大气边界层复习材料
大气环境学重点复习及部分简答题

第三章大气污染的气象过程小尺度大气边界层自由大气1大气边界层的特征1.1、大气边界层定义1.2 大气边界层垂直分层结构粘性副层(微观层)近地边界层(=近地面层+冠层,常通量层)Ekman层(上部摩擦层、外部边界层)层流、紊流1.3 边界层发展的日变化海洋陆地大气边界层的分类与特征1.4 大气边界层特征:温度、风和湍流空气的增热和冷却大气中的非绝热过程传导:贴地气层辐射(主要长波):地面与空气间对流与乱流:气层之间由于地表性质差异受热不均等引起的空气大规模有规则的升降运动,称对流。
(高低层)小规模不规则的涡旋运动称乱流,又称湍流。
(近地层大气热量交换的重要方式)水相变化:潜热交换蒸发吸热,蒸发所带水分多于凝结,大气获得热量,热带(对流层下半部)大气中的绝热过程没有热量交换,由于压力的变换(1)干绝热过程干空气或未饱和的湿空气块,进行垂直运动时,与外界没有热量交换,只因体积膨胀(或收缩)作功引起内能增减和温度变化过程,称为干绝热过程。
气块绝热上升单位距离时的温度降低值,称绝热垂直减温率,简称绝热直减率干空气或未饱和的湿空气,绝热上升单位距离时的温度降低值,称干绝热直减率,r d据计算:r d=0.98℃/100 m≌1℃/100 m。
(2)湿绝热过程饱和湿空气作垂直湿绝上升运动时的绝热变化过程,称湿绝热过程饱和湿空气绝热上升单位距离时的温度降低值,称湿绝热直减率,用γm表示。
γm<γd(上升时水汽凝结所放出热量补偿了部分气块膨胀消耗的内能)γm是一个变量,它随气温升高和气压降低而减小。
高温时的γm比低温时的γm小(气温高时,空气达到饱和时的水汽含量较大)气压高的饱和空气块的γm大于气压低的(气压高时空气密度大,释放的潜热所起的补偿增温作用要小一些)低层大气温度的垂直分布日变化气温直减率的大小与太阳辐射、云况、风速和土壤热性质有关,具有明显的日变化。
低层大气温度的垂直分布(1)大气的绝热过程(2)干绝热直减率rd=-(dT i/dZ)d=g/C pg-重力加速度g=9.81 m/s2C p-干空气定压比热,C p=1005 J/(kg.K)下标i--表示空气块下标d--表示干空气一干空气块绝热升降到标准气压(1000hPa)处所具有的温度称为它的位温。
大气行星边界层第七章ppt课件-PPT文档资料

1 q t
t t/2
t t/2
qdtd
2、平均运动方程求法 大气运动方程
dV Fi dt i
V 是瞬时运动,存在湍流时是不确 定的,只有平均运动才有规律 ——平均运动方程
边界层的特征ห้องสมุดไป่ตู้ 1、几何学特征:D<<L;
2、运动学特征:湍流运动 (受地面粗糙度影响); 3、动力学特征:湍流粘性力重要。
湍流--不规则的、杂乱无章的涡旋 运动。能引起强烈的混合作用。 --物理量输送: 1、存在物理量的梯度
湍流粘性力 动量输送 热 量 水汽、
2、从物理量大值区向小值区输送
3、边界层中物理量的垂直梯度大, 所以,输送主要在垂直方向上。
边界层是热量、水汽源、动量汇
研究边界层目的: 1、边界层本身的特性: 如污染物的扩散,飞机起降、植物 生长等。 2、在整个大气中起重要作用: 如数值预报中的物理过程描述,大气 运动的强迫耗散问题。
第一节 大气分层
地表既是大气的动力边界,也是大 气的热力边界。 大气边界层,由于受地表(固壁粗糙 不平)影响--湍流边界层。 地表对大气的影响随高度增加而较弱 ——湍流的强度随高度增加而较弱。 ——湍流粘性力随高度增加而减小。 ——湍流粘性力的重要性随高度不同 而不同。
q 1 q 2 q 1 q 2 2q 1 q2 ) q 2 q 1q 2 (q 1q 2 q 1q 2 q 1 q 1q 2 q 1q q 1q 2 q 1q 2 q q x x
二、平均运动方程组
1.平均连续方程:
( V ) 0 瞬时连续方程 t
边界层参考考题(南京信息工程大学)

