数学建模非线性规划

合集下载

《数学建模实验》

《数学建模实验》

《数学建模》上机作业信科05-3韩亚0511010305实验1 线性规划模型一、实验名称:线性规划模型—设备的最优配备问题。

二、实验目的:掌握线性规划模型的建模方法,并能用数值算法或MATLAB 库函数求解。

三、实验题目:某商店拟制定某种商品7—12月的进货、售货计划,已知商店仓库最大容量为1500件,6月底已存货300件,年底的库存以不少于300件为宜,以后每月初进货一次,假设各月份该商品买进、售出单价如下表。

四、实验要求:1、若每件每月的库存费用为0.5元,问各月进货、售货各为多少件,才能使净收益最多?建立数学模型。

2、利用相应的数值方法求解此问题的数学模型。

3、谈一谈你对这类线性规划问题的理解。

4、举一个简单的二维线性规划问题,并针对此问题将你所了解的线性规划的求解方法作出总结。

5、用软件lindo 或lingo 求解上述问题。

(选做题)6、编写单纯形算法的MATLAB 程序。

(选做题) 五、实验内容:解:设第i 个月进货xi 件,销售yi 件,则下半年总收益为销售收入减去进货费和仓库储存费之和,所以目标函数为:1211109871211109711109871211109875.232427252628252528262729)2345(5.0)2345)300(6(5.07x x x x x x y y y y y y y y y y y x x x x x x z y ------+++++++++++++++++-=整理后得:90024255.28275.2831255.25295.27295.31121110987121110987-------+++++=x x x x x x y y y y y y z由于仓库的容量为1500件,每个月的库存量大于0,小于1500,所以有如下约束条件150030001500300015003000150030001500300015003000111210119108978710119108978791089787897877877≤-+-+-+-+-++≤≤-+-+-+-++≤≤-+-+-++≤≤-+-++≤≤-++≤≤+≤y x y x y x y x y x x y x y x y x y x x y x y x y x x y x y x x y x x x又有年底库存量不少于300则:300300121112101191089787≥--+-+-+-+-++y y x y x y x y x y x x化为抽象的线性规划模型为:90024255.28275.2831255.25295.27295.31max 121110987121110987-------+++++=x x x x x x y y y y y y z ,;12,,8,7;0,0120030012003001200300120030012003001200300121112101191089787111210119108978710119108978791089787897877877 =≥≥--+-+-+-+-+≤-+-+-+-+-+≤-≤-+-+-+-+≤-≤-+-+-+≤-≤-+-+≤-≤-+≤-≤≤-i y x y y x y x y x y x y x x y x y x y x y x y x x y x y x y x y x x y x y x y x x y x y x x y x x x STi i线性规划目标函数的系数:f = [31; 28.5; 27; 28.5;25;24;-31.5;-29;-27.5;-29;-25.5;-25]; 约束方程的系数及右端项: A=[1,0,0,0,0,0,0,0,0,0,0,0 1,1,0,0,0,0,-1,0,0,0,0,0 1,1,1,0,0,0,-1,-1,0,0,0,0 1,1,1,1,0,0,-1,-1,-1,0,0,0 1,1,1,1,1,0,-1,-1,-1,-1,0,0 1,1,1,1,1,1,-1,-1,-1,-1,-1,0 -1,0,0,0,0,0,0,0,0,0,0,0 -1,-1,0,0,0,0,1,0,0,0,0,0 -1,-1,-1,0,0,0,1,1,0,0,0,0 -1,-1,-1,-1,0,0,1,1,1,0,0,0 -1,-1,-1,-1,-1,0,1,1,1,1,0,0 -1,-1,-1,-1,-1,-1,1,1,1,1,1,0 -1,-1,-1,-1,-1,-1,1,1,1,1,1,1];b=[1200;1200;1200;1200;1200;1200; 300; 300; 300; 300; 300; 300;0]; lb=zeros(12,1);[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);实验2 非线性规划模型一、实验名称:非线性规划模型。

