(完整版)图像分割算法的研究与实现_本科毕业设计
基于PCNN图像分割算法研究

本科毕业设计论文题目基于PCNN图像分割算法研究专业名称自动化学生姓名指导教师毕业时间2014.6毕业设计任务书论文一、题目基于PCNN的图像分割算法研究二、指导思想和目的要求本题目来源于科研,主要研究图像分割的概念,学习常用的图像分割算法,重点研究PCNN在图像分割中的应用,进而实现相关算法。
希望通过该毕业设计,学生能达到:1.利用已有的专业知识,培养学生解决实际工程问题的能力;2.锻炼学生的科研工作能力和培养学生团队合作及攻关能力。
三、主要技术指标1.学习PCNN的基本原理;2.研究图像分割的常用算法;3.研究PCNN在图像分割中的应用并编程实现。
四、进度和要求第01周----第02周:参考翻译英文文献;第03周----第04周:学习图像分割的概念;第05周----第08周:研究PCNN的概念及其分割算法;第09周----第14周:编写给予PCNN的图像分割算法程序;第15周----第16周:撰写毕业设计论文,论文答辩。
五、主要参考书及参考资料1. 马义德. 脉冲耦合神经网络与数字图像处理. 科学出版社2. 陆科. 基于PCNN的图像分割算法研究. 东北大学硕士学位论文.3. 杨林森. 基于脉冲耦合神经网络的图像分割与融合研究. 电子科技大学硕士学位论文.学生指导教师系主任摘要目前,在军事领域数字图像处理的应用越来越广泛,而图像分割是图像处理的一个重要组成部分,准确的图像分割和边缘提取是实现军事目标识别的重要基础,图像分割的方法繁多,新的分割方法不断出现。
文中主要介绍了图像分割的定义,图像分割的应用,以及一些常用的图像分割算法,并且对传统脉冲耦合神经网络(PCNN)模型,工作原理,应用背景和意义,及应用于图像分割进行了细致的介绍。
文中介绍的图像分割主要算法有最大类间方差法,最大熵图像分割,以及基于PCNN图像分割法,文中主要是针对二维灰度图像进行分割比较,通过以上三种分割方法对图像的处理,对分割后的图像进行比较,看分割后目标和背景的效果,来体现基于PCNN图像分割方法的优越性。
基于MATLAB的图像分割算法研究设计.doc

2.3
基于二阶导数的边缘检测算法.................................................................................... 9 2.3.1 2.3.2 Laplacian 算子边缘检测方法.............................................................................9 LOG 算子边缘检测方法.................................................................................. 10
2.2
基于边缘的图像分割.................................................................................................... 6 2.2.1 2.2.2 2.2.3 2.2.4 基于梯度的边缘检测......................................................................................... 7 Roberts 算子边缘检测........................................................................................ 8 Sobel 算子边缘检测........................................................................................... 8 Prewitt 算子边缘检测.........................................................................................9
图像分割算法研究与实现

图像分割算法研究与实现一、前言图像分割是指将一幅图像分成多个部分或者多层次的图像,是图像处理中的一项重要任务,广泛应用于识别、定位、检测等领域。
在本文中,我们将讨论图像分割算法的研究与实现。
二、基本概念图像分割的基本概念包括阈值分割、边缘分割、区域分割和基于模型的分割等。
