结构力学计算题及解答
结构力学习题及答案

结构力学习题及答案结构力学习题及答案结构力学是工程学中的重要学科之一,它研究物体在外力作用下的变形和破坏。
在工程实践中,结构力学的应用广泛,涉及到建筑、桥梁、航空航天等领域。
在学习结构力学时,练习解答一些习题是非常重要的,下面我将给大家提供一些常见的结构力学习题及其答案。
题目一:简支梁的弯矩计算已知一根长度为L的简支梁,两端受到均布载荷q。
求梁的中点处的弯矩M。
解答一:根据简支梁的受力分析,可以得出梁的弯矩与距离中点的距离x之间的关系为M=qL/8-x^2/2,其中x为距离中点的距离。
因此,中点处的弯矩M=qL/8。
题目二:悬臂梁的挠度计算已知一根长度为L的悬臂梁,端部受到集中力F作用。
求梁的端部挠度δ。
解答二:根据悬臂梁的受力分析,可以得出梁的端部挠度与力F之间的关系为δ=FL^3/3EI,其中F为作用力,E为梁的杨氏模量,I为梁的截面惯性矩。
因此,梁的端部挠度δ=FL^3/3EI。
题目三:刚度计算已知一根长度为L的梁,截面形状为矩形,宽度为b,高度为h,梁的杨氏模量为E。
求梁的刚度K。
解答三:梁的刚度可以通过计算梁的弯曲刚度和剪切刚度得到。
弯曲刚度Kb可以通过梁的截面惯性矩I和杨氏模量E计算得到,即Kb=E*I/L。
剪切刚度Ks可以通过梁的剪切模量G和梁的截面面积A计算得到,即Ks=G*A/L。
因此,梁的刚度K=Kb+Ks=E*I/L+G*A/L。
题目四:破坏载荷计算已知一根长度为L的梁,截面形状为圆形,直径为d,梁的杨氏模量为E。
求梁的破坏载荷P。
解答四:梁的破坏载荷可以通过计算梁的破坏弯矩和破坏挠度得到。
破坏弯矩Mf可以通过梁的截面惯性矩I和杨氏模量E计算得到,即Mf=π^2*E*I/L^2。
破坏挠度δf可以通过梁的破坏弯矩Mf和梁的刚度K计算得到,即δf=Mf/K。
因此,梁的破坏载荷P=Mf/L=π^2*E*I/L^3。
结构力学是一门综合性较强的学科,掌握结构力学的基本原理和解题方法对于工程师来说非常重要。
结构力学力法习题答案

结构力学力法习题答案结构力学力法习题答案结构力学是一门研究物体在受力作用下的变形和破坏规律的学科。
在学习结构力学的过程中,习题是必不可少的一部分。
通过解答习题,我们可以更好地理解和应用力学原理,提高解决实际问题的能力。
下面,我将为大家提供一些结构力学力法习题的详细解答,希望对大家的学习有所帮助。
习题一:一根悬臂梁的长度为L,截面为矩形,宽度为b,高度为h,材料的弹性模量为E。
在悬臂梁的自重和外力作用下,求悬臂梁的最大弯矩和最大挠度。
解答:首先,我们需要根据悬臂梁的几何形状和受力情况,绘制出受力图。
在这个问题中,悬臂梁受到自重和外力的作用,自重作用在悬臂梁的重心处,外力作用在悬臂梁的端点处。
根据受力图,我们可以得到悬臂梁在端点处的反力和弯矩分布。
接下来,我们可以根据结构力学的基本原理,利用力平衡和力矩平衡的方程,求解出悬臂梁的最大弯矩和最大挠度。
在这个问题中,我们可以利用弯矩-曲率关系,得到最大弯矩的表达式。
然后,我们可以利用悬臂梁的边界条件,求解出最大挠度的表达式。
习题二:一根悬臂梁的长度为L,截面为圆形,直径为d,材料的弹性模量为E。
在悬臂梁的自重和外力作用下,求悬臂梁的最大弯矩和最大挠度。
解答:与习题一类似,我们需要绘制出悬臂梁的受力图,根据受力图求解出悬臂梁的最大弯矩和最大挠度。
在这个问题中,悬臂梁的截面为圆形,因此我们需要利用圆形截面的惯性矩和弯矩-曲率关系,求解出最大弯矩的表达式。
习题三:一根梁的长度为L,截面为矩形,宽度为b,高度为h,材料的弹性模量为E。
梁的两端固定,受到均布载荷q的作用,求梁的最大弯矩和最大挠度。
解答:在这个问题中,梁的两端固定,因此我们需要考虑边界条件对梁的受力和变形的影响。
首先,我们需要绘制出梁的受力图,根据受力图求解出梁的最大弯矩。
然后,我们可以利用梁的边界条件,求解出最大挠度的表达式。
通过以上三个习题的解答,我们可以看到,在结构力学的学习中,我们需要灵活运用力学原理,结合具体的问题,综合考虑几何形状、材料性质和边界条件等因素,才能得到准确的解答。
