高考必考三角函数题型及解题方法

高考必考三角函数题型及解题方法
高考必考三角函数题型及解题方法

三角函数三角函数的图像和性质:

函数sin

y x

=cos

y x

=tan

y x

=图

定义域R R

|,

2

x x k k Z

π

π

??

≠+∈

??

??

值域[1,1]

-[1,1]

-R

奇偶性奇函数偶函数奇函数

有界性

sin1

x≤cos1

x≤无界函数

最小正

周期2π2ππ

2,2

22

()

3

2,2

22

()

k k

k Z

k k

k Z

ππ

ππ

ππ

ππ

??

-+

??

??

??

++

??

??

增区间

减区间

[]

[]

2,2

()

2,2

()

k k

k Z

k k

k Z

πππ

πππ

-

+

增区间

减区间,22

()

k k

k Z

ππ

ππ

??

-+

?

??

增区间

对称轴

()

2

x k k Z

π

π

=+∈

()

x k k Z

π

=∈无对称轴

对称

中心

()()

,0

k k Z

π∈

()

,0

2

k k Z

π

π

??

+∈

?

??

()

,0

2

k

k Z

π

??

?

??

()

()

max

min

2

2

1;

2

2

1

x k k Z

y

x k k Z

y

π

π

π

π

=+∈

=

=-∈

=-

时,

时,

()

()()

max

min

2

1;

21

1

x k k Z

y

x k k Z

y

π

π

=∈

=

=+∈

=-

时,

时,

三个三角函数值在每个象限的符号:

sinα cosα tanα·

30°45°60°0°90°180°270°15°75°

sinα

2

1

2

2

2

3

0 1 0 -1

62

4

-62

4

+

o

π

3

2

π

y

o o2

ππ3

2

π

y

x

2

π

2

πx

π

3

2

π

x

y

无最值最值

2.和差角公式 ①

αβαsin )sin(=± ②

βαβαβαsin sin cos cos )cos(μ=±

③β

αβ

αβαan an 1an an )(an t t t t t ?±=

±μ

3.二倍角公式及万能公式 ①θ

θ

θθθ2

an 1an 2cos sin 22sin t t +=

= ②θ

θ

θθθθθ222

2

2

2

an 1an 1sin 211cos 2sin cos 2cos t t +-=-=-=-=

③θθθ2an 1an 22an t t t -= ④22cos 1sin 2θθ-= ⑤22cos 1cos 2

θθ+=

4.三倍角公式:

①θθθ3sin 4sin 33sin -= ②θθθ3cos 4cos 33cos +-= 5.辅助角公式:

()sin cos a b θθθ?+=+,其中tan b

a

?=

.如: sin 2sin cos 2sin ,36ππθθθθθθ???

?+

=+-=- ? ????

?

)4

(sin 2cos sin π

+=+θθθ

6.正弦定理:

2sin sin sin a b c R A B C

===(R 为三角形外接圆的半径). 变

()sin sin sin i a b c A B C

::=::;

()sin ,sin ,sin 22a b ii A B C R R

=

=2c

R

=

()2sin ,2sin ,2sin iii a R A b R B b R C ===;

7.余弦定理:

2222

2

2

2cos ,cos 2b c a a b c bc A A bc +-=+-=

等,常选用余弦定理鉴定三角形的形状. 8.面积公式:

111sin ()222

a S ah a

b C r a b

c ===++(其中r 为三角形内切圆半径).

常用技巧

①巧变角

如()()ααββαββ=+-=-+,2()()ααβαβ=++-,

2()()αβαβα=+--,22

αβαβ++=?,()(

)

222αββ

ααβ+=---

1、已知2tan()5

αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____3

22

2、02

π

βαπ<<<<,且129cos()β

α-

=-,223

sin()αβ-=,求cos()αβ+ 490

729

②三角函数名互化(切割化弦)

1、求值sin 50(1)o o

1

2、已知

sin cos 2

1,tan()1cos 23

αααβα=-=--,求tan(2)βα-的值 18

③公式变形使用 (韦达定理)