1.阈值分割阈值分割是一种简单的图像分割方法,它将图像中的像素分为两个或多个类别。
在该方法中,我们设置一个阈值,然后将像素值小于阈值的像素分为一类,将像素值大于阈值的像素分为另一类。
这种方法适用于背景和前景差别较大的情况,但是在背景和前景颜色相近的情况下,这种方法就不太适用了。
2.边缘分割边缘分割是指根据图像中像素值的变化来划分图像的方法。
边缘分割可以通过求取图像中像素梯度的方法来实现,梯度大的部分对应着图像中的边缘部分。
3.区域分割区域分割是指将图像中的像素按照一定的规则划分到不同的区域中去。
在该方法中,我们可以使用区域合并和分裂的方法来实现图像分割。
4.基于模型的分割基于模型的分割是指使用一个预先训练好的模型来计算每个像素的前景概率和背景概率,并根据概率值进行图像分割。
此方法需要预先训练一个模型,因此相对较为复杂,但是在适合的应用场合中,其效果往往更为理想。
三、常见算法常见的图像分割算法有K-means算法、分水岭算法、聚合算法等。
1.K-means算法K-means算法是一种常见的聚类算法,也可以用于图像分割。
在该算法中,我们将像素按其相似度进行聚类,并将具有相同类别的像素标记为同一个区域。
2.分水岭算法分水岭算法是基于连通性的图像分割算法,主要用于分割物体会彼此重叠的图像。
该算法基于一个重建图像,通过将较高的像素区域和较低的像素区域连通起来来实现图像分割。
3.聚合算法聚合算法是一种基于区域的分割算法。
在该算法中,我们使用一个相邻像素的矩阵来计算像素点间的相似度,然后将像素点按照如此方式进行聚合。
四、实现由于Python作为数据科学领域的主流编程语言,因此,我们可以尝试使用Python实现图像分割算法。
图像分割算法研究及实现

中北大学课程设计说明书学生姓名:梁一才学号:********X30学院:信息商务学院专业:电子信息工程题目:信息处理综合实践:图像分割算法研究与实现指导教师:陈平职称: 副教授2013 年 12 月 15 日中北大学课程设计任务书13/14 学年第一学期学院:信息商务学院专业:电子信息工程学生姓名:焦晶晶学号:10050644X07 学生姓名:郑晓峰学号:10050644X22 学生姓名:梁一才学号:10050644X30 课程设计题目:信息处理综合实践:图像分割算法研究与实现起迄日期:2013年12月16日~2013年12月27日课程设计地点:电子信息科学与技术专业实验室指导教师:陈平系主任:王浩全下达任务书日期: 2013 年12月15 日课程设计任务书课程设计任务书目录1 引言 (1)1.1数字图像分割的现状 (1)1.2数字图像分割的意义 (1)2 基于MATLAB的图像分割 (2)3 图像分割的主要研究方法 (3)3.1图像分割定义 (3)3.2图像分割方法综述 (4)3.3分水岭算法 (4)3.3.1分水岭算法概念 (4)3.3.2分水岭算法原理 (5)3.4区域分裂合并法 (6)3.4.1区域分裂合并算法基本原理 (6)3.4.2区域分裂合并算法算法过程 (7)4 MATLAB程序与结果 (8)4.1分水岭算法结果与分析 (8)4.2分裂合并算法结果与分析 (10)5两种图像分割方法的比较 (11)6 结论 (13)7参考文献 (14)1 引言1.1 数字图像分割的现状图像分割技术,是从图像中将某个特定区域与其它部分进行分离并提取出来的处理。
图像分割的方法有许多种,有阈值分割方法,边界分割方法,区域提取方法,结合特定理论工具的分割方法等。
早在1965年就有人提出检测边缘算子,边缘检测已产生不少经典算法。
越来越多的学者开始将数学形态学、模糊理论、遗传算法理论、分形理论和小波变换理论等研究成果运用到图像分割中,产生了结合特定数学方法和针对特殊图像分割的先进图像分割技术。
图像分割算法研究及实现

中北大学课程设计说明书学生:梁一才学号:10050644X30学院:信息商务学院专业:电子信息工程题目:信息处理综合实践:图像分割算法研究与实现指导教师:平职称: 副教授2013 年12 月15 日中北大学课程设计任务书13/14 学年第一学期学院:信息商务学院专业:电子信息工程学生姓名:焦晶晶学号:10050644X07 学生姓名:晓峰学号:10050644X22 学生姓名:梁一才学号:10050644X30 课程设计题目:信息处理综合实践:图像分割算法研究与实现起迄日期:2013年12月16日~2013年12月27日课程设计地点:电子信息科学与技术专业实验室指导教师:平系主任:王浩全下达任务书日期: 2013 年12月15 日课程设计任务书课程设计任务书目录1 引言 (1)1.1数字图像分割的现状 (1)1.2数字图像分割的意义 (1)2 基于MATLAB的图像分割 (2)3 图像分割的主要研究方法 (3)3.1图像分割定义 (3)3.2图像分割方法综述 (4)3.3分水岭算法 (4)3.3.1分水岭算法概念 (4)3.3.2分水岭算法原理 (5)3.4区域分裂合并法 (6)3.4.1区域分裂合并算法基本原理 (6)3.4.2区域分裂合并算法算法过程 (7)4 MATLAB程序与结果 (8)4.1分水岭算法结果与分析 (8)4.2分裂合并算法结果与分析 (10)5两种图像分割方法的比较 (11)6 结论 (13)7参考文献 (14)1 引言1.1 数字图像分割的现状图像分割技术,是从图像中将某个特定区域与其它部分进行分离并提取出来的处理。
图像分割的方法有许多种,有阈值分割方法,边界分割方法,区域提取方法,结合特定理论工具的分割方法等。
早在1965年就有人提出检测边缘算子,边缘检测已产生不少经典算法。
越来越多的学者开始将数学形态学、模糊理论、遗传算法理论、分形理论和小波变换理论等研究成果运用到图像分割中,产生了结合特定数学方法和针对特殊图像分割的先进图像分割技术。
图像分割算法的实现与研究 开题报告

电子工程学院本科毕业设计开题报告学号姓名导师题目图像分割算法的实现研究课题的意义(背景需求等,即为什么研究该课题):图像分割是图像处理中的一项关键技术,也还是一经典难题,发展至今人没有找到一个通用的方法,也没有制定出判断分割算法好坏的标准,任何一单独的图像分割算法都难以对一般图像取得令人满意的分割结果,这给图像分割技术的应用带来许多实际问题。
因此,对近几年来出现的图像分割方法作较全面的综述,探讨了图像分割技术的发展方向,对从事图像处理研究的科研有一定的启发作用。
阈值图像分割,K-means算法和分水岭算法都还有很多的缺陷和很大的发展空间,此课题有助于我们更好地了解,并对三种算法加以改进。
课题之前的研究基础(前人所做的工作):图像分割是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,至今已提出上千种分割算法.但因尚无通用的分割理论,现提出的分割算法大都是针对具体问题的,并没有一种适合所有图像的通用分割算法.另外,还没有制定出选择适用分割算法的标准,这给图像分割技术的应用带来许多实际问题.最近几年又出现了许多新思路、新方法或改进算法.现有大部分算法都是集中在阈值确定的研究上,阈值分割方法根据图像本身的特点可分为全局阈值,局部阈值和自适应阈值三种分割算法,但是单阈值不能很好地处理包含多个前景的图像, 多阈值方法也有对于某些像素不能准确判断的缺点,因此,在克服以上理论缺点和承其优点的基础上,我将研究自适应阈值。
现有的K-means算法存在很多缺点,如K值要事先给定;要根据初始聚类中心来确定一个初始划分,然后对初始划分进行优化;而且还要不断地进行样本分类调整。
基于形态学分水岭的图像分割算法是目前图像分割中探讨较多的算法之一. 传统形态学分水岭算法主要存在过度分割和计算耗时两方面的问题。
课题现在要解决的问题(即研究什么):用Matlab实现基于自适应阈值、K-means和分水岭算法的图像分割算法,同时,了解各个算法的运算原理及各自功能。
毕业设计(论文)-图像背景分割技术研究

图像背景分割技术研究摘要图像分割是指把图像分解成各具属性和特点的区域并提取出感兴趣目标的技术和过程,它是计算机视觉领域扩展的一个重要而且基本的问题,分割结果的好坏将直接影响到视觉系统的性能。
因此在应用上图像分割是图像处理到图像分析的关键步骤。
本论文主要从边缘检测的思想和概念引出了图像分割技术的相关方法和各方法的几种算子,如基于边缘检测的图像分割、阈值法图像分割、区域分割方法。
虽然图像分割的分割算子繁多,但此处主要介绍了prewitt算子、sobel算子、canny算子等。
在分割方法上主要介绍基于EDGE 函数、检测微小结构、四叉树分解和阈值分割的方法实现对图像的边缘检测及提取。
而基于区域的图像分割方法主要包括区域生长法和分裂-合并分割方法。
通过多次的实验过后,总结出一般的图像分割处理可以用EDGE函数。
而特定的图像应用阈值分割、检测微小结构和四叉树分解比较简单。
尽管目前图像分割技术发展很成熟了,但鉴于其应用的广泛性和重要性,很多方面又不是很成熟,甚至刚起步,需要我们进一步研究。