结构力学课后习题答案 (3)

结构力学课后习题答案问题1:悬臂梁的挠曲分析问题描述一个长度为L的悬臂梁,截面形状为矩形,宽度为b,高度为h。
悬臂梁上受到一个分布载荷q(x)。
求悬臂梁在某一点x处的弯矩和挠度。
解答根据结构力学的基本原理,可以使用弯曲方程和挠度方程来求解该问题。
首先,我们通过积分来求得悬臂梁上任意一点x处的弯矩M(x):M(x) = \\int_{0}^{x} q(x')dx'其中,q(x’)表示分布载荷。
这个积分可以通过数值方法或者解析方法来求解。
然后,根据挠度方程,我们可以得到悬臂梁上任意一点x 处的挠度v(x)的微分方程:\\frac{d^2v(x)}{dx^2} = \\frac{M(x)}{EI}其中,E表示悬臂梁的弹性模量,I表示悬臂梁的惯性矩。
这个微分方程可以通过常微分方程的求解方法来求解。
最后,我们可以得到悬臂梁在某一点x处的挠度v(x):v(x) = \\int_{0}^{x} \\int_{0}^{x'} \\frac{M(x '')}{EI} dx''dx'问题2:钢梁的热膨胀应力分析问题描述一个长度为L的钢梁固定在一端,另一端自由伸张。
当温度升高时,钢梁会因为热膨胀而产生应力。
假设钢梁的热膨胀系数为α,温度升高ΔT。
求钢梁上某一点x处的应力。
解答根据热膨胀原理,钢梁上某一点x处的应力可以通过以下公式计算:\\sigma(x) = E \\cdot \\alpha \\cdot \\Delta T \\cdot x其中,E表示钢梁的弹性模量。
这个公式说明了应力与距离x成正比。
需要注意的是,这里假设钢梁在温度变化时没有发生塑性变形,即没有超过材料的屈服强度。
问题3:钢筋混凝土梁的抗弯分析问题描述一个长度为L的钢筋混凝土梁,截面形状为矩形,宽度为b,高度为h。
在梁的底部布置了一定数量的钢筋,用于增加梁的抗弯强度。
求梁在某一点x处的最大弯矩和最大应力。
结构力学试题及答案

结构力学试题及答案一、选择题1. 结构力学是研究哪个方面的力学?a) 材料力学b) 结构系统c) 动力学d) 热力学答案:b) 结构系统2. 在结构力学中,静力学主要关注哪个方面的力学?a) 动力学b) 运动学c) 静力学d) 热力学答案:c) 静力学3. 在结构力学中,弹性力学主要研究什么?a) 金属的力学性质b) 结构系统的动态响应c) 物体的形变和变形d) 材料的热力学性质答案:c) 物体的形变和变形4. 下面哪个是结构力学中常用的描述物体形变的参数?a) 质量b) 体积c) 长度d) 面积答案:c) 长度5. 结构力学中的受力分析主要用到哪个定律?a) 牛顿第一定律b) 牛顿第二定律c) 牛顿第三定律d) 牛顿万有引力定律答案:b) 牛顿第二定律二、计算题1. 下图所示的结构系统,求杆AC的受力情况。
(插入结构图)答案:根据静力平衡条件,杆AC上的受力平衡,可得:ΣF_x = 0: -F_AC + F_BC = 0ΣF_y = 0: F_AC + F_AD - F_BE = 0解方程得: F_AC = F_BC = F_BE - F_AD2. 已知某杆件的长度为L,材料弹性模量为E,横截面积为A,受力情况如下图所示,求该杆件的应变。
(插入受力图)答案:根据材料的胡克定律,应变ε等于应力σ除以杨氏模量E,即ε = σ / E。
由受力图可知,该杆件受到纵向拉力P,横截面积为A,因此应力σ等于P除以A,所以应变ε = P / (E * A)。
三、解答题1. 简要描述刚体和弹性体的区别。
答案:刚体是指在受力作用下形状和大小不会发生显著变化的物体,它的内部不会发生相对位移。
刚体的形变主要是由于刚体整体的平移或转动引起的。
而弹性体是指在受力作用下会发生形变,但在去除外力后能够恢复到原来形状的物体。
弹性体的形变主要是由于物体内部分子间相对位移引起的。
2. 简要解释结构力学中的静力平衡条件。
答案:结构力学中的静力平衡条件是指一个结构系统中,各个部分受力相互平衡,不会产生任何形状和大小的变化。
结构力学第四章习题参考解答

l
l
C