在数学建模中常用的方法

在数学建模中常用的方法

在数学建模中常用的方法数学建模是一种利用数学模型来描述和解决实际问题的方法。

它在科学研究、工程技术和经济管理等领域具有广泛的应用。

在数学建模中,常用的方法包括线性规划、非线性规划、动态规划、离散事件模拟、蒙特卡洛方法等。

下面将对这些方法进行详细介绍。

1.线性规划:线性规划是一种在给定的约束条件下最大化或最小化线性目标函数的方法。

它适用于有着线性关系的问题,包括生产计划、资源分配、运输问题等。

线性规划的主要方法是使用线性规划模型将问题转化为数学形式,并通过线性规划算法求解最优解。

2.非线性规划:非线性规划是一种在给定的约束条件下最大化或最小化非线性目标函数的方法。

它适用于有着非线性关系的问题,包括优化设计、模式识别、经济决策等。

非线性规划的主要方法是使用非线性规划模型将问题转化为数学形式,并通过非线性规划算法求解最优解。

3.动态规划:动态规划是一种通过将复杂问题分解为子问题,并利用最优子结构的性质求解问题的方法。

它适用于有着重叠子问题的问题,包括最短路径问题、背包问题、机器调度问题等。

动态规划的主要方法是建立递推关系,通过填表或递归的方式求解最优解。

4.离散事件模拟:离散事件模拟是一种通过模拟系统状态的变化,以评估系统性能的方法。

它适用于有着离散事件发生和连续状态变化的问题,包括排队论、制造过程优化、金融风险评估等。

离散事件模拟的主要方法是建立事件驱动的模拟模型,并通过统计分析得到系统性能的估计。

5.蒙特卡洛方法:蒙特卡洛方法是一种基于概率统计的模拟方法,通过生成随机样本来估计问题的解。

它适用于有着随机性质的问题,包括随机优化、风险分析、可靠性评估等。

蒙特卡洛方法的主要思想是基于大数定律,通过大量的随机模拟次数来逼近问题的解。

除了上述方法外,在数学建模中还可以使用图论、拟合分析、概率论和统计方法等。

图论可用于描述网络结构和路径问题;拟合分析可用于对实际数据进行曲线或曲面拟合;概率论和统计方法可用于建立概率模型和对数据进行统计分析。

数学建模 四大模型总结

数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS 传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。

1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。

如何将尽可能多的物品装入背包。

多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP 难问题。

● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。

工人i 完成工作j 的时间为ij d 。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP 问题是VRP 问题的特例。

● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

常见数学建模模型

常见数学建模模型

常见数学建模模型一、线性规划模型线性规划是一种常用的数学建模方法,它通过建立线性函数和约束条件,寻找最优解。

线性规划可以应用于各种实际问题,如生产调度、资源分配、运输问题等。

通过确定决策变量、目标函数和约束条件,可以建立数学模型,并利用线性规划算法求解最优解。

二、整数规划模型整数规划是线性规划的一种扩展形式,它要求决策变量为整数。

整数规划模型常用于一些离散决策问题,如旅行商问题、装箱问题等。

通过引入整数变量和相应的约束条件,可以将问题转化为整数规划模型,并利用整数规划算法求解最优解。

三、非线性规划模型非线性规划是一类目标函数或约束条件中存在非线性项的优化问题。

非线性规划模型常见于工程设计、经济优化等领域。

通过建立非线性函数和约束条件,可以将问题转化为非线性规划模型,并利用非线性规划算法求解最优解。

四、动态规划模型动态规划是一种通过将问题分解为子问题并以递归方式求解的数学建模方法。

动态规划常用于求解具有最优子结构性质的问题,如背包问题、最短路径问题等。

通过定义状态变量、状态转移方程和边界条件,可以建立动态规划模型,并利用动态规划算法求解最优解。

五、排队论模型排队论是一种研究队列系统的数学理论,可以用于描述和优化各种排队系统,如交通流、生产线、客户服务等。

排队论模型通常包括到达过程、服务过程、队列长度等要素,并通过概率和统计方法分析系统性能,如平均等待时间、系统利用率等。

六、图论模型图论是一种研究图结构和图算法的数学理论,可以用于描述和优化各种实际问题,如网络优化、路径规划、社交网络等。

图论模型通过定义节点、边和权重,以及相应的约束条件,可以建立图论模型,并利用图算法求解最优解。

七、随机模型随机模型是一种考虑不确定性因素的数学建模方法,常用于风险评估、金融建模等领域。

随机模型通过引入随机变量和概率分布,描述不确定性因素,并利用概率和统计方法分析系统行为和性能。

八、模糊模型模糊模型是一种用于处理模糊信息的数学建模方法,常用于模糊推理、模糊控制等领域。

数学建模中的非线性规划问题

数学建模中的非线性规划问题

数学建模中的非线性规划问题在数学建模领域中,非线性规划问题是一类重要且常见的问题,它在实际应用中具有广泛的意义和价值。

非线性规划问题的研究和解决,对于优化问题的求解和实际应用具有重要的指导作用。

非线性规划问题可以简单地理解为在约束条件下寻找一个或多个使目标函数最优化的变量取值。

与线性规划问题不同,非线性规划问题在目标函数和约束条件中可能存在非线性项,因此其求解难度较大。

不同于线性规划问题的凸性、单调性等属性,非线性规划问题涉及到更多的数学工具和分析方法。

在实际应用中,非线性规划问题的出现非常普遍。

例如,在生产中,企业需要在有限的资源条件下使利润最大化,这就需要解决一个非线性规划问题。

除此之外,非线性规划问题还广泛应用于交通、能源、金融等领域。

不仅如此,非线性规划问题还可以用于统计数据拟合、函数逼近等问题的求解。

因此,研究和解决非线性规划问题具有非常重要的实际意义。

在解决非线性规划问题时,常用的方法主要包括精确解法和近似解法。

精确解法主要包括拉格朗日乘子法、KKT条件等,通过求解一系列方程和方程组来确定最优解。

这类方法通常适用于问题结构相对简单、目标函数和约束条件有良好性质的情况。

然而,对于问题结构复杂、目标函数和约束条件非常复杂的情况,精确解法往往效率较低,难以求解。

因此,在实际应用中,近似解法更为常见。

近似解法主要包括梯度下降法、牛顿法、拟牛顿法、遗传算法等。

这些方法通常基于局部优化思想,通过不断迭代和优化,逐步靠近最优解。

这类方法适用于一般性的非线性规划问题,具有较强的鲁棒性和适应性。

但是,这些方法也有其局限性,如收敛速度慢、易陷入局部最优等。

除了上述方法外,还有一些新的研究方法和算法被提出,如混合整数非线性规划、次梯度法、粒子群优化等。

这些方法在某些特定问题中表现出较好的运用效果,并有望在未来的研究中得到更广泛的应用。

总之,非线性规划问题在数学建模中占据重要地位,对于优化问题的求解和实际应用具有重要的指导作用。

数学建模常用方法

数学建模常用方法

数学建模常用方法数学建模是利用数学工具和方法来研究实际问题,并找到解决问题的最佳方法。

常用的数学建模方法包括线性规划、非线性规划、动态规划、整数规划、图论、最优化理论等。

1. 线性规划(Linear Programming, LP): 线性规划是一种在一定约束条件下寻找一组线性目标函数的最佳解的方法。

常见的线性规划问题包括生产调度问题、资源分配问题等。

2. 非线性规划(Nonlinear Programming, NLP): 非线性规划是指当目标函数或约束条件存在非线性关系时的最优化问题。

非线性规划方法包括梯度方法、牛顿法、拟牛顿法等。

3. 动态规划(Dynamic Programming, DP): 动态规划方法是一种通过将复杂的问题分解成多个子问题来求解最优解的方法。