(tan tan αβ±()()tan 1tan tan αβαβ=±m

若α+β=45°(1+tan α)(1+tan β)=2

1、A 、B 为锐角,且满足tan tan tan tan 1A B A B =++,则cos()A B +=_____-

2、ABC ?,tan A tan B Atan B ++=,sin Acos A = ____三角形等边

3、已知tan α ,tan β 是方程6x 2-5x +1=0的两个根,且0<α <2

π,π23

π<<β,

求α +β 的值

4、在ABC ?中, 112(tan A)(tan B )++=,则2log sin C =_____12

-

④三角函数次数的降升

降幂公式:21cos 2cos 2αα+=,2

1cos 2sin 2

αα-=与

升幂公式:21cos 2

α+=2

α

1、若32(,)αππ∈

为_____///sin 2α

2、2

5f (x )sin x cos x x =-x R )∈递增区间__51212

[k ,k ](k Z )ππ

ππ-+∈

⑤式子结构的转化(对角、函数名、式子结构化同)。如

1、求证:

2

1tan 1sin 212sin 1tan 2

2

ααα

α

++=--;

2、化简:

4221

2cos 2cos 22tan()sin ()44

x x x x ππ-+

-+ 1cos 22x

⑥常值变换主要指“1”的变换 (齐次式)

221sin cos x x =+22sec tan tan cot x x x x =-=?tan sin 42ππ===L

已知tan 2α=,求22

sin sin cos 3cos αααα+- 35

⑦正余弦的内存联系 “知一求二”

θθθθθ2sin 1cos sin 21)cos (sin 2±=±=±

1、若 sin cos x x t ±=,则sin cos x x = 21

2

t -±

2、已知

2sin 22sin 1tan k ααα+=+()42

ππ

α<<,试用k 表示sin cos αα-的值

⑧辅助角公式中辅助角的确定:

()sin cos a x b x x θ+=+(其中θ角所在的象限由a , b 的符号确定,θ角的值由tan b a

θ=

确定)在求最值、化简时起着重要作用。

1、若方程sin x x c =有实数解,则c 的取值范围是___________. ///[-2,2]

2、当函数23y cos x sin x =-取得最大值时,tanx 的值是______///32

-

3、如果()()sin 2cos()f x x x ??=+++是奇函数,则tan ?= ///-2

一、化作同名三角函数 1. 22sin cos sin θθθ=

2

2cos 1sin 2

θθ-= 22cos 1cos 2θθ+=

2. ()sin cos a b θθθ?+=+,其中tan b a

?=.如:

sin 2sin cos 2sin ,36ππθθθθθθ???

?+

=+-=- ? ????

?

)4

(sin 2cos sin π

+=+θθθ

3. 与向量挂钩 a=(x 1,y 1) b=(x 2,y 2) a ?b=x 1x 2+y 1y 2

2.已知函数2

1

()cos sin cos 2222

x x x f x =--。求函数()f x

3. 设函数()()1cos sin cos 2-+=x x x x f 求函数()f x

4已知向量)sin sin (cos x x x ωωω,-=,)cos 32sin cos (x x x ωωω,--=, 求函数()f x

5.设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈,函数()()f x a a b =?+ 求函数()f x

二、图像性质与平移 1.sin()y A x ω?=+

A :振幅; T=

w

π

2:周期 x ω?+:相位;?:初相; 2.函数sin()y A x k ω?=++的图象与sin y x =图象间的关系:

①函数sin y x =的图象纵坐标不变,横坐标向左(?>0)或向右(?<0)平移||?个单位得()sin y x ?=+的图象;

②函数()sin y x ?=+图象的纵坐标不变,横坐标变为原来的

1

ω

,得到函数()sin y x ω?=+的图象; ③函数()sin y x ω?=+图象的横坐标不变,纵坐标变为原来的A 倍,得到函数sin()y A x ω?=+的图象; ④函数sin()y A x ω?=+图象的横坐标不变,纵坐标向上(0k >)或向下(0k <),得到

()sin y A x k ω?=++的图象。

3. 要特别注意:对于x 平移来说,左加右减; 对于y 平移来说,上加下减

4. 在sin()y A x ω?=+中,令wx+φ=X ,则可由sinX 的性质求出y 的单调区间、对称轴、对称中心

5. 由x 的定义域求出wx+φ的求值范围,再利用单位圆求出sin (wx+φ),在求出y 的值域

6. 周期的判断

①最近的两个波峰(波谷)的距离为一个周期 ②相邻的一个波峰和一个波谷的距离为半个周期 ③相邻的两条对称轴的距离为半个周期 ④相邻的两个对称中心的距离为半个周期 ⑤一个连续的递增(递减)区间的距离为半个周期

