数值分析第六章实验报告

合集下载

数值分析实验 实验报告

数值分析实验 实验报告

数值分析实验实验报告数值分析实验实验报告一、引言数值分析是一门研究如何利用计算机对数学问题进行数值计算和模拟的学科。

在实际应用中,数值分析广泛应用于工程、物理、金融等领域。

本实验旨在通过实际操作,探索数值分析方法在实际问题中的应用,并通过实验结果对比和分析,验证数值分析方法的有效性和可靠性。

二、实验目的本实验的主要目的是通过数值分析方法,解决一个实际问题,并对比不同方法的结果,评估其准确性和效率。

具体来说,我们将使用牛顿插值法和拉格朗日插值法对一组给定的数据进行插值,并对比两种方法的结果。

三、实验步骤1. 收集实验数据:我们首先需要收集一组实验数据,这些数据可以来自实验测量、调查问卷等方式。

在本实验中,我们假设已经获得了一组数据,包括自变量x和因变量y。

2. 牛顿插值法:牛顿插值法是一种基于差商的插值方法。

我们可以通过给定的数据点,构造一个插值多项式,并利用该多项式对其他点进行插值计算。

具体的计算步骤可以参考数值分析教材。

3. 拉格朗日插值法:拉格朗日插值法是另一种常用的插值方法。

它通过构造一个满足给定数据点的多项式,利用该多项式对其他点进行插值计算。

具体的计算步骤也可以参考数值分析教材。

4. 结果比较与分析:在完成牛顿插值法和拉格朗日插值法的计算后,我们将比较两种方法的结果,并进行分析。

主要考虑的因素包括插值误差、计算效率等。

四、实验结果在本实验中,我们选取了一组数据进行插值计算,并得到了牛顿插值法和拉格朗日插值法的结果。

经过比较和分析,我们得出以下结论:1. 插值误差:通过计算插值点与实际数据点之间的差值,我们可以评估插值方法的准确性。

在本实验中,我们发现牛顿插值法和拉格朗日插值法的插值误差都较小,但是拉格朗日插值法的误差稍大一些。

2. 计算效率:计算效率是衡量数值分析方法的重要指标之一。

在本实验中,我们发现牛顿插值法的计算速度较快,而拉格朗日插值法的计算速度稍慢。

五、实验结论通过本实验,我们对数值分析方法在实际问题中的应用有了更深入的了解。

《数值分析》第六章实验报告

《数值分析》第六章实验报告

U= 1.0120 0 0 -2.1320 -0.3955 0 3.1040 -0.4737 -8.9391
index = 1 >> L= 1.0000 -0.6869 0.3260 0 1.0000 -0.2142 0 0 1.0000 [L,U,P]=lu(A)
U= 3.1040 0 0 -7.0130 -0.7209 0 0.0140 -7.0034 1.5990
在命令行窗口中运行如下 >> A=[2 -1 1;3 3 9;3 3 5];[L,U,index]=LU_Decom(A) L= 1.0000 1.5000 1.5000 0 1.0000 1.0000 0 0 1.0000
U= 2.0000 0 0 -1.0000 4.5000 0 1.0000 7.5000 -4.0000
在命令窗口中运行 >> A =[3.03 -12.1 14;-3.03 12.1 -7;6.11 -14.2 21];b=[-119 120 -139]'; >> x=gauss_lie(A,b) x= 0 10.0000 0.1429 可知方程组的解为: x1=0 x2=10.0000 x3=0.1429 EXERCISE SET 6.5 P396 2、LU 分解,求 P a) A=[1 2 -1;2 4 0;0 1 -1] 编写 MATLAB 程序
8
P= 0 0 1 0 1 0 1 0 0
>> b=[1.984 -5.049 -3.895]'; >> inv(U)*inv(L)*P*b ans = 1.0000 1.0000 1.0000 可知解为 x1=1.0000 x2=1.0000 x3=1.0000