1 ql 4
2
1 2 ql 4
5 ql 4
A
M P图
1 2 ql 8
l 2
1
1 2 1 2 1 l l ql EI 3 8 2 2
ql 4 1 1 1 ql 4 EI 48 24 48 24EI
A
M图
1 2 3
4-3 试用图乘法求图示结构中B处的转角和C处的竖向 ql 位移。EI=常数。 2 q
(b)解:作 M图、M P图,
CV 1 1 1 2 l 2 l ql EI 2 4 2 3 2
1 1 1 2 1 2 ql l l EI 2 4 2 3
l
q
B
M 1
EI
A
在B点沿水平方向设单位力矩 M 1 。 故 M 1
1 1 qx3 M P qx x x 2 3 6l
l
MM P 1 qx3 ql 3 则 B dx dx EI EI 0 6l 24EI
l
q
4-2 试求桁架结点B的竖向位移,已知桁架各 杆的 EA 21 10 4 KN。
(c)求
BH、 B。
q qx x l
B
解:在B点沿水平方向设单位力 FP 1 。
q qx l x
故 M x 则
BH
1 1 qx3 M P qx x x 2 3 6l
l
EI
A
FP 1
MM P 1 x qx3 ql 4 dx dx EI EI 0 6l 30EI
BV FN FNP l EA
结构力学练习题及答案

一.是非题(将判断结果填入括弧:以O 表示正确,X 表示错误)(本大题分4小题,共11分)1 . (本小题 3分)图示结构中DE 杆的轴力F NDE =F P /3。
( ).2 . (本小题 4分)用力法解超静定结构时,只能采用多余约束力作为基本未知量。
( )3 . (本小题 2分)力矩分配中的传递系数等于传递弯矩与分配弯矩之比,它与外因无关。
( )4 . (本小题 2分)用位移法解超静定结构时,基本结构超静定次数一定比原结构高。
( )二.选择题(将选中答案的字母填入括弧内)(本大题分5小题,共21分) 1 (本小题6分)图示结构EI=常数,截面A 右侧的弯矩为:( )A .2/M ;B .M ;C .0; D. )2/(EI M 。
2. (本小题4分)图示桁架下弦承载,下面画出的杆件内力影响线,此杆件是:( ) A.ch; B.ci; C.dj; D.cj.F p /2M2a2a a aa aA F p /2F p /2 F p /2F p F pa a aa F PED3. (本小题 4分)图a 结构的最后弯矩图为:A. 图b;B. 图c;C. 图d;D.都不对。
( )( a) (b) (c) (d)4. (本小题 4分)用图乘法求位移的必要条件之一是: A.单位荷载下的弯矩图为一直线; B.结构可分为等截面直杆段; C.所有杆件EI 为常数且相同; D.结构必须是静定的。
( ) 5. (本小题3分)图示梁A 点的竖向位移为(向下为正):( ) A.F P l 3/(24EI); B. F P l 3/(!6EI); C. 5F P l 3/(96EI); D. 5F P l 3/(48EI).三(本大题 5分)对图示体系进行几何组成分析。
A l /2l /2EI 2EIF Pa d c eb fgh iklF P =11j llM /4 3M /4M /43M /43M /4M /4M /8 M /2EIEIM四(本大题 9分)图示结构B 支座下沉4 mm ,各杆EI=2.0×105 kN ·m 2,用力法计算并作M 图。
《结构力学习题集》(下)-结构的动力计算习题及答案

第九章 结构的动力计算一、判断题:1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。
2、仅在恢复力作用下的振动称为自由振动。
3、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。
4、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。
5、图示刚架不计分布质量和直杆轴向变形,图a 刚架的振动自由度为2,图b 刚架的振动自由度也为2。