练习

1.已知函数()2sin(2)4

f x x π

=-

(1)求函数的定义域; (2) 求函数的值域; (3) 求函数的周期; (4)求函数的最值及相应的x 值集合; (5)求函数的单调区间;

(6)若3[0,

]4

x π

∈,求()f x 的取值范围; (7)求函数()f x 的对称轴与对称中心;

(8)若()f x ?+为奇函数,[0,2)?π∈,求?;若()f x ?+为偶函数,[0,2)?π∈,求?。

2.设函数)

2

2

,0,0)(sin()(π?π

ω?ω<

<->≠+=A x A x f 的图象关于直线3

2π=x 对称,它的周期是π,则 (C )

A 、)21

,0()(的图象过点x f B 、()f x 在区间52[

,]123

ππ

上是减函数 C 、)0,12

5()(π是的图象的一个对称中心x f D 、()f x 的最大值是A 3.对于函数()2sin 23f x x π??

=+

??

?

给出下列结论: ①图象关于原点成中心对称; ②图象关于直线12

x π

=

成轴对称;

③图象可由函数2sin 2y x =的图像向左平移3

π

个单位得到; ④图像向左平移12

π

个单位,即得到函数2cos 2y x =的图像。 其中正确结论是_____ (②④);

4.已知函数()2sin()f x x ω?=+图象与直线1y =的交点中,距离最近两点间的距离为

3

π

,那么此函数的周期是____ π

5把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是( )

6.函数2sin(2)14

y x π

=-

-的图象经过怎样的变换才能得到sin y x =的图象?

7.(1)将函数1sin(2)24y x π=

-的图象向______平移_______个单位得到函数1

sin 22

y x =的图象(只要求写出一个值) (2) 要得到1cos(2)24y x π=-的图象,可以把函数sin()cos()66

y x x ππ

=--的图象向______平移_______个单位(只要求写出一个值).

8.如图,函数)sin(2?π+=x y ,R x ∈,(其中2

?≤

≤)的图象与y 轴交于点)10(,。

(Ⅰ)求?的值;(Ⅱ)设P 是图象上的最高点,N M ,是图象与x 轴的交点,求PM 与PN 的夹角。

9. 设x R ∈,函数2

1()cos ()2f x x ω?=+-(0,)2

o πω?><<,已知()f x 的最小正周期为π,且1()84f π=.

(1)求ω和?的值; (2)求的单调增区间.

10.()sin()(0,0f x A x A ω?ω=+>>,||)2

π

?<的图象如图所示,

则()f x =_____

(答:15()2sin()23

f x x π

=+)

9.已知函数()()??

?

?

?

<<>∈+=20,0,sin π?ω?ωR x x A x f 的部分图像如图5所示。 (Ⅰ)求函数()x f 的解析式; (Ⅱ)求函数()??? ?

?

+-???

?

?-

=1212ππx f x f x g 的单调递增区间。

23题图

2π9

Y

X

-2

2

3

10.函数()sin()16

f x A x π

ω=-

+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为

2

π, (Ⅰ)求函数()f x 的解析式; (Ⅱ)设(0,)2π

α∈,则()22

f α

=,求α的值。

11.已知向量()1,sin x =,()02cos 2,

cos 3>???

?

?

=A x A x A ,函数()x f ?=的最大值为6.(Ⅰ)求A ; (Ⅱ)将函数()x f y =的图象像左平移12π个单位,再将所得图象各点的横坐标缩短为原来的1

2

倍,纵坐标

不变,得到函数()x g y =的图象。求()x g 在??

?

???245,0π上的值域。

三、正弦定理与余弦定理解三角形 1.A+B+C=π

(1)当涉及A 、B 、C 三个都包含的关系式时可与此方程联立求某角的值 2A C B += 可知B=60°

(2)C sin ) B (A sin =+

C cos ) B (A cos -=+

anC ) B an(A t t -=+ 2.正弦值与余弦值的推导 (1)cosA 的值可直接推出sinA 的值 (在一、二象限sinA 都是正的) (2)sinA 的值不可直接推出cosA 的值 (除非告知A 是锐角或者sin 2A 可知cos 2