关键字图像处理,图像分割,阈值法,边缘检测,区域检测ABSTRACTThe image division is refers to image dissection Cheng Gejuthe attribute and the characteristic region and withdraws feels the interest goal the technology and the process, it is one which the computer vision domain expands important and basic question, division result quality immediate influence to vision system's performance. Therefore in the application figure above division is likely the imagery processing to the image analysis committed step.The present paper mainly has drawn out the image division technology related method and various methods several kind of operators from marginal check's thought and the concept, like based on marginal check image division, threshold value law image division, region splitting method. Although the image division's division operator is many, but here mainly introduced the prewitt operator, the sobel operator, the canny operator and so on. In the division method the main introduction based on the EDGE function, the examination small structure, four fork tree decomposition and the threshold value division's method realizes to the image marginal check and the extraction. But mainly includes the region growing law and the fission - merge division method based on the region image division method. But mainly includes the region growing law and the fission - merge division method based on the region image division method. Through the multiple experiment from now on, will summarize general image division processing tobe possible to use the EDGE function. But the specific image application threshold value division, the examination small structure and four fork tree decomposes is quite simple. Although the present image division technological development has been very mature, but in view of the fact that its application's universality and the importance, many aspects are not very mature, even just started, needs us to further study.Key Words image processing,image segmentation,threshoiding method ,edge detection ,region detection目录第一章绪论 (1)1.1图像的定义 (2)1.2图像分割的定义 (3)第二章图像分割方法及实现 (5)2.1.