做 了10次掷硬币的试验,但得到正面朝上的频率可以是不同的.
(3)概率是一个确定的数,是客观存在的,与 每次试验无关. 比如,如果一个硬币是质地均匀的,则掷硬币
3.1 随机事件的概率 课件(北师大必修3)

[研一题] [例1] 下面的表中列出10次抛掷硬币的试验结果.n
为抛掷硬币的次数,m为硬币正面向上的次数.计算每次 试验中“正面向上”这一事件的频率,并考查它的概率.
实验序 抛掷的次 数n 号 1 2 3 4 5 6 7 8 9 10 500 500 500 500 500 500 500 500 500 500
200 20 所以, n ≈ ,解得 n≈1 500, 150 所以该自然保护区中天鹅的数量约为 1 500.
[悟一法]
利用频率近似等于概率的关系求未知量 (1)抽出 m 个样本进行标记,设总体容量为 n,则标记概 m 率为 n ; (2)随机抽取 n1 个个体,出现其中 m1 个被标记,则标记 m1 频率为 n ;
提示:如果把治疗一个病人作为一次试验,对于一次试验 来说,其结果是随机的,因此前7个人没有治愈是可能的, 对后3个人来说,其结果仍然是随机的,有可能治愈,也
可能没有治愈.
“治愈的概率是0.3”指随着试验次数的增加,即治疗人数的 增加,大约有30%的人能够治愈,如果患病的有1 000人, 那么我们根据治愈的频率应在治愈的概率附近摆动这一前 提,就可以认为这1 000个人中大约有300人能治愈.
0.524,0.494,这些数字在0.5附近左右摆动,由概率的统 计定义可得,“正面向上”的概率为0.5.
[悟一法] 频数、频率和概率三者之间的关系
(1)频数是指在n次重复试验中事件A出现的次数,频
率是频数与试验总次数的比值,而概率是随机事件发生的 可能性的规律体现; (2)随机事件的频率在每次试验中都可能会有不同的 结果,但它具有一定的稳定性;概率是频率的稳定值,不 会随试验次数的变化而变化.
某些随机事件的概率往往难以确切得到,常常通过做大
3.1.1随机事件的概率

第一步:全班每人各取一枚同样的硬币,
做10次掷硬币的试验,每人记录
下试验结果,填在表格中:
姓名 试验次数 正面朝上的次数 正面朝上的比例
第二步:每个小组把本组同学的试验结果 统计一下,填入下表:
组次
试验总次数
正面朝上总的次数
正面朝上的比例
第三步:把全班同学的试验结果统计一下, 填入下表:
班级
试验总次数
1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件 B.随机事件 C.不可能事件 D.无法确定 2.下列说法正确的是( ) A.任一事件的概率总在(0.1)内 B.不可能事件的概率不一定为0 C.必然事件的概率一定为1 D.以上均不对 3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。
4、确定事件:
必然事件与不可能事件统称为相对于条件s 的确定事件,简称确定事件。
5、事件:
确定事件和随机事件统称为事件,一 般用大写字母A、B、C……表示。
例1 指出下列事件是必然事件,不可能事件,还是随机事件:
(1)“抛一石块,下落”.
(2)“在标准大气压下且温度低于0℃时,冰融化”; (3)“某人射击一次,中靶”; (4)“如果a,b都是实数,则a+b=a+b;”; (5)“将一枚硬币抛掷4次出现两次正面和两次反面”; (6)“导体通电后,发热”; (7)“从分别标有号数1,2,3,4,5的5张标签中任取 一张,得到4号签”; (8)“某电话机在1分钟内收到2次呼叫”; (9)“没有水份,种子能发芽”; (10)“在常温下,焊锡熔化”.
课堂小结:
①了解必然事件,不可能事件,随机事件的概念;
②理解随机事件的发生在大量重复试验下,呈现规 律性; ③理解事件A出现的频率的意义,概率的概念
随机事件的概率(1)(共27张PPT)

0≤ ≤1.
(2)概率及其记法:对于给定的随机事件 A,如果随着试验次数的增
加,事件 A 发生的频率 fn(A)稳定在某个常数上,把这个常数记作 P(A),称
为事件 A 的概率,简称为 A 的概率.
一般来说,随机事件 A 在每次试验中是否发生是不能预知的,但是
在大量的重复试验后,随着试验次数的增加,事件 A 发生的频率会逐渐
录如下:
射击次数
100
120
150
100
150
160
150
击中飞碟数
81
95
123
82
119
127
121
击中飞碟的频率
(1)计算各次记录击中飞碟的频率;
(2)这个运动员击中飞碟的概率约为多少?
解:(1)射击次数 100,击中飞碟数是 81,故击中飞碟的频率是
81
=0.810,同理可求得题表中的频率依次是
(5)从分别标有号码 1,2,3,4,5 的 5 个号签中任取一个,得到 4 号签;
(6)导体通电后,发热;
(7)三角形的内角和为 360°;
(8)某电话机在 1 分钟内收到 4 次呼叫.
解:(1)(6)是必然事件;(3)(7)是不可能事件;(2)(4)(5)(8)是随机事件.
目录
退出
4.某人射击 10 次,击中靶心 8 次,则击中靶心的概率为 0.8.这种说法
件的是(
)
A.③
B.①
C.①④
D.④
解析:①是不可能事件,②是不可能事件,③是随机事件,④是必然事
件.
答案:D
目录
退出
2.某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:
3.1 随机事件的概率 课件(北师大必修3)