A ) 3.关于cosA=m 的应用 (1)求sinA 的值

(2)利用余弦定理2

2

2

2222cos ,cos 2b c a a b c bc A A bc

+-=+-=求其他量

4.正弦定理

(1)直接利用正弦定理求值

(2)边与角的比值互换 xsinA+ysinB=zsinC 变换为 xa+yb=zc

xsin 2A+ysin 2B=zsin 2C 变换为 xa 2+yb 2=zc 2(与余弦定理挂钩) 5.有关bc

(1)S=

2

1

bcsinA (面积) (2)cosA=bc

2a -c b 2

22+

(3)若告知bc 的值,那么可以根据正弦定理求c

b

,进而求出b 、c 的值 6.若直接告知一个角的大小

(1)判断是否为特殊角或者可以拆分为特殊角 (2)与90°作比较,判断其他角的范围

7.cosA 、 b+c (b-c ) 、 a 、 bc 的知三求一

cosA=bc

2a -2bc -c)(b 22+=bc 2a -2bc c)(b 2

2+-

8.求A 的大小

(1)一般情况下利用cosA 求

(2)若告知(或判断)为锐角三角形,则一般用sinA 求 9. 范围问题(不等式或者化成同名三角函数)

(1)已知C 的大小,求sin sin A B +的范围(或者a+c ) (2)已知C 和c 的大小,求a+c 的范围

1.在ABC ?中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a =,4cos 5

B =

. (Ⅰ)若3b =,求sin A 的值;

(Ⅱ)若ABC ?的面积3ABC S ?=,求b ,c 的值

2.在ABC ?中,角A ,B ,C 所对的边分别为a ,b ,c ,且3

4

C π=

,sin A =.

(Ⅰ)求cos A ,sin B 的值;(Ⅱ)若ab =a ,b 的值.

三角函数知识点及题型归纳

三角函数高考题型分类总结 一.求值 1.若4sin ,tan 05 θθ=->,则cos θ= . 2.α是第三象限角,2 1)sin(= -πα,则αcos = )25cos(απ+= 3.若角α的终边经过点(12)P -,,则αcos = tan 2α= 4.下列各式中,值为 2 3 的是 ( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5.若02,sin 3cos απαα≤≤> ,则α的取值范围是: ( ) (A),32ππ?? ??? (B),3ππ?? ??? (C)4,33ππ?? ??? (D)3,32 ππ ?? ??? 二.最值 1.函数()sin cos f x x x =最小值是 。 2.若函数()(13tan )cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 3.函数()cos 22sin f x x x =+的最小值为 最大值为 。 4.已知函数()2sin (0)f x x ωω=>在区间,34ππ?? - ??? ?上的最小值是2-,则ω的最小值等于 5.设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为 . 6.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A . 6π7 B .3π C .6π D .2 π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1 B .2 C .3 D .2 8.函数2 ()sin 3sin cos f x x x x =+在区间,42ππ?? ? ??? 上的最大值是 ( ) A.1 B. 13 2 + C. 3 2 D.1+3 三.单调性 1.函数]),0[()26 sin(2ππ ∈-=x x y 为增函数的区间是 ( ).

高三三角函数专题复习(题型全面)

三 角 函 数 考点1:三角函数的有关概念; 考点2:三角恒等变换;(两角和、差公式,倍角半角公式、诱导公式、同角的三角函数关系式) 考点3:正弦函数、余弦函数、正切函数的图象和性质;(定义域、值域、最值;单调区间、最小正周 期、对称轴对称中心) 考点4:函数y =Asin()0,0)(>>+???A x 的图象与性质;(定义域、值域、最值;单调区间、最小 正周期、对称轴对称中心、图像的变换) 一、三角函数求值问题 1. 三角函数的有关概念 例1. 若角θ的终边经过点(4,3)(0)P a a a -≠,则sin θ= . 练习1.已知角α的终边上一点的坐标为(3 2cos ,32sin π π),则角α的最小正值为( ) A 、65π B 、32π C 、35π D 、6 11π 2、公式法: 例2.设(0,)2πα∈,若3 sin 5α=)4 πα+=( ) A. 75 B. 15 C. 75- D. 15 - 练习1.若πtan 34α??-= ??? ,则cot α等于( ) A.2- B.12 - C.12 D.2 2.α是第四象限角,5 tan 12 α=-,则sin α=( ) A .15 B .15- C .513 D .513 - 3. cos 43cos77sin 43cos167o o o o +的值为 。 4.已知1sin cos 5θθ+=,且324 θππ ≤≤,则cos2θ的值是 . 3.化简求值 例3.已知α为第二象限角,且sin α,求sin(/4)sin 2cos21 απαα+++的值 练习:1。已知sin α=,则44sin cos αα-的值为( ) A .15 - B .35 - C .15 D .35