数值分析实验报告

数值分析实验报告

《数值分析》实验报告2019年5月一、问题的提出由于计算机的实质计算是在一个有限的浮点数集合上进行的,在大量运算中的误差积累会使得计算过程出现不稳定,通过实验深入了解高斯消元法从理论算法到数值算法,能稳定的关键是选主元。

二、实验名称运用MATLAB编程实现高斯消去法和高斯列主元消去法。

三、实验目的1、熟悉了解高斯消去法和高斯列主元消去法的算法。

2、学习MATLAB软件的功能。

四、基本原理五、实验环境操作环境:Windows实验平台:Matlab软件六、实验设计1 高斯顺序消去法(1)算例:课本p10例1(2)程序清单高斯消去法的MATLAB函数文件gauss.m如下:clcclear allA=[1,1,1;0,4,-1;2,-2,1];r=[6;5;1];[row,col]=size(A);n=row;%-------------------------------------------------------------------B=A;b=r;C=B;c=b;for i=1:n[maxi,row]=max(abs(C(:,i)));if C(row,i)<0maxi=-maxi;endB(i,:)=C(row,:);B(row,:)=C(i,:);b(i)=c(row);b(row)=c(i);B(i,:)=B(i,:)/maxi;b(i)=b(i)/maxi;C=B;for j=i+1:nB(j,:)=B(j,:)-C(j,i)*B(i,:);b(j)=b(j)-C(j,i)*b(i);endC=B;C(i,:)=0;C(:,i)=0;c=b;end%-------------------------------------------------------------------x(n)=b(n);for i=n-1:-1:1sum=0;for j=i+1:nsum=sum+B(i,j)*x(j);endx(i)=(1/B(i,i))*(b(i)-sum);end%-------------------------------------------------------------------% Input% Ax=rdisp(' 输入 Ax=r') disp('输入矩阵 A =')disp(A)disp(' r =')disp(r)% Output% Bx=bdisp(' 输出 Bx=b')disp(' 上三角矩阵 B =') disp(B)disp(' b=')disp(b)disp(' 求得方程组的解 :') x=x'(3)实验结果及分析:Ax=r输入矩阵 A =1 1 10 4 -12 -2 1r =651输出 Bx=b上三角矩阵 B =1.0000 -1.0000 0.5000 0 1.0000 -0.2500 0 0 1.0000b=0.50001.25003.0000求得方程组的解 :x =232 列主元消去法(1)算例:课本p10页例1(2)程序清单高斯列主元消去法的MATLAB函数文件gauss_lie.m如下:function x=gauss_lie(A,b)%采用高斯列主元法求解方程组Ax=bn=length(b);p=1:n;lu=A;y=[];for k=1:n[c,i]=max(abs(lu(k:n,k)));ik=i+k-1;if ik~=km=p(k);p(k)=p(ik);p(ik)=m;ck=lu(k,:);lu(k,:)=lu(ik,:);lu(ik,:)=ck;endif k==nbreak;lu(k+1:n,k)=lu(k+1:n,k)/lu(k,k);lu(k+1:n,k+1:n)=lu(k+1:n,k+1:n)-lu(k+1:n,k)*lu(k,k+1:n);endl=diag(ones(n,1))+tril(lu,-1);u=triu(lu);y(1)=b(p(1));for i=2:ny(i)=b(p(i))-l(i,1:i-1)*y(1:i-1)';endx(n)=y(n)/u(n,n);for i=n-1:-1:1x(i)=(y(i)-u(i,i+1:n)*x(i+1:n)')/u(i,i);endx=x';(3)实验结果及分析:>> A=[1,1,1;0,4,-1;2,-2,1];>> b=[6;5;1];>> gauss_lie (A,b);ans =13七、结果说明用消去法解方程组的基本思想都是设法消去方程组的系数矩阵A的主对角线下的元素,将AX=b化为等价的上三角形方程组,然后再通过回代过程获得方程组的解。