动态规划广泛应用于计划调度、资源配置、路径优化等领域。

4. 整数规划(Integer Programming, IP): 整数规划是一种在线性规划的基础上,将变量限制为整数的最优化方法。

整数规划常用于离散变量的问题,如设备配置、路径优化等。

5. 图论(Graph Theory): 图论方法研究图结构和图运算的数学理论,常用于解决网络优化、路径规划等问题。

常见的图论方法包括最短路径算法、最小生成树算法等。

6. 最优化理论(Optimization Theory): 最优化理论是研究寻找最优解的数学方法和理论,包括凸优化、非凸优化、多目标优化等。

最优化理论在优化问题建模中起到了重要的作用。

7. 离散数学方法(Discrete Mathematics): 离散数学方法包括组合数学、图论、概率论等,常用于解决离散变量或离散状态的问题。

离散数学方法在计算机科学、工程管理等领域应用广泛。

8. 概率统计方法(Probability and Statistics): 概率统计方法通过对已有数据进行分析和建模,提供了一种推断和预测的数学方法。

概率统计方法在决策分析、风险评估等领域起到了重要的作用。

数学建模常用方法介绍

数学建模常用方法介绍

数学建模常用方法介绍数学建模是指利用数学方法对实际问题进行数学描述和分析的过程。

它是数学与实际问题相结合的一种科学研究方法。

在数学建模中,常用的方法有线性规划、非线性规划、动态规划、数值模拟、统计分析等。

下面将介绍这些常用的数学建模方法。

1.线性规划线性规划是一种优化问题的数学描述方法,可以用于求解最优化问题,例如最大化利润或最小化成本。

线性规划的基本思想是在一定的约束条件下,通过线性目标函数和线性约束条件,寻找最优解。

线性规划常用的算法有单纯形法、内点法等。

2.非线性规划非线性规划是一种在约束条件下求解非线性最优化问题的方法。

与线性规划不同,非线性规划中目标函数和/或约束条件是非线性的。

非线性规划的求解方法包括梯度下降法、牛顿法等。

3.动态规划动态规划是一种常用的求解最优化问题的方法,它可以用于求解具有重叠子问题结构的问题。

动态规划将原问题分解为一系列子问题,并通过保存子问题的解来避免重复计算,从而降低计算复杂度。

动态规划常用于求解最短路径问题、背包问题等。

4.数值模拟数值模拟是通过数值方法对实际问题进行计算机模拟和仿真的方法。

数值模拟在现代科学和工程中得到广泛应用。

数值模拟方法包括有限差分法、有限元法、蒙特卡洛方法等。

5.统计分析统计分析是通过数理统计方法对数据进行分析和推断的方法。

统计分析可以帮助我们了解数据的分布、关系和趋势,并做出科学的推断和预测。

统计分析方法包括假设检验、方差分析、回归分析等。

除了以上常用方法,还有一些其他常用的数学建模方法,例如图论、随机过程、优化算法等。

不同的问题需要选用不同的数学建模方法。

为了解决实际问题,数学建模需要结合实际背景和需求,在数学建模的过程中运用合适的数学方法,建立准确的模型,并通过数学分析和计算机辅助求解,得到符合实际情况的解答和结论。

数学建模的过程不仅仅是将数学工具应用于实际问题,更要注重问题的形式化、合理性和可行性。

在实际建模过程中,需要对问题进行适当的简化和假设,并考虑到模型的稳定性和可靠性。

非线性规划求解

非线性规划求解
s.t.
1 1
x1 x2
2.输入命令:
H=[1 -1; -1 2]; c=[-2 ;-6];A=[1 1; -1 2];b=[2;2]; Aeq=[];beq=[]; VLB=[0;0];VUB=[]; [x,z]=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)
i =1 i =1
m
m
1 g i X
其中称 r lng i X 或 r
i =1 i =1
m
m
1 为障碍项, r为障碍因子. g i X
这样问题(1)就转化为求一系列极值问题: min I X , r
X D
0
k

得 X(r ).
k
k
内点法的迭代步骤
(1) 给定允许误差 0 ,取r1
??xfdx?min定义2对于问题1设若存在使得对一切且都有则称x是fx在d上的局部极小值点局部最优解特别地当时若dx?0??dx????xxxx????xfxf?nrx???????njirxxhxgxd????00局部极小值点局部最优解
数学建模与数学实验
非线性规划
实验目的
1. 直观了解非线性规划的基本内容.
2. 掌握用数学软件求解优化问题.
实验内容
1.非线性规划的基本理论.
2. 用数学软件求解非线性规划. 3. 钢管订购及运输优化模型. 4.实验作业.
非线性规划
非线性规划的基本概念
*非线性规划的基本解法
返回
非现性规划的基本概念 定义 如果目标函数或约束条件中至少有一个是非线性函数, 则最优 x 2 2 2 0 x 1 0 x 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