1.大气边界层的定义大气的最低部分直接受下垫面(地面)影响的层次,或者说大气与下垫面相互作用的层次。
大气边界层厚度的时空差异很大,平均厚度为地面以上约1km 的范围,以湍流运动为主要特征。
还可细分为近地层(大气边界层下部约1/10的厚度内)和Ekman 层。
大气边界层又称行星边界层,是指存在着连续性湍流的低层大气:(1)湍流是边界层大气的主要运动形态,对地表面与大气间的动量、热量、水汽及其他物质的输送起着重要作用; (2)地球表面热力强迫的日变化通过湍流混合扩散使得边界层中气象要素呈现日周期的循环。
2.大气边界层的主要特征 (1)大气运动的湍流性(2)大气边界层中的风温廓线 (3)大气边界层的日变化(4)大气边界层的风向有规则地随高度右旋(北半球)—地球自转而形成的柯氏力的影响。
(5)大气边界层比一般流体边界层更为复杂。
不仅有动力作用、还存在热力作用——温度分布影响着湍流脉动动能。
3.特征Re 数定义: =特征惯性力/特征粘性力(1)Re 》1,粘性力相对小(可忽略),大Re 数流体,弱粘性流; (2)Re 《1,惯性力相对小(可忽略),小Re 数流体,强粘性流; (3)Re=1,二者同等重要,一般粘性流; 4.湍流的基本特征(1)随机性:湍流是非规则的,混乱的、不可预测的; (2)非线性:湍流是高度非线性的。
当流动达到某一特定状态,例如Reynolds 数或Richardson 数超过某临界值,流动中的小扰动就会自发地增长,并很快达到一定的扰动幅度; (3)扩散性:湍流会引起动量、热量及流动中的其他物质快速扩散;(4)涡旋性:利用湍流的可视化,例如将几滴颜料注入湍流运动的水中,表明湍流结构可设想成由无数大小不同的湍涡组成,它们分裂、合并、拉长、旋转。
最大的湍涡可达到整个湍流层的宽度,小的可到毫米的量级。
它们相互叠加在一起,构成湍流的涡旋结构; (5)耗散性:湍流的能量是由大湍涡向小湍涡传递,最后通过分子粘性耗散成为热能。
chapter4大气边界层

有
Hale Waihona Puke u g f ( , u* , z , , * ) 0 z u a g d b c ( ) u* z ( ) (* )e z 1 a L b c L d ( ) ( ) L ( 2 ) ( K )e T T T K T a b 2 d Lb c d K d e C
同理得到近地层风速、温度和湿度的无量纲化微分形式的 普适廓线方程
kz u z =( ), m u* z L
kz z = ( ), h * z L
w K h z
kz q z =( ) q q* z L
q wq K q z
u 应用K理论 uw K m z
d zF z dz
h 0
F z dz
h 0
其中,h为植物群体平均高度; F z 为平均拽力;平均曳力与植被密 度和风速有关。 Kustas et al(1985)在Thom研究的基础上进行了一系列简化,认为地 表的零值位移d 值主要决定于植物高度,随植物密度变化关系不明显, 他建议如下表达式
2. 近地层廓线规律
在第三章中,得知湍流切应力为 定义一个具有速度量纲的非负常数 表达式如下
(uw vw)
u* ,称为摩擦速度
2 2 1/4 u* [(u w ) (v w ) ]
同样定义一个具有温度(湿度)量纲的常数 称为特征温度、特征湿度,表达式为
u* dz 1 ( m ) 得到du = [ d ] k z 求积分
u
0
u* z dz du [1 ( ) ]d ln m 0 k z0 z
第一章 大气边界层与边界层气象学研究