数值分析实验报告总结

数值分析实验报告总结

一、实验背景数值分析是研究数值计算方法及其理论的学科,是计算机科学、数学、物理学等领域的重要基础。

为了提高自身对数值分析理论和方法的理解,我们进行了数值分析实验,通过实验加深对理论知识的掌握,提高实际操作能力。

二、实验目的1. 理解数值分析的基本理论和方法;2. 掌握数值分析实验的基本步骤和技巧;3. 培养实验设计和数据分析能力;4. 提高编程和计算能力。

三、实验内容本次实验主要分为以下几个部分:1. 线性方程组求解实验:通过高斯消元法、LU分解法等求解线性方程组,并分析算法的稳定性和误差;2. 矩阵特征值问题计算实验:利用幂法、逆幂法等计算矩阵的特征值和特征向量,分析算法的收敛性和精度;3. 非线性方程求根实验:运用二分法、牛顿法、不动点迭代法等求解非线性方程的根,比较不同算法的优缺点;4. 函数插值实验:运用拉格朗日插值、牛顿插值等方法对给定的函数进行插值,分析插值误差;5. 常微分方程初值问题数值解法实验:运用欧拉法、改进的欧拉法、龙格-库塔法等求解常微分方程初值问题,比较不同算法的稳定性和精度。

四、实验过程1. 线性方程组求解实验:首先,编写程序实现高斯消元法、LU分解法等算法;然后,对给定的线性方程组进行求解,记录计算结果;最后,分析算法的稳定性和误差。

2. 矩阵特征值问题计算实验:编写程序实现幂法、逆幂法等算法;然后,对给定的矩阵进行特征值和特征向量的计算,记录计算结果;最后,分析算法的收敛性和精度。

3. 非线性方程求根实验:编写程序实现二分法、牛顿法、不动点迭代法等算法;然后,对给定的非线性方程进行求根,记录计算结果;最后,比较不同算法的优缺点。

4. 函数插值实验:编写程序实现拉格朗日插值、牛顿插值等方法;然后,对给定的函数进行插值,记录计算结果;最后,分析插值误差。

5. 常微分方程初值问题数值解法实验:编写程序实现欧拉法、改进的欧拉法、龙格-库塔法等算法;然后,对给定的常微分方程初值问题进行求解,记录计算结果;最后,比较不同算法的稳定性和精度。

数值分析期末实验报告

数值分析期末实验报告

数值计算方法论文论文名称:数值计算方法期末总结学号:姓名:完成时间:摘要:数值计算方法是数学的一个重要分支,以用计算机求解数学问题的理论和方法为研究对象。

本文是我对本学期数值分析这门课程中所学到的内容以及所作的工作的总结。

通过一学期的学习,我深入学习了线性方程组的解法,非线性方程的求根方法,矩阵特征值与特征向量的计算,函数的插值方法,最佳平方逼近,数值积分与数值微分,常微分方程初值问题的数值解法。

通过陶老师课堂上的讲解和课下的上机训练,对以上各个章节的算法有了更深刻的体会。

最后做了程序的演示界面,使得程序看起来清晰明了,便于查看与修改。

通过本学期的学习。

关键词:数值计算方法、演示界面第一章前言随着电子计算机的普及与发展,科学计算已成为现代科学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。

通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。

第二章基本概念2.1算法算法是指由基本算术运算及运算顺序的规定构成的完整的解题步骤。

算法可以使用框图、算法语言、数学语言、自然语言来进行描述。

具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。

2.2 误差计算机的计算结果通常是近似的,因此算法必有误差,并且应能估计误差。

误差是指近似值与真正值之差。

绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。

误差来源见表2.1表2.1第三章泛函分析2.1泛函分析概要泛函分析(Functional Analysis)是研究“函数的函数”、函数空间和它们之间变换(映射)的一门较新的数学分支,隶属分析数学。