6、图示组合结构,不计杆件的质量,其动力自由度为5个。
7、忽略直杆的轴向变形,图示结构的动力自由度为4个。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、设ωω,D 分别为同一体系在不考虑阻尼和考虑阻尼时的自振频率,ω与ωD 的关系为ωω=D 。
二、计算题:10、图示梁自重不计,求自振频率ω。
l l /411、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k ,求自振频率ω。
l /2l /212、求图示体系的自振频率ω。
l l0.5l 0.513、求图示体系的自振频率ω。
EI = 常数。
ll 0.514、求图示结构的自振频率ω。
l l15、求图示体系的自振频率ω。
EI =常数,杆长均为l 。
16、求图示体系的自振频率ω。
杆长均为l 。
17、求图示结构的自振频率和振型。
l /2l /2l /18、图示梁自重不计,W EI ==⨯⋅2002104kN kN m 2,,求自振圆频率ω。
B2m2m19、图示排架重量W 集中于横梁上,横梁EA =∞,求自振周期ω。
EIEIW20、图示刚架横梁∞=EI 且重量W 集中于横梁上。
求自振周期T 。
EIEIWEI 221、求图示体系的自振频率ω。
各杆EI = 常数。
a aa22、图示两种支承情况的梁,不计梁的自重。
求图a 与图b 的自振频率之比。
l /2l/2(a)l /2l /2(b)23、图示桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。
求水平自振周期T 。
结构力学 期末试题及答案

结构力学期末试题及答案一、选择题1. 下列哪个是结构稳定的条件?A. 受力框架为凿木结构。
B. 受力框架中各构件能连续运动。
C. 受力框架对任何外部作用均能保持初始形态。
D. 受力框架中各构件的受力分布均为均匀分布。
答案:C2. 以下哪个公式用于计算杆件的挠度?A. 弯矩—曲率关系式。
B. 应变—位移关系式。
C. 应力—应变关系式。
D. 应变—应力关系式。
答案:A3. 下列哪个是静力学的基本公理?A. 引力是沿杆件等距分布的。
B. 杆件各部分的变形是以弯曲为主。
C. 外载作用在结构上所引起的各个节点的变形D. 杆件内各点只承受正向载荷。
答案: C4. 下列哪个是典型静定结构?A. 连续梁。
B. 悬链线。
C. 桁架。
D. 拱桥。
答案:B5. 弯矩是指杆件上的哪种力?A. 剪力。
B. 弯矩。
C. 引弯力。
D. 位移力。
答案:B二、问题分析题1. 如图所示的悬臂梁受到均匀分布荷载,求支点处弯矩。
解答略。
2. 现有一自由悬臂梁,长度L,截面形状为正方形,求该梁在自重作用下的挠度。
解答略。
3. 请分析悬链线和刚性梁在受力过程中的异同点。
解答略。
4. 解释什么是静定结构和非静定结构,并列举各自的一个例子。
解答略。
三、计算题1. 如图所示的桁架结构,每根杆件长度为L,支座处受到垂直荷载F,请计算各个连接节点的受力情况。
解答略。
2. 一根长度为L,截面形状为圆形的悬臂梁,受到均匀分布荷载,请通过结构力学的理论计算方法,求该梁在距悬臂端点处的挠度。
解答略。
四、问答题1. 结构力学的研究对象是什么?其在工程中有什么应用?解答略。
2. 结构稳定的条件有哪些?请简要说明。
解答略。
3. 结构力学与弹性力学有什么区别和联系?解答略。
4. 结构力学的发展历程是怎样的?解答略。
以上为结构力学的期末试题及答案,包含选择题、问题分析题、计算题和问答题。
通过对这些内容的学习和掌握,可以更好地理解结构力学的基本原理和应用。
希望对你的学习有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《结构力学》计算题61.求下图所示刚架的弯矩图。
a a a aqAB CD62.用结点法或截面法求图示桁架各杆的轴力。
63.请用叠加法作下图所示静定梁的M图。
64.作图示三铰刚架的弯矩图。