基于边缘检测的分割方法 (5)2.1.1边缘检测的思想和简介 (5)2.1.2 基于边缘检测图像分割的几种算子 (6)2.2阈值法图像分割 (11)2.2.1阈值法思想及简介 (11)2.2.2阈值法的算法 (12)2.3基于区域的图像分割 (17)2.3.1区域分割的原理和思想 (17)2.3.2区域生长的原理和步骤 (18)2.3.3 区域生长准则和过程 (20)2.3.4 两种方法的比较 (24)2.3.5 四叉树分解法 (24)第三章实验结果 (26)3.1基于边缘检测的图像分割 (26)3.2基于阈值法的图像分割 (28)3.3 基于区域的分割方法 (29)第四章实验结果分析 (30)4.1双峰法和迭代法比较 (30)4.2各种算子检测边缘情况 (30)4.3阈值法各方法比较 (31)第五章总结与展望 (32)第六章致谢 (34)参考文献 (35)附录程序源码 (36)第一章绪论为了得到人们需要的信息,需对图像进行处理,图像处理技术应运而生。
(完整版)matlab图像分割毕业设计

数字图像的多分辨率分析处理方法研究—基于小波变换的医学图像分割的研究电信学院电子信息工程专业摘要图像分割是一种重要的图像分析技术.对图像分割的研究一直是图像技术研究中的热点和焦点。
医学图像分割是图像分割的一个重要应用领域,也是一个经典难题,至今已有上千种分割方法,既有经典的方法也有结合新兴理论的方法.本论文首先介绍了双峰法以及最大类方差自动阈值法,然后重点介绍一种基于小波变换的图像分割方法,该方法先对图像的灰度直方图进行小波多尺度变换,然后从较大的尺度系数到较小的尺度系数逐步定位出灰度阈值.最后,对这几种算法的分割效果进行了比较。
实验结果表明,本设计能够实时稳定的对目标分割提取,分割效果良好。
医学图像分割是医学图像处理中的一个经典难题.图像分割能够自动或半自动描绘出医学图像中的解剖结构和其它感兴趣的区域,从而有助于医学诊断。
关键词:小波变换;图像分割;阈值The image segmentation is an important technology of image processing. It is still a hot point and focus of image processing。
Medical image segmentation is an important application in the field of image segmentation, and it is also a classical difficult problem for researchers。
Thousands of methods have been put forward to medical image segmentation. Some use classical methods and others use new methods.In this paper , first introduced the petronas method and maximum between class variance 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理期末考试题目图像分割算法研究与实现专业班级11通信工程一班毕业论文(设计)诚信声明本人声明:所呈交的毕业论文(设计)是在导师指导下进行的研究工作及取得的研究成果,论文中引用他人的文献、数据、图表、资料均已作明确标注,论文中的结论和成果为本人独立完成,真实可靠,不包含他人成果及已获得青岛农业大学或其他教育机构的学位或证书使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
论文(设计)作者签名:日期:2013 年3月10 日毕业论文(设计)版权使用授权书本毕业论文(设计)作者同意学校保留并向国家有关部门或机构送交论文(设计)的复印件和电子版,允许论文(设计)被查阅和借阅。
本人授权青岛农业大学可以将本毕业论文(设计)全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本毕业论文(设计)。
本人离校后发表或使用该毕业论文(设计)或与该论文(设计)直接相关的学术论文或成果时,单位署名为青岛农业大学。