200 20 所以, n ≈ ,解得 n≈1 500, 150 所以该自然保护区中天鹅的数量约为 1 500.
[悟一法]
利用频率近似等于概率的关系求未知量 (1)抽出 m 个样本进行标记,设总体容量为 n,则标记概 m 率为 n ; (2)随机抽取 n1 个个体,出现其中 m1 个被标记,则标记 m1 频率为 n ;
0.524,0.494,这些数字在0.5附近左右摆动,由概率的统 计定义可得,“正面向上”的概率为0.5.
[悟一法] 频数、频率和概率三者之间的关系
(1)频数是指在n次重复试验中事件A出现的次数,频
率是频数与试验总次数的比值,而概率是随机事件发生的 可能性的规律体现; (2)随机事件的频率在每次试验中都可能会有不同的 结果,但它具有一定的稳定性;概率是频率的稳定值,不 会随试验次数的变化而变化.
估计该自然保护区中天鹅的数量.
[自主解答]
设保护区中天鹅的数量为 n,假定每只天鹅
被捕到的可能性是相等的,从保护区中任捕一只,设事件 A= 200 {捕到带有记号的天鹅},则 P(A)= n . 第二次从保护区中捕出 150 只天鹅,其中有 20 只带有记 号,由概率的定义可知 P(A)≈ 20 . 150
(2)这位运动员投篮一次进球的概率P≈0.76.
[研一题]
1 掷一颗均匀的正方体骰子得到 6 点的概率是 , 6
[例 2]
是否意味着把它掷 6 次能得到 1 次 6 点?
[自主解答]
把一颗均匀的骰子掷 6 次相当于做 6 次试
验, 因为每次试验的结果都是随机的, 所以做 6 次试验的结 果也是随机的. 这就是说, 每掷一次总是随机地出现一个点 数,可以是 1 点,2 点,也可以是其他点数,不一定出现 6 1 点.所以掷一颗骰子得到 6 点的概率是 ,并不意味着把它 6 掷 6 次能得到 1 次 6 点.
人教A版高中数学必修三 3.1.1 随机事件的概率(共19张PPT)

小硬币 大学问
如果继续增加试验次数,正面朝 上的频率又有怎样的波动规律?
• 链接:电脑摸拟2000次抛硬币试验
随机事件的概率
• 定义:在大量重复进行同一实验时,事件A发生的频
nA 率 n
总是接近于某个常数p,在它附近摆动,这时就把
这个常数叫做事件A的概率。记作P (A)
•
P(A) = p .
• 0 P(A) 1 。
随机事件的概率
• (以上知识点可以用框图表示)
随机事件A进行 大量重复试验
随机事件A发生的
频率
估 计 随机事件A发生的 概率
判断正误
1.概率是随机的,不进行大量重复的随机试验,随
机事件的概率就不能确定。( X )
2.当试验次数增大到一定的数量时,随机事件的频
率会等于概率。( X )
3.随机事件A在n次试验中发生了m次,则事件A 的
有关概念
在一定条件下可能发生也可能不发生的事件叫 做 随机事件 ; 在一定条件下必然发生的事件,叫 必然事件 ; 在一定条件下不可能发生的事件叫 不可能事件 ;
必然事件与不可能事件统称为 确定事件 ;
确定事件与随机事件统称为 事件 ,用大写字母A, B,C……表示 如:
记 “掷一枚硬币,出现正面朝上”为事件A ; 记 “我购买的下一期福利彩票中奖”为事件B ;
事件出现的频数与频率概念
• 在相同的条件S下重复n次试验,观察某一
事件A是否出现,称n次试验中事件A出现 的次数 nA 为事件A出现的 频数 。
称事件A出现的比例 fn(A)=
nA n
为事件A
出现的 频率 。
实验及事件的概率
• 思考:随机事件的“可能发生,也可能不发生 ”是不是没有任何规律地的随意发生呢?
3.1 随机事件的概率 课件(北师大必修3)