65.作图示刚架的弯矩图。
66. 用机动法作下图中E M 、L QB F 、RQB F 的影响线。
1m 2m2mFp 1=1mEBA 2mCD67. 作图示结构F M 、QF F 的影响线。
68. 用机动法作图示结构影响线L QB F F M ,。
69. 用机动法作图示结构R QB C F M ,的影响线。
70. 作图示结构QB F 、E M 、QE F 的影响线。
71. 用力法作下图所示刚架的弯矩图。
l B DPACllEI =常数72. 用力法求作下图所示刚架的M 图。
73. 利用力法计算图示结构,作弯矩图。
74. 用力法求作下图所示结构的M 图,EI=常数。
75. 用力法计算下图所示刚架,作M 图。
76.77.78.79.80.81.82.83.84.85.答案61. 解:qA B CDF xBF yBF yAF xA2qa 32/2qa 32/q 2a ()2/82qa 32/=/qa 22取整体为研究对象,由0AM=∑,得2220yB xB aF aF qa +-= (1)(2分)取BC 部分为研究对象,由0CM=∑,得yB xB aF aF =,即yB xB F F =(2)(2分)由(1)、(2)联立解得23xB yB F F qa ==(2分) 由0x F =∑有 20xA xB F qa F +-= 解得 43xAF qa =-(1分) 由0y F =∑有 0yA yB F F += 解得 23yA yB F F qa =-=-(1分)则2224222333D yB xB M aF aF qa qa qa =-=-=()(2分)弯矩图(3分)62. 解:(1)判断零杆(12根)。
(4分)(2)节点法进行内力计算,结果如图。
每个内力3分(3×3=9分)63. 解:(7分) (6分)64. 解:由0B M =∑,626P RA F F =⨯,即2PRA F F =(↓)(2分) 由0y F =∑,2PRB RA F F F ==(↑)(1分) 取BE 部分为隔离体0EM=∑,66yB RB F F =即2PyB F F =(←)(2分) 由0x F =∑得2PyA F F =(←)(1分) 故63DE DA yA P M M F F ===(内侧受拉)(2分)63CB CE yB P M M F F ===(外侧受拉)(2分)(3分)65. 解:(1)求支座反力。
对整体,由0x F =∑,xA F qa =(←)(2分)0AM=∑,22308RC F a qa qa ⨯--=,178RC F qa =(↑)(2分)(2)求杆端弯矩。
0AB DC M M ==(2分)2BA BC xA M M F a qa ==⨯=(内侧受拉)(2分) 2248CB CDa a qa M M q ==⨯⨯=(外侧受拉)(2分)(3分)66. 解:(1)C M 的影响线(4分)EB ADC23/23/23/2(2)LQBF的影响线(4分)E BADC 123/1/3(2)RQB F 的影响线(4分)E BA D C 1167. 解:(1)F M 的影响线(6分)(2)QF F 的影响线(6分)68. 解:F M 影响线(6分)LQBF 影响线(6分) 69. 解:QBc F M ,影响线(6分)RQB c F M ,影响线(6分)70. 解:(1)QB F 的影响线。
(4分)E M 的影响线。
(4分)QE F 的影响线。
(4分)71. 解:(1)本结构为一次超静定结构,取基本体系如图(a )所示。
(2分) (2)典型方程11110P X δ+∆=(2分)(3)绘制P M 、1M 分别如图(b )、(c )所示。
(3分)基本体系PX 1M PP2Pl(a ) (b )X 1=1l l1MMPl 8/PPlPl 8/(c ) (d )(4)用图乘法求系数和自由项。
333111433l l l EI EIδ=+=(2分)232112217()22336P l Pl Pl Pl l Pl EI EI-⨯∆=++⨯=-(2分)(5)解方程得1178P X =(1分) (6)利用11P M M X M =+绘制弯矩图如图(d )所示。