论文(设计)作者签名:日期:2013 年 3 月10 日指导教师签名:日期:年月日目录摘要: (1)1.前言 (2)2.图像分割概念 (3)2.1图像分割定义 (3)2.2图像分割方法综述 (4)2.3阈值法 (5)2.4 基于边缘检测的分割方法 (9)2.5基于区域的分割方法 (12)3.图像分割方法详述 (14)3.1图像分割方法 (14)3.2 图像分割方法实现 (14)4.实验结果及分析 (16)4.1 实验结果 (16)4.2 实验结果分析 (20)5.小结 (23)5.1 主要工作总结 (23)5.2 结论 (23)6.附录 (27)图像分割算法研究与实现摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。
因为图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。
因此,图像分割多年来一直得到人们的高度重视.本文首先将现有的多种类型图像分割方法归结为3类典型的方法 , 并分析各自的特性;然后提出图象分割方案,并利用MATLAB 软件编写程序,展示实验现象,最后对所做工作进行总结。
关键词:图像分割阈值法边缘检测微分算子局部阈值1.前言在图像的研究和应用过程中,人们往往仅对各幅图像中的某些部分感兴趣.这些部分常称为目标或前景,它们一般对应图像中特定的具有独特性质的区域.为了辨别和分析目标,需要将这些区域分离提取出来,在此基础上才有可能对目标进一步利用.图像分割就是将图像分成各具特性的区域并提取出感兴趣的目标的技术和过程.在进行图像分割时,首先要根据目标和背景的先验知识来对图像中的目标、背景进行标记、定位,然后将等待识别的目标从背景中分离出来.图像分割是由图像处理进到图像分析的关键步骤,也是一种基本的计算机视觉技术.这是因为图像的分割、目标的分离、特征的提取和参数的测量将原始的图像转化为更抽象更紧凑的形式,使得更高层的分析和理解成为可能.因此,图像分割多年来一直得到人们的高度重视[1]。
图象分割在实际中已得到广泛的应用,例如在工业自动化,在线产品检验,生产过程控制,文档图象处理,遥感和生物医学图象分析,保安监视,以及军事,体育,农业工程等方面。
概括来说,在各种图象应中,只要需对图象目标进行提取,测量等都离不开图象分割。
近年来,图象分割在对图象的编码中也起到越来越重要的作用,例如国际标准MPEG一4中模型基目标基编码等都需要基于分割的结果。
可见,图象分割在图象工程中有重要的地位和影响。
本文主要从图像分割定义、图像分割的方法等几个方面来阐述关于图像分割的几个问题。
2.图像分割概念2.1图像分割定义文字定义:把图象(空间)按一定要求分成一些“有意义”区域的处理技术。
“有意义”—希望这些区域能分别和图象景物中各目标物(或背景)相对应。
正式“集合”定义:令集合 R 代表整个图象区域,对R的分割可看作将R分成若干个满足如下五个条件的非空的子集(子区域):(1)(分割所得全部子区域的总和(并集)应能包括图象中所有象素或将图象中每个象素都划分进一个子区中)(2)对所有的i和j ,有Ri ∩ Rj = ø (i≠j);(各子区互不重叠)(3)对i=1,2,3……,N,有P(R i)=TRUE;(属于同一子区象素应具有的某些共同特性)(4)对i≠j,有P(Ri∪R j)=FALSE;(属于不同子区象素应具有某些不同特性)(5)对i=1,2,……,N,R i是连通区域(同一子区内象素应当是连通的)[2].条件1指出对一幅图象的分割结果的全部子区域的总和(并集)就是原图象,或者说分割应该是将图象中的每个象素都分进某个子区域中。
条件2指出在分割结果中各个子区域是互不重叠的,或者说在分割结果中一个象素不能同时属于两个区域。
条件3指出在分割结果中每个子区域都有独特的特性,或者说属于同一个区域中的象素应该具有某些相同的特性。
条件4指出在分割结果中,不同的子区域具有不同的特性,没有公共元素,或者说属于不同区域的象素应该具有一些不同的特性。
条件5要求分割结果中同一个子区域内的象素应当是相通的,即同一个子区域内的任意两个象素在该子区域内是互相连通,或者说分割得到的区域是一个连通组元。
上面的定义,不仅对明确的说明了分割的含义,而且对进行分割也有相当的指导作用。
因为分割总是根据一些分割准则进行的。
条件1和条件2说明正确的分割准则应可适用于所有区域和所有象素,条件3和条件4说明合理的分割准则应该能够帮助确定各区域象素有代表性的特性,而条件5说明完整的分割准则应直接或间接地对区域内象素的连通性有一定的要求或限定。
最后需要指出的是,在实际应用中图象分割不仅是要把一幅图象分成满足以上五个条件的各具特性的区域,而且需要把其中感兴趣的目标区域提取出来,只有这样才算是真正完成了图象分割的任务。