它以各种学科为具体背景,在集合的基础上,把客观世界中的研究对象抽象为元素和空间。

如:距离空间,赋范线性空间,内积空间。

2.2 范数范数,是具有“长度”概念的函数。

在线性代数、泛函分析及相关的数学领域,泛函是一个函数,其为矢量空间内的所有矢量赋予非零的正长度或大小。

《数值分析》课程实验报告数值分析实验报告

《数值分析》课程实验报告数值分析实验报告

《数值分析》课程实验报告数值分析实验报告《数值分析》课程实验报告姓名:学号:学院:机电学院日期:20__ 年 _ 月_ 日目录实验一函数插值方法 1 实验二函数逼近与曲线拟合 5 实验三数值积分与数值微分 7 实验四线方程组的直接解法 9 实验五解线性方程组的迭代法 15 实验六非线性方程求根 19 实验七矩阵特征值问题计算 21 实验八常微分方程初值问题数值解法 24 实验一函数插值方法一、问题提出对于给定的一元函数的n+1个节点值。

试用Lagrange公式求其插值多项式或分段二次Lagrange插值多项式。

数据如下:(1) 0.4 0.55 0.65 0.80 0.95 1.05 0.41075 0.57815 0.69675 0.90 1.00 1.25382 求五次Lagrange多项式,和分段三次插值多项式,计算, 的值。

(提示:结果为, )(2) 1 2 3 4 5 6 7 0.368 0.135 0.050 0.018 0.007 0.002 0.001 试构造Lagrange多项式,计算的,值。

(提示:结果为, )二、要求 1、利用Lagrange插值公式编写出插值多项式程序;2、给出插值多项式或分段三次插值多项式的表达式;3、根据节点选取原则,对问题(2)用三点插值或二点插值,其结果如何;4、对此插值问题用Newton插值多项式其结果如何。

Newton 插值多项式如下:其中:三、目的和意义 1、学会常用的插值方法,求函数的近似表达式,以解决其它实际问题;2、明确插值多项式和分段插值多项式各自的优缺点;3、熟悉插值方法的程序编制;4、如果绘出插值函数的曲线,观察其光滑性。

四、实验步骤(1) 0.4 0.55 0.65 0.80 0.951.05 0.41075 0.57815 0.69675 0.90 1.00 1.25382 求五次Lagrange多项式,和分段三次插值多项式,计算, 的值。

数值分析的实验报告

数值分析的实验报告

数值分析的实验报告实验目的本实验旨在通过数值分析方法,探讨数学问题的近似解法,并通过实际案例进行验证和分析。

具体目的包括: 1. 理解和掌握数值分析的基本原理和方法; 2. 学会使用计算机编程语言实现数值分析算法; 3. 分析数值分析算法的精确性和稳定性; 4. 根据实验结果对数值分析算法进行优化和改进。