min f(x1,x2)=-2x1-6x2+x12-2x1x2+2x22 s.t. x1+x2≤2 -x1+2x2≤2 x1≥0, x2≥0 T 2 -2 x1 2 x1 1 1、写成标准形式: min z ( x , x )
例1
2
1
2
s.t.
2、 输入命令:
21
(二)使用临时料场的情形
使用两个临时料场A(5,1),B(2,7).求从料场j向工地i的运送量 为Xij,在各工地用量必须满足和各料场运送量不超过日储量的 条件下,使总的吨千米数最小,这是线性规划问题. 线性规划模 2 6 型为:
第六章 非线性规划
优化问题三要素:决策变量;目标函数;约束条件
目标函数 约 束 条 件
min s.t.
决策变量
f ( x) hi ( x) 0, i 1,...,m g j ( x ) 0, j 1,...,l xD
n
非线性规划(NLP) 目标或约束中存在非线性函数 二次规划(QP) 目标为二次函数、约束为线性
.
x
1
2 (4 x1
2 2 x2
4 x1x2 2 x2 1)
x1+x2=0 1.5+x1x2 - x1 - x2 0 -x1x2 –10 0
1.先建立M文件 fun4.m,定义目标函数:
function f=fun4(x); f=exp(x(1)) *(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1);
1.先建立M-文件fun.m定义目标函数: function f=fun(x); f=-2*x(1)-x(2);
2.再建立M文件mycon2.m定义非线性约束: function [g,ceq]=mycon2(x) g=[x(1)^2+x(2)^2-25;x(1)^2-x(2)^2-7];
17
3. 主程序fxx.m为: x0=[3;2.5]; VLB=[0 0];VUB=[5 10]; [x,fval,exitflag,output] =fmincon('fun',x0,[],[],[],[],VLB,VUB,'mycon2')
12
例2
1 2 1 2 min f x1 2 x2 x1 x2 2 2 2x1+3x2 6 s.t x1+4x2 5 x1,x2 0
1、写成标准形式:
1 2 1 2 min f x1 2 x2 x1 x2 2 2
s.t.
2 x1 3x2 6 0 x1 4 x2 5 0 0 x1 0 x2
ˆ I I ˆ ˆ G G A A j j j j j j j 1
尽可能的小
3
n
例1、大学生就业问题 为了计算的简便,上述的问题的目标函数可以写 成以下形式:
G G ˆ j j j 1
n
n