(2分)72. 解:1)选择基本体系(2分)这是一次超静定刚架,可去掉B 端水平约束,得到如下图所示的基本体系。
ql 22)列力法方程(2分)11110P X δ+∆=3)绘制基本体系的Mp 图和单位弯矩图,计算系数、自由项(6分,Mp 图和单位弯矩图各2分,系数每个1分,结果错误得一半分)ql 231121711()2()2326l l l l l l l EI EI EI δ=⨯⨯⨯+⨯⨯=421211()38224l ql p ql l EI EI =-⨯⨯⨯=-∆解方程得: 1128ql X =(1分)作M 图:11P X M M M =+(3分)73.解:(2分)(3分)(1分)(2*4=8分)74.解:取基本体系如图(2分)列力法基本方程:11110p X δ+∆=(2分) A B l1M 图(1.5分) p M 图(1.5分)3113l EI δ= (2分) 418p ql EI ∆=-(2分)代入力法方程得 138qlX =(1分)A B28ql 216qlM 图(2分)75. 解:(1)选取基本体系如图(a )所示(2分)(a )(2)列力法方程。
11112210P X X δδ++∆=(1分)21122220P X X δδ++∆=(1分)(3)分别作P M 、1M 和2M 图(1*3=3分)(4)求系数和自由项。
2241111315()32428P qa a qa a a a qa EI EI ∆=-⋅⋅⋅+⋅⋅=-⋅(1分) 422111()224P qa qa a a EI EI∆=-⋅⋅⋅=-(1分) 3111124()233a a a a a a a EI EIδ=⋅⋅⋅+⋅⋅=(1分) 322112()233a a a a EI EIδ=⋅⋅⋅=(0.5分) 3122111()22a a a a EI EIδδ==⋅⋅⋅=(0.5分) 将上述数据代入基本方程得137X qa =,2328X qa =(1分) (5)利用叠加法作弯矩图如图。
(2分)76. 图中,刚片AB 、BE 、DC 由不共线的三个铰B 、D 、E 连接,组成一个大刚片,再和地基基础用不相交也不全平行的三链杆相连,组成没有多余约束的几何不变体系(5分)。
77. 如图所示的三个刚片通过不在同一直线上的A 、B 、C 三个铰两两相连构成无多余约束的扩大刚片,在此基础上依次增加二元体(1,2)、(3,4)、(5,6)、(7,8)组成无多余约束的几何不变体系。
(5分)ⅠⅡⅢ43125687ABC78. 如图所示的三个刚片通过同一直线上的A 、B 、C 三个铰两两相连构成了瞬变体系。
(5分)79.如图刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰两两相连组成了无多余约束的几何不变体系。
(5分)80.如图依次拆除二元体(1,2)、(3,4)、剩下刚片Ⅰ和大地刚片Ⅱ通过一铰和不过该铰的链杆组成了几何不变体系,故原体系是无多余约束的几何不变体系。
(5分)81.如图刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰两两相连组成了无多余约束的几何不变体系。
(5分)82.如图刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰两两相连组成了无多余约束的几何不变体系。
(5分)83.如图以铰接三角形ABC为基本刚片,并依次增加二元体(1,2)、(3,4)、(5,6)、(7,8)、(9,10)形成扩大刚片,其和大地刚片通过铰A和节点B处链杆组成了几何不变体系,11杆为多余约束,故原体系为含有1个多余约束的几何不变体系。
(5分)84.如图依次拆除二元体(1,2)、(3,4)、(5,6),刚片Ⅱ和大地刚片Ⅰ通过相交于同一点的三根链杆组成了瞬变体系。
(5分)85.如图依次拆除二元体(1,2)、(3,4)、(5,6)、(7,8)、(9,10)、(11,12)后只剩下大地刚片,故原体系是无多余约束的几何不变体系。
(5分)。