实验步骤1. 问题描述首先,我们选择一个数学问题作为实验的对象。

在本次实验中,我们选取了求解非线性方程的问题。

具体而言,我们希望找到方程 f(x) = 0 的解。

2. 数值方法选择根据非线性方程求解的特点,我们选择了牛顿迭代法作为数值方法。

该方法通过不断迭代逼近方程的解,并具有较好的收敛性和精确性。

3. 程序设计与实现为了实现牛顿迭代法,我们使用了Python编程语言,并使用了相应的数值计算库。

具体的程序实现包括定义方程 f(x) 和其导数f’(x),以及实现牛顿迭代法的迭代过程。

4. 实验案例与结果分析我们选择了一个具体的方程,例如 x^3 - 2x - 5 = 0,并通过程序运行得到了方程的解。

通过比较实际解与数值解的差异,我们可以分析数值方法的精确性和稳定性。

5. 优化与改进基于实验结果的分析,我们可以对数值分析算法进行优化和改进。

例如,通过调整迭代的初始值、增加迭代次数或修改算法公式等方式,改进算法的收敛性和精确性。

实验结论通过本次实验,我们深入理解了数值分析的基本原理和方法,并通过具体案例验证了牛顿迭代法的有效性。

同时,我们也意识到数值分析算法的局限性,并提出了一些改进的建议。

在今后的数学问题求解中,我们可以运用数值分析的方法,通过计算机编程实现更精确的近似解。

数值分析实习报告总结

数值分析实习报告总结

一、实习背景数值分析是数学的一个重要分支,它研究如何用数值方法求解数学问题。

随着计算机技术的飞速发展,数值分析在各个领域得到了广泛的应用。

为了提高自己的实践能力,我选择了数值分析作为实习课题,希望通过这次实习,能够掌握数值分析的基本方法,并将其应用于实际问题中。

二、实习过程1. 实习初期在实习初期,我首先了解了数值分析的基本概念、理论和方法。

通过阅读相关教材和文献,我对数值分析有了初步的认识。

接着,我学习了数值分析的基本方法,如泰勒展开、牛顿法、高斯消元法等。

2. 实习中期在实习中期,我选择了几个实际问题进行数值计算。

首先,我使用泰勒展开法求解一个简单的微分方程。

通过编写程序,我得到了微分方程的近似解。

然后,我运用牛顿法求解一个非线性方程组。

在实际计算过程中,我遇到了一些问题,如收敛性、迭代次数过多等。

通过查阅资料和请教导师,我找到了解决方法,成功求解了方程组。

3. 实习后期在实习后期,我进一步学习了数值分析的高级方法,如复化梯形公式、复化Simpson公式、自适应梯形法等。

这些方法在解决实际问题中具有更高的精度和效率。

我选择了一个具体的工程问题,运用复化梯形公式求解定积分。

在计算过程中,我遇到了区间细分、精度控制等问题。

通过不断尝试和调整,我得到了较为精确的积分值。

三、实习收获与体会1. 理论与实践相结合通过这次实习,我深刻体会到理论与实践相结合的重要性。

在实习过程中,我不仅学习了数值分析的理论知识,还将其应用于实际问题中。

这使我更加深刻地理解了数值分析的基本方法,提高了自己的实践能力。

2. 严谨的学术态度在实习过程中,我养成了严谨的学术态度。

在编写程序、进行数值计算时,我注重细节,力求精确。

这使我更加注重学术规范,提高了自己的学术素养。

3. 团队合作精神实习过程中,我与其他同学进行了交流与合作。

在解决实际问题时,我们互相学习、互相帮助,共同完成了实习任务。

这使我更加懂得团队合作的重要性,提高了自己的团队协作能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验名称
Newton-cotes型求积公式
二、实验目的
学会Newton-cotes型求积公式,并应用该算法于实际问题。

三、实验内容
求定积分⎰π
cos xdx e x
四、实验要求
选择等分份数n,用复化Simpson求积公式求上述定积分的误差不超过8
10-的近似值,用MATLAB中的内部函数int求此定积分的准确值,与利用复化Simpson求积公式计算的近似值进行比较。

五、实验程序与输出结果
在MATALAB的Editor窗口中输入以下程序:
function y=comsimpson(fun,a,b,n)
z1=feval (fun,a)+ feval (fun,b);m=n/2;
h=(b-a)/(2*m); x=a;
z2=0; z3=0; x2=0; x3=0;
for k=2:2:2*m
x2=x+k*h; z2= z2+2*feval (fun,x2);
end
for k=3:2:2*m
x3=x+k*h; z3= z3+4*feval (fun,x3);
end
y=(z1+z2+z3)*h/3;
然后保存为然后保存为comsimpson.m的文件
在MATALAB工作窗口命令窗口中输入:
Q2 =comsimpson (@fun,0,pi,1000000000)
syms x
fi=int(exp(x).*cos(x),x,0,pi);
Fs= double (fi)
wQ2= double (abs(fi-Q2) )
运行后结果:
Q2=-12.0703,Fs=-12.0703,
wQ2=5.2654e-08
六、实验结果分析
利用复化simpson求积公式计算运行后其结果为Q2=-12.0703,利用内部函数求解的结果为Fs=-12.0703,两者的误差为wQ2=5.2654e-08。

从中可以看出误差结果达到了1E-8级数,而相对应的N已经取到了10亿次,再增大N对结果已经没有太大变化。

可见复化simpson要得到比较准确的结果需要运算的次数比较大。

相关文档
最新文档