高中数学必修三角函数常考题型同角三角函数的基本关系

高中数学必修三角函数常考题型同角三角函数 的基本关系 集团文件版本号:(M928-T898-M248-WU2669-I2896-

同角三角函数的基本关系 【知识梳理】 同角三角函数的基本关系 (1)平方关系:同一个角α的正弦、余弦的平方和等于1.即sin 2 α+cos 2 α=1. (2)商数关系:同一个角α的正弦、余弦的商等于这个角的正切,即 sin α cos α=tan_α ? ?? ??其中α≠k π+π2?k ∈Z ?. 【常考题型】 题型一、已知一个三角函数值求另两个三角函数值 【例1】 (1)已知sin α=12 13 ,并且α是第二象限角,求cos α和tan α. (2)已知cos α=-4 5 ,求sin α和tan α. [解] (1)cos 2 α=1-sin 2 α=1-? ????12132=? ?? ??5132 ,又α是第二象限角, 所以cos α<0,cos α=- 513,tan α=sin αcos α=-125 . (2)sin 2 α=1-cos 2 α=1-? ????-452=? ?? ??352 , 因为cos α=-4 5 <0,所以α是第二或第三象限角, 当α是第二象限角时,sin α=35,tan α=sin αcos α=-3 4;当α是第 三象限角时,sin α=-35,tan α=sin αcos α=3 4 .

【类题通法】 已知三角函数值求其他三角函数值的方法 (1)若已知sin α=m,可以先应用公式cos α=±1-sin2α,求得 cos α的值,再由公式tan α=sin α cos α 求得tan α的值. (2)若已知cos α=m,可以先应用公式sin α=±1-cos2α,求得 sin α的值,再由公式tan α=sin α cos α 求得tan α的值. (3)若已知tan α=m,可以应用公式tan α=sin α cos α =m?sin α= m cos α及sin2α+cos2α=1,求得cos α=± 1 1+m2 ,sin α= ± m 1+m2 的值. 【对点训练】 已知tan α= 4 3 ,且α是第三象限角,求sin α,cos α的值.解:由tan α= sin α cos α = 4 3 ,得sin α= 4 3 cos α,① 又sin2α+cos2α=1,② 由①②得 16 9 cos2α+cos2α=1,即cos2α= 9 25 . 又α是第三象限角,故cos α=- 3 5 ,sin α= 4 3 cos α=- 4 5 . 题型二、化切求值 【例2】已知tan α=3,求下列各式的值.

高一三角函数题型总结

1.已知角范围和其中一个角的三角函数值求任意角三角函数值 方法:①画直角三角形 ②利用勾股定理先算大小后看正负 例题:1.已知α∠为第二象限角,13 5 sin =α求αcos 、αtan 、αcot 的值 2.已知α∠为第四象限角,3tan -=α求αcos 、αsin 、αcot 的值 2. 2. 3. 4.利用“加减πk 2”大角化小角,负角化正角,求三角函数值 例题:求值:sin(-236π)+cos 137π·tan4π -cos 133 π= ;

1.已知sin α=4 5 ,且α为第二象限角,那么tan α的值等于 ( ) (A)3 4 (B)43 - (C)43 (D)4 3 - 2.已知sin αcos α=8 1,且4π<α<2π ,则cos α-sin α的值为 ( ) 33 (D)± 3 3.) 4. ) 5.) * 6.)

三角函数诱导公式 诱导公式可概括为把 απ ±?k 2 的三角函数值转化成角α的三角函数值。(k 指奇数或者偶数, α相当锐角) 口诀“奇变偶不变,符号看象限。”其中奇偶是指2 π 的奇数倍还是偶数倍,变与不变指函数名称的变化。 公式一:=+)2sin(απk =+)2c o s (απk =+)2t a n (απk

三角函数诱导公式练习题 1.若(),2,5 3 cos παππα<≤= +则()πα2sin --的值是 ( ) A . 53 B . 53- C . 54 D . 5 4 - 2.sin (-6 π 19)的值是( ) A 3 6 )= . 10.α是第四象限角,,则αsin 等于________. 13 12 cos =α