T :实测的温度
e、P :当时的水汽压、大气压
Tv > T
密度:水蒸汽 < 干空气 浮力:未饱和湿空气 > 干空气
绝对温度T
<
虚温Tv
3. 虚位温 θ v :液态水比空气的密度大,这样,有云 的气块浮升就比相应的无云气块浮升要小,气块中悬 浮的云滴会引起虚位温的降低。对于饱和空气而言 (存在云的情况下),定义虚位温θv为:
森林-10月14日 Qe<Qh
6:00 12:00 18:00 0:00
Qs:太阳辐射 Qh:显热通量 Qe:潜热通量 Qg:土壤热通量
3 低层大气温度
气温垂直分布三种情形: ① 气温随高度递减 ② 气温随高度基本不变 ③ 气温随高度逆增
温度垂直梯度的大小与太阳辐射、云况、 风速和土壤热性质有关,具有明显的日变化。
Ro U fL
惯性力 f :柯氏参数 (地转偏向力)
柯氏力
Ro大柯氏加速度影响小,风切变(旋转所致)的影响 可不计。Ro趋向无穷大Ro自行满足
Ro≤1,柯氏力影响较大,地球旋转作用不可忽略
1.5 相似性参数
3. 弗罗德数(Fr)相似性
Fr U
2
惯性力 g :重力加速度
gL
重力
Fr大(>>1),重力影响小 Fr小(≈1或<<1),重力影响大,不可忽略
u
u
) 0.5
1.5 相似性参数
• 物理实验(风洞、水槽等)中,为保证得 到正确结果而且与实际大气系统可比较, 则需要满足相似性条件 • 几何相似 • 运动学相似 • 动力学相似 • 热力学相似 • 边界条件相似
天气预报员考试复习资料

第一部分 气象学地球的大气成分;大气分层和结构;大气静力学;辐射过程;大气的热力学;大气边界层第一章 地球的大气成分一、了解大气的基本组成干洁空气水汽和大气气溶胶二、理解大气水汽的重要性 在地球大气的气体成分中,水汽是最重要、最活跃的,相变造成雨云雷电,潜热方式传递热量的载体,而且在地球的生态系统中起着重要作用。
三、了解气溶胶粒子在大气过程中的作用水汽相变的凝结核,吸收和散射太阳辐射,影响大气能见度,影响大气化学过程第二章 大气分层和结构一、了解大气的分层由于地球自转以及不同高度大气对太阳辐射吸收程度的差异,使得大气在水平方向比较均匀,而在垂直方向呈明显的层状分布,故可以按大气的热力性质、电离状况、大气组成等特征分成若干层次。
1按中性成分的热力结构,把大气分成对流层、平流层、中间层、热层,外逸层;2按大气的化学成分,把大气分为均质层和非均质层;二、掌握对流层的基本特征对流层的主要特点是:1大气温度随高度降低;2大气的垂直混合作用强;3气象要素水平分布不均匀。
三、理解温度、气压、湿度、风、云、降水、水平能见度等主要气象要素的概念 温度:温度是表示物体冷热程度的物理量,温度反映物体内部分子平均动能。
气压:一个位置的气压是该处单位面积上所承受的其上空的大气柱的重量湿度:大气中水汽含量多少的物理量。
风 :空气的水平运动称为风。
云 :水汽凝结物悬浮在自由大气中即形成云。
降水:从云中降落到地面的水汽凝结物(固态的或液态的)统称降水,常见的有雨、雪、冰雹等。
水平能见度:气象学上把人的正常视力所能看到的水平方向上目标物的最大距离叫做水平能见度。
四、掌握大气温度、湿度的表示方法大气湿度:通常采用以下特征量来定量表示空气湿度大小。
1、饱和水汽压(e ):010atb t E E +=⨯ (1.2.1)式中:0E 为0℃时的饱和水汽压,其值为6.11hPa ;t 为蒸发面温度;a 、b 为两个经验参数,平水面:7.45a =,237.3b =;平冰面:9.5a =,265.0b =。
第1章 大气边界层

z
=
z0
时仍满足对数分布规律:
∂V ∂z
z = z0
=
V* kz0
又∵
∂V ∂z
β = z = z0
V* z01−ε
∴ β = kz0ε
l
=
kz
⎛ ⎜ ⎝
z z0
⎞−ε ⎟ ⎠
(1.13) (1.14)
6
《动力气象学》电子教案 -编著、主讲:成都信息工程学院大气科学系 李国平教授 制作:林蟒、李国平
(u
+
iv)
=
−if
ug + ivg
(1.22)
为求解方便,取
x
轴平行等压线,则
∂p ∂x
=
0, vg
=
0 (即此时地转风只有东西向分量),有
kz
∂2V * ∂z 2
−
ifV
*
=
−ifug
(1.23)
或
kz
d 2V * dz 2
− ifV *
=
−ifug
(1.23)’
方程的性质:一元二次非齐次常微分方程
) >> ∂ (
) ∂(
,
)。
∂z
∂x ∂y
5).湍流运动明显,地气相互作用强烈,调整较快,呈准定常。
4 Ekman 层的主要特点
2
《动力气象学》电子教案 -编著、主讲:成都信息工程学院大气科学系 李国平教授 制作:林蟒、李国平
1).湍流摩擦力,气压梯度力和科氏力同等重要。 2).物理量垂直梯度>>水平梯度。 3).下垫面对自由大气的影响通过该层向上输送。 4).风向、风速随高度的变化呈 Ekman 螺线规律。
动力气象-第八章(大气边界层3)