[读教材·填要点] 1.概率 在相同条件下,大量重复进行同一试验时,随机事 件A发生的频率会在某个 常数 附近摆动,即随机事件A
发生的频率具有 稳定 性.这时,我们把这个常数叫作
随机事件A的概率,记为P(A).
2.频率与概率的关系 频率反映了一个随机事件出现的 频繁程度 ,但频率 是随机的,而概率是一个确定的值,因此,人们用概率 来反映随机事件发生的 可能性的 大小.在实际问题中,
[通一类]
1.某篮球运动员在最近几场大赛中罚球投篮的结果如下: 投篮次数 n 进球次数 m m 进球频率 n (1)计算表中进球的频率; (2)这位运动员投篮一次进球的概率是多少? 8 6 10 8 12 9 9 7 10 7 16 12
解:(1)进球的频率依次是: 0.75,0.80,0.75,0.78,0.70,0.75.
估计该自然保护区中天鹅的数量.
[自主解答]
设保护区中天鹅的数量为 n,假定每只天鹅
被捕到的可能性是相等的,从保护区中任捕一只,设事件 A= 200 {捕到带有记号的天鹅},则 P(A)= n . 第二次从保护区中捕出 150 只天鹅,其中有 20 只带有记 号,由概率的定义可知 P(A)≈ 20 . 150
[悟一法]
随机事件在一次试验中发生与否是随机的,但随机中
含有规律性,而概率恰是其规律在数量上的反映,概率是
客观存在的,它与试验次数没有关系.
[通一类]
2.掷一枚硬币,连续出现 5 次正面向上,有人认为下次出 1 现反面向上的概率大于 ,这种理解正确吗? 2
解:不正确.掷一次硬币,作为一次试验,其结果是随机 的,但通过做大量的试验,呈现一定的规律性,即“正面 1 朝上”、“反面朝上”的可能性都为 .连续 5 次正面向上 2 这种结果是可能的,对下一次试验来说,仍然是随机的, 1 1 其出现正面和反面的可能性还是 ,不会大于 . 2 2
发生的频率具有 稳定 性.这时,我们把这个常数叫作
随机事件A的概率,记为P(A).
2.频率与概率的关系 频率反映了一个随机事件出现的 频繁程度 ,但频率 是随机的,而概率是一个确定的值,因此,人们用概率 来反映随机事件发生的 可能性的 大小.在实际问题中,
[通一类]
1.某篮球运动员在最近几场大赛中罚球投篮的结果如下: 投篮次数 n 进球次数 m m 进球频率 n (1)计算表中进球的频率; (2)这位运动员投篮一次进球的概率是多少? 8 6 10 8 12 9 9 7 10 7 16 12
解:(1)进球的频率依次是: 0.75,0.80,0.75,0.78,0.70,0.75.
估计该自然保护区中天鹅的数量.
[自主解答]
设保护区中天鹅的数量为 n,假定每只天鹅
被捕到的可能性是相等的,从保护区中任捕一只,设事件 A= 200 {捕到带有记号的天鹅},则 P(A)= n . 第二次从保护区中捕出 150 只天鹅,其中有 20 只带有记 号,由概率的定义可知 P(A)≈ 20 . 150
[悟一法]
随机事件在一次试验中发生与否是随机的,但随机中
含有规律性,而概率恰是其规律在数量上的反映,概率是
客观存在的,它与试验次数没有关系.
[通一类]
2.掷一枚硬币,连续出现 5 次正面向上,有人认为下次出 1 现反面向上的概率大于 ,这种理解正确吗? 2
解:不正确.掷一次硬币,作为一次试验,其结果是随机 的,但通过做大量的试验,呈现一定的规律性,即“正面 1 朝上”、“反面朝上”的可能性都为 .连续 5 次正面向上 2 这种结果是可能的,对下一次试验来说,仍然是随机的, 1 1 其出现正面和反面的可能性还是 ,不会大于 . 2 2
课件3:3.1.1 随机事件的概率

频率
频数
4.概率 (1)定义:对于给定的随机事件 A,如果随着试验次数 的增加,事件 A 发生的频率 fn(A)会稳定在某个常数上, 把这个常数记为 P(A),称它为事件 A 的概__率__. (2)由概率的定义可知,事件 A 的概率可以通过大量 的重复试验后,用频率值估计概率. (3)必然事件的概率为_1_,不可能事件的概率为_0_, 因此概率的取值范围是[_0_,_1_] .
【变式与拓展】 3.某篮球运动员在同一条件下进行投篮练习,结果如下表:
投篮次数 n/次 8 10 15 20 30 40 50 进球次数 m/次 6 8 12 17 25 32 38
(1)填写表中的进球频率; (2)这位运动员投篮一次,进球的概率大约是多少? 解:(1)从左到右依次填:0.75,0.8,0.8,0.85,0.83,0.8,0.76. (2)由于进球频率都在 0.8 左右摆动,故这位运动员投篮一次,进球 的概率约是 0.8.
第三章 概率
3.1 随机事件的概率
3.1.1 随机事件的概率
1.事件的分类 (1)确定事件: ①必然事件:在条件 S 下,_一__定__会__发__生_的事件; ②不可能事件:在条件 S 下,_一__定__不__会__发__生_的事件. 必然事件与不可能事件统称为相对于条件 S 的确定事件. (2)随机事件: 在条件 S 下,_可__能__发__生__也__可__能__不_发__生__的事件. 确定事件和随机事件统称为事件,一般用大写字母 A,B, C…表示.
(B ) A.3 个都是男生
B.至少有 1 个男生
C.3 个都是女生
D.至少有 1 个女生
2.抛掷一枚骰子两次,请就这个试验写出一个随机事件: 两__次__的__点__数__都__是__奇__数__,一个必然事件:_两__次__点__数__之__和__不__小__于__2_, 一个不可能事件:_两__次__点__数__之__差__的__绝__对__值__等__于___6__.