2
ˆ Ij I j

2
ˆ Aj A j
2016/10/3 1
引 例
例1、大学生就业问题 某大学希望为它的毕业生安排工作位置。为简单 起见,假设每个毕业生接受政府部门、工业界或科 学院中的一个位置。令: Nj=第j年毕业的人数(j=1,2,…,n) 并令:Gj、Ij和Aj(Gj+Ij+Aj=Nj)分别为第j年进入政府、 工业界或科学院的人数。
(4) x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’) (5)x=fmincon(‘fun’,X0,A,b,Aeq,beq,VLB,VUB,’nonlcon’,options)
输出极值点
M文件
迭代的初值
变量上下限
参数说明
(6) [x,fval]= fmincon(...) (7) [x,fval,exitflag]= fmincon(...) (8)[x,fval,exitflag,output]= fmincon(...)
3、运算结果为: x =0.8 1.2
z = -7.2
10
标准型为: min F(X) 0 s.t AX<=b G(X) Aeq X beq X VUB Ceq(X)=0 VLB
2、一般非线性规划
其中X为n维变元向量,G(X)与Ceq(X)均为非线性函数组成 的向量,其它变量的含义与线性规划、二次规划中相同.用 Matlab求解上述问题,基本步骤分三步: 1. 首先建立M文件fun.m,定义目标函数F(X): function f=fun(X); f=F(X);
13
2、先建立M-文件 fun3.m: function f=fun3(x); f=-x(1)-2*x(2)+(1/2)*x(1)^2+(1/2)*x(2)^2
3、再建立主程序youh2.m: x0=[1;1]; A=[2 3 ;1 4]; b=[6;5]; Aeq=[];beq=[]; VLB=[0;0]; VUB=[]; [x,fval]=fmincon('fun3',x0,A,b,Aeq,beq,VLB,VUB) 4、运算结果为: x = 0.7647 1.0588 fval = -2.0294 MATLAB(youh2)
MATLAB(fxx(fun))
18
4. 运算结果为: x= 4.0000 3.0000 fval =-11.0000 exitflag = 1 output = iterations: 4 funcCount: 17 stepsize: 1 algorithm: [1x44 char] firstorderopt: [] cgiterations: []
1 1 x1 2 1 2 x2 2 0 x1 x 0 2
2
4 x2 6 x2
H=[2 -2; -2 4]; c=[-2 ;-6];A=[1 1; -1 2];b=[2;2]; Aeq=[];beq=[]; VLB=[0;0];VUB=[]; [x,z]=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)
2
例1、大学生就业问题 假设给出每年学生人数参加各部门的比例,设分 布为λi(i=1,2,3),则在第j年可估计出参加各种工作 的人数为:
ˆ N , I ˆ N ˆ N , A G j 1 j j 2 j j 3 j
为衡量模型的可靠性,必须要求n年中进入这三 个部门的实际人数与预测人数之间的总差别不能太 大,即
6
例2、投资问题 解 设投资决策变量
1, 若对第j个项目投资 xj ( j 1, 2,, n) 0, 若不对第j个项目投资
则该问题的优化模型为
max f ( x1 , x2 ,, xn ) c j x j
j 1
n
a x
j 1 j
n
j
n 非线性整数规划 a j x j b s.t. j 1 x 0(或1)( j 1, 2, , n) j
7
非线性规划的基本解法
SUTM外点法
1、罚函数法 SUTM内点法(障碍罚函数法)
2、近似规划法
8
1、二次规划
标准型为: Min Z= 1 XTHX+cTX
2
s.t. AX<=b
Aeq X beq
VLB≤X≤VUB 用MATLAB软件求解,其输入格式如下:
1. 2. 3. 4. 5. 6. 7. 8.
19
应用实例: 供应与选址
某公司有6个建筑工地要开工,每个工地的位置(用平面坐标系 a,b表示,距离单位:千米 )及水泥日用量d(吨)由下表给出。目 前有两个临时料场位于A(5,1),B(2,7),日储量各有20吨。假设从 料场到工地之间均有直线道路相连。 (1)试制定每天的供应计划,即从A,B两料场分别向各工地运 送多少吨水泥,使总的吨千米数最小。 (2)为了进一步减少吨千米数,打算舍弃两个临时料场,改建两 个新的,日储量各为20吨,问应建在何处,节省的吨千米数有多大?
工地位置(a,b)及水泥日用量 d 2 3 4 8.75 0.5 5.75 0.75 4.75 5 5 4 7
a b d
1 1.25 1.25 3
5 3 6.5 6
6 7.25 7.25 11
20
(一)、建立模型
记工地的位置为(ai,bi),水泥日用量为di,i=1,…,6;料场位置为 (xj,yj),日储量为ej,j=1,2;从料场j向工地i的运送量为Xij。
x=quadprog(H,C,A,b); x=quadprog(H,C,A,b,Aeq,beq); x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB); x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0); x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0,options); [x,fval]=quaprog(...); [x,fval,exitflag]=quaprog(...); [x,fval,exitflag,output]=quaprog(...); 9
2.再建立M文件mycon.m定义非线性约束:
function [g,ceq]=mycon(x) g=[1.5+x(1)*x(2)-x(1)-x(2);-x(1)*x(2)-10];
15
3.主程序youh3.m为: x0=[-1;1]; A=[];b=[]; Aeq=[1 1];beq=[0]; vlb=[];vub=[]; [x,fval]=fmincon('fun4',x0,A,b,Aeq,beq,vlb,vub,'mycon')
相关文档
最新文档