三角函数基础题型归类(一)

2 - α , 例 1. (1)求值: cos600 ; (2)化简: cos 2( π 精品资料 欢迎下载 三角函数基础题型归类(一) 1、运用诱导公式化简与求值: 要求:掌握 2k π + α , π + α , -α , π - α , π π 2 + α 等诱导公式. 记忆口诀:奇变偶不变,符号看象限. π -α )+cos 2( +α ) 4 4 1 3π 练 1 (1)若 cos(π +α )= - , 2 2 <α <2π , 则 sin(2π -α )等于 . (2)若 f (cos x) = cos3 x ,那么 f (sin30 ?) 的值为 . 17 (3)sin( - π )的值为 . 6 (4) 2、运用同角关系化简与求值: sin α 要求:掌握同角二式( s in 2 α + cos 2 α = 1 , tan α = ),并能灵活运用. 方法:平方法、切弦互化. cos α 例 2 (1)化简 sin x 1 + sin x 1 - ; (2)已知 sinx+cosx = , 且 0

高考三角函数分类练习题

高考三角函数分类练习题 一.求值 1.(09北京文)若4sin ,tan 05 θθ=->,则cos θ= . 2.α是第三象限角,2 1)sin(= -πα,则αcos = )25cos(απ+= 3.(08北京)若角α的终边经过点(12)P -,,则αcos = tan 2α= 4.(07重庆)下列各式中,值为 2 3 的是 ( ) (A )2sin15cos15?? (B )?-?15sin 15cos 22(C )115sin 22-?(D )?+?15cos 15sin 22 5.若02,sin 3cos απαα≤≤> ,则α的取值范围是: ( ) (A),32ππ?? ??? (B),3ππ?? ??? (C)4,33ππ?? ??? (D)3,32 ππ ?? ??? 二.最值 1.(09福建)函数()sin cos f x x x =最小值是 。 2.(09江西)若函数()(13tan )cos f x x x =+,02 x π ≤< ,则()f x 的最大值为 3.(08海南)函数()cos 22sin f x x x =+的最小值为 最大值为 。 4.(06年福建)已知函数()2sin (0)f x x ωω=>在区间,34ππ?? -???? 上的最小值是2-,则ω的最小值等于 5.(08辽宁)设02x π?? ∈ ??? ,,则函数22sin 1sin 2x y x +=的最小值为 . 6.将函数x x y cos 3sin -=的图像向右平移了n 个单位,所得图像关于y 轴对称,则n 的最小正值是 A . 6π7 B .3π C .6π D .2 π 7.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( ) A .1 B .2 C .3 D .2 8.函数2 ()sin 3sin cos f x x x x =+在区间,42ππ?? ? ??? 上的最大值是 ( ) A.1 B. 13 2 + C. 3 2 D.1+3 三.单调性 1.(04天津)函数]),0[()26 sin(2ππ ∈-=x x y 为增函数的区间是 ( ).

高考大题_三角函数题型汇总精华(含答案解释)

【模拟演练】 1、[2014·江西卷16] 已知函数f (x )=(a +2cos 2 x )cos(2x +θ)为奇函数,且f ? ?? ?? π4=0, 其中a ∈R ,θ∈(0,π). (1)求a ,θ的值; (2)若f ? ????α4=-2 5,α∈? ????π2,π,求sin ? ?? ??α+π3的值. 2、[2014·北京卷16] 函数f (x )=3sin ? ???? ?2x +π6的部分图像如图所示. (1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间??????? ?-π2,-π12上的最大值和最小值. 3、[2014·福建卷18] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ? ???? ? 5π4的值; (2)求函数f (x )的最小正周期及单调递增区间. 4、( 06湖南)如图,D 是直角△ABC 斜边BC 上一点,AB=AD,记∠CAD=α,∠ABC=β. (1)证明 sin cos 20αβ+=; (2)若 求β的值 .