2.2图像分割方法综述图像分割是指将图像划分为与其中含有的真实世界的物体或区域有强相关性的组成部分的过程。
图像分割是图像处理和分析中的重要问题,也是计算机视觉研究中的一个经典难题。
尽管它一直受到科研人员的重视,但是它的发展很慢,被认为是计算机视觉的一个瓶颈。
迄今为止,还没有一种图像分割方法适用于所有的图像,也没有一类图像所有的方法都适用于它。
近几年来,研究人员不断改进原有方法并将其它学科的新理论和新方法引入图像分割,提出了不少新的分割方法。
本文对传统的图像分割方法进行分析。
典型的图像分割方法有阈值法,边缘检测法,区域法。
分析各种图像分割方法可以发现,它们分割图像的基本依据和条件有以下4方面:(l)分割的图像区域应具有同质性,如灰度级别相近、纹理相似等;(2)区域内部平整,不存在很小的小空洞;(3)相邻区域之间对选定的某种同质判据而言,应存在显著差异性;(4)每个分割区域边界应具有齐整性和空间位置的准确性。
现有的大多数图像分割方法只是部分满足上述判据。
如果加强分割区域的同性质约束,分割区域很容易产生大量小空洞和不规整边缘:若强调不同区域间性质差异的显著性,则极易造成非同质区域的合并和有意义的边界丢失。
不同的图像分割方法总有在各种约束条件之间找到适当的平衡点[3]。
2.3阈值法阈值法的优点是计算简单,速度快,易于实现。
尤其是对于不同类的物体灰度值或其他特征值相差很大时,能很有效地对图像进行分割。
阈值法的缺点是当图像中不存在明显的灰度差异或灰度值范围有较大的重叠时,分割效果不理想。
并且阈值法仅仅考虑图像的灰度信息而没有考虑图像的空间信息,致使阈值法对噪声和灰度不均匀十分地敏感。
在实际应用中,阈值法通常与其他方法结合使用[4]。
阈值分割法是简单地用一个或几个阈值将图像的直方图分成几类, 图像中灰度值在同一个灰度类内的象素属干同一个类。
其过程是决定一个灰度值, 用以区分不同的类, 这个灰度值就叫做“阈值”。
它可以分为全局阈值分割和局部阈值分割。
所谓全局阈值分割是利用利用整幅图像的信息来得到分割用的阈值, 并根据该阈值对整幅图像进行分割而局部阈值分割是根据图像中的不同区域获得对应的不同区域的阈值, 利用这些阈值对各个区域进行分割, 即一个阈值对应相应的一个子区域, 这种方法也称适应阈值分割。
阈值法是一种简单但是非常有效的方法, 特别是不同物体或结构之间有很大的强度对比时, 能够得到很好的效果它一般可以作为一系列图像处理过程的第一步。
它一般要求在直方图上能得到明显的峰或谷, 并在谷底选择阈值。
如何根据图像选择合适的阈值是基于阈值分割方法的重点所在, 也是难点所在。
它的主要局限是, 最简单形式的阈值法只能产生二值图像来区分两个不同的类。
另外, 它只考虑象素本身的值, 一般都不考虑图像的空间特性, 这样就对噪声很敏感它也没有考虑图像的纹理信息等有用信息,使分割效果有时不能尽如人意[5]。
阈值法的几种阈值选择方法:全局阈值法(1)双峰法对于目标与背景的灰度级有明显差别的图像,其灰度直方图的分布呈双峰状,两个波峰分别与图像中的目标和背景相对应,波谷与图像边缘相对应。
当分割阈值位于谷底时,图像分割可取得最好的效果。
该方法简单易行,但是对于灰度直方图中波峰不明显或波谷宽阔平坦的图像,不能使用该方法[6]。
假设,一副图像只有物体和背景两部分组成,其灰度图直方图呈现明显的双峰值,如下图:图1 双峰法灰度直方图找出阈值T,则可以对整个图像进行二值化赋值。
程序的实现:通过数组记录直方图中的各像素点值的个数,再对逐个像素值进行扫描。
记录每个像素能作为谷底的范围值,接着找出能作为谷底范围最大的点作为阈值[7]。
实现流程图:图2 双峰法实现流程图(2)灰度直方图变换法该方法不是直接选取阈值,而是对灰度直方图进行变换,使其具有更深的波谷和更尖的波峰,然后再利用双峰法得到最优阈值。
这种方法的一个共同特征是根据像素点的局部特性,对其进行灰度级的增强或减弱的变换。
这种方法假设图像由目标和背景组成,并且目标和背景灰度直方图都是单峰分布[5]。
(3)迭代法(最优方法)它基于逼近的思想,基本算法如下:<1> 求出图像的最大灰度值和最小灰度值,分别记为Max和Min,令初始阈值为:,根据阈值将图像分割为前景和背景,分别求出两者的平均灰度值和;<2> 求出阈值;<3> 如果;则所得即为阈值;否则转<2>迭代计算。
迭代所得的阈值分割图象的效果良好,基于迭代的阈值能区分图象的前景和背景的主要区域所在,但是在图象的细微处还是没有很好的区分度,令人惊讶的是对某些特定图象,微小数据的变化会引起分割效果的巨大变化,两者的数据只是稍有变化,分割效果反差极大,具体原因还有待进一步研究[8]。