Ekman抽吸与二级环流
风穿越等压线由高压吹
向低压而输送的质量, 是由v分量引起的。
——考察由高压向低压
输送情况。
v vldz
M vdz
0
hB
由于穿越等压线从高压向低压输送
质量,在气旋(低压)产生辐合上升,
反气旋(高压)产生耗散下沉,在边界 层顶产生垂直运动。
度时,风与地转风的大小相等,令该高度为Zc:
作业题2:
偏角随高度逐渐,风向自地面向上朝右旋转,
到某一高度与地转风方向趋于一致。其中第一
次与地转风方向一致的高度为“梯度风高度”,
在此高度以上,埃克曼螺线表现为风在地转风
风向附近摆动。 梯度风高度上(ZH)的风速C为:
c ug 1 2e cos e
c u g 1 2e z / hE cos( z / hE ) e 2 z / hE u g 1 2e z / hE cos( z / hE ) e 2 z / hE 1 1 2e z / hE cos( z / hE ) e 2 z / hE 1 2e z / hE cos( z / hE ) e 2 z / hE e zc / hE 2 cos( zc / hE ) 2K zc / hE 1.46 zc 1.46hE 1.46 455m f
(Prandtl)混合长 6.湍流摩擦力 7.风的对
数分律 8.风的指数分布律 9.埃克曼螺线 10.埃克曼高度 11.梯度风高度 12.埃克曼 抽吸 13.一级环流 14.二级环流 15.旋转减 弱 16.埃克曼抽吸 17.摩擦速度。
作业题1:
随高度(Z),风速C 逐渐增大,当到某一高
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
边界层气象学复习材料
第一章绪论
1.大气边界层的定义;
第二章大气湍流
1.流体运动的两种形式:层流和湍流
2.湍流发生的两种机制:1.热力作用;2.动力作用。
3.泰勒假设;泰勒假设的基本思想:将空间序列问题转换为时间序
列问题。
泰勒假设成立的基本条件:冰冻湍流理论,即在湍涡发展时间尺度大于其平移过传感器时间的特定情况下,当湍流平移过传感器时,可以把它看做是凝固的。
4.雷诺平均的核心思想;
5.定常湍流、均匀湍流和各向同性湍流的物理含义;
6.傅里叶变换的核心思想;
7.湍流能谱谱区分布及特征;
8.由大气运动方程组推导雷诺平均方程组;包辛涅斯克近似的含义;
9.通量的物理意义:通量是指单位时间单位面积的流体的某属性量
的输送。
湍流通量与属性量廓线的关系。
10.湍流动能方程各项的物理意义;
11.K理论;
12.通量里查逊数,梯度理查逊数,整体理查逊数;
第三章大气边界层
1.稳定、不稳定、中性边界层通常多出现在什么天气条件;
2.位温廓线的日变化规律;给定一条典型的位温廓线,要求知道对
应什么时间段。
3.中性层结下风速廓线关系的推导;
4.中性边界层的三力平衡;
5.对流边界层形成的主要能量来源;
6.对流热泡贯穿机制和卷夹层的形成过程;
7.低空急流的形成原因:夜间湍流强度迅速减弱,湍流摩擦力迅速
减小到很低的量级(摩擦力撤除效应),最终导致科氏力引发惯性振荡。
第四章大气扩散
1.影响大气扩散的主要两个气象因子:风、大气稳定度。
2.有界扩散需要考虑地面对污染物的反射作用,相当于同时考虑“实
源”和“虚源”的贡献。
3.影响大气扩散的两种运动:1.平流(输送);2.湍流(扩散)。
4.五种常见的烟流扩散与大气稳定度之间的关系;
第五章通量观测。