5、(07福建)在ABC △中,1tan 4A = ,3tan 5 B =. (Ⅰ)求角C 的大小; (Ⅱ)若ABC △,求最小边的边长. 6、(07浙江)已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 7、(07山东)如图,甲船以每小时 方向航行,乙船按固定方向匀速直线航行,当甲船位于1A 处时, 乙船位于甲船的北偏西105? 的方向1B 处,此时两船相距20 海里.当甲船航行20分钟到达2A 处时,乙船航行到甲船的

高中数学三角函数的图象与性质题型归纳总结

三角函数的图象与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ω x +φ)或y =A cos(ω x +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4π C .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1- D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f = B .(0)0f = C .'(0)1f = D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数 D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数 D .π最小正周期为2的偶函数

三角函数题型学霸总结(含答案)-

三角函数题型学霸总结(含答案) 阳光老师:祝你学业有成 一、选择题(本大题共30小题,共150.0分) 1.点在函数的图象上,则m等于 A. 0 B. 1 C. D. 2 【答案】C 【解析】 【分析】本题主要考查了正弦函数的性质,属于基础题由题意知,求得m 的值. 【解答】解:由题意知, 所以, 所以. 2.用五点法画,的图象时,下列哪个点不是关键点 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的作法,属于基础题. 熟练掌握五点法作图即可. 【解答】 解:用“五点法”画,的简图时, 横坐标分别为, 纵坐标分别为0,1,0,,0, 故选A. 3.函数y x,x的大致图象是

A. B. C. D. 【答案】B 【解析】 【分析】 本题主要考查三角函数的图像,属于基础题利用“五点法”画出函数图像即可得出答案. 【解答】 解:“五点法”作图: x0 0100 10121 故选B. 4.用“五点法”作出函数的图象,下列点中不属于五点作图中的五个关 键点的是 A. B. C. D. 【答案】A 【解析】 【分析】 本题考查三角函数图象的画法以及余弦函数的性质,属于基础题. 分别令,,,,得,3,4,3,2,即可得到五点,再对照选项,即可得到答案. 【解答】 解:,分别令,,,,得,3,4,3,2,

所以五个关键点为,,,,, 可知A不属于. 故选A. 5.已知函数的图象与直线 恰有四个公共点,,,,其中,则 A. B. 0 C. 1 D. 【答案】A 【解析】 【分析】 本题考查了三角函数图象的作法及利用导数求函数图象的切线方程,属于较难题. 由三角函数图象及利用导数求函数图象的切线方程可得:切点坐标为,切线方程为:,又切线过点,则,即,得解. 【解答】 解:由 得 其图象如图所示,

高考三角函数的参数取值范围题型归类分析

三角函数的参数题型归纳 题型一 ω的取值范围与单调性相关 例1 已知函数()sin()(0)3 f x x π ωω=->,若函数()f x 在区间3(, )2 π π上为单调递减函数,则实数ω的取值范围是( ) A .211[,]39 B .511[,]69 C .23[,]34 D .25[,]36 变式1、若()cos sin f x x x =-在,22m m ?? - ???? 上是减函数,则m 的最大值是( ) A . 8 π B . 4 π C . 2 π D . 38 π 2、若函数ω(ω)=1 2(cos ω+sin ω)(cos ω?sin ω?4ω)+(4ω?3)ω在[0,ω 2]上单调递增,则实 数ω的取值范围为( ) A.ω≥32 B.3 2<ω<3 C.ω≥1 D.1<ω<3 - 3、若函数 2()4sin sin cos 2(0)42x f x x x πωωωω??=?++> ??? 在2,23ππ?? -????上是增函数,则ω的取值范围是____________. 题型二 ω的取值范围与三角函数的最值 例2 函数ω(ω)=ωωωω(ωω+ω ω)(ω>ω),当ω∈[ω,ω]上恰好取得5个最大值,则ω的取值范围为( ) A.[ ωωω ,ωωωω) B.[ ωωωω ,ωωω ω) C.[ ωωωω ,ωωω ω) D.[ ωωωω ,ωωω ω)

变式 1、若函数ω(ω)=ωωωωωω?ωωωω ( ωωω+ω ω )+ωωωωωω?ω (ω>ω)在[? ωω,ω ω ]内有且仅有一个最大值,则ω的取值范围是( ) A .[ω ω,ω) B .[ω,ω) C .[ω,ωω) D .(ω,ωω ] 2、已知函数ω(ω)=ωωω(ωω+ωω)(ω>ω),ω(ωω)=ω(ωω),且ω(ω)在区间(ωω,ω ω)上有最小值, 无最大值,则ω的值为( ) , A .ω ω B . ωωω C .ωωω D .ω ω 3、已知函数ω(ω)=ωωω(ωω+πω )+ωωωωω(ω>ω)在[ω,π]上的值域为[ω ω,√ω],实数ω的取值范围为 A.[ωω,ω ω] B.[ωω,ω ω] C.[ω ω,+∞] D.[ωω,ω ω] 4、已知函数()2sin f x x ω=(0)>ω在区间2,33ππ?? - ???? 上是增函数,其在区间[0,]π上恰好取得一次最大值2,则ω的取值范围是( ) A .13,24?????? B .15,22?????? C .35,42?? ???? D .5,32 ?????? 题型三 三角函数的零点与ω的取值范围 例3、已知1sin ,sin ,sin ,,222a x x b x ωωω???? == ? ???? ?其中0ω>,若函数()12f x a b =?-在区间(),2ππ内 没有零点,则ω的取值范围是( ) A .10,8?? ??? B .50,8?? ??? C .][150,,188??? ??? D .][1150,,848??? ??? 、

高中三角函数常见题型与解法

三角函数的题型和方法 一、思想方法 1、三角函数恒等变形的基本策略。 (1)常值代换:特别是用“1”的代换,如1=cos 2 θ+sin 2 θ=tanx ·cotx=tan45°等。 (2)项的分拆与角的配凑。如分拆项:sin 2 x+2cos 2 x=(sin 2 x+cos 2 x)+cos 2 x=1+cos 2 x ;配凑角:α=(α+β)-β,β= 2 β α+- 2 β α-等。 (3)降次与升次。即倍角公式降次与半角公式升次。 (4)化弦(切)法。将三角函数利用同角三角函数基本关系化成弦(切)。 (5)引入辅助角。asin θ+bcos θ=2 2 b a +sin(θ+?),这里辅助角?所在象限由a 、b 的符号确定,?角的值由tan ?= a b 确定。 (6)万能代换法。巧用万能公式可将三角函数化成tan 2 θ 的有理式。 2、证明三角等式的思路和方法。 (1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。 (2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。 3、证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。 4、解答三角高考题的策略。 (1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。 (2)寻找联系:运用相关公式,找出差异之间的内在联系。 (3)合理转化:选择恰当的公式,促使差异的转化。 二、注意事项 对于三角函数进行恒等变形,是三角知识的综合应用,其题目类型多样,变化似乎复杂,处理这类问题,注意以下几个方面: 1、三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值。 2、三角变换的一般思维与常用方法。 注意角的关系的研究,既注意到和、差、倍、半的相对性,如 αα ββαββαα22 1 2 2)()(?= ? =+-=-+=.也要注意题目中所给的各角之间的关系。 注意函数关系,尽量异名化同名、异角化同角,如切割化弦,互余互化,常数代换等。

初中三角函数知识点题型总结+课后练习

锐角三角函数知识点 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4 5、0 锐角三角函数题型训练 类型一:直角三角形求值 1.已知Rt △ABC 中,,12,4 3 tan ,90== ?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4.已知A ∠是锐角,17 8 sin = A ,求A cos ,A tan 的值 类型二. 利用角度转化求值:

1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B . 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,则 tan EFC ∠的值为 ( ) A.34 B.43 C.35 D. 4 5 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若1tan 5 DBA ∠= ,则AD 的长为( )A .2 C .1 D .4. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD = 3 16求∠ B 的度数及边B C 、AB 的长. 例2.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,?=3 sin A (1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B . 例3.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5. 求:sin ∠ABC 的值. 对应训练 1.(2012?重庆)如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号) 2.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B . 类型四:利用网格构造直角三角形 对应练习: 1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______. 特殊角的三角函数值 例1.求下列各式的值 ?-?+?30cos 245sin 60tan 2=. 计算:3-1+(2π-1)0- 3 3 tan30°-tan45°= 0 30tan 2345sin 60cos 221 ??? ? ???-?+?+= ?-?+?60tan 45sin 230cos 2 tan 45sin 301cos 60?+? -? = B

高考数学三角函数试题及解析

三角函数与解三角形 一.选择题 1.(2014?广西)已知角α的终边经过点(﹣4,3),则cosα=() A.B.C.﹣D.﹣ 2.(2014?广西)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D. 3.(2014?河南)若tanα>0,则() A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>0 4.(2014?河南)在函数①y=cos丨2x丨,②y=丨cosx丨,③y=cos(2x+)④y=tan(2x﹣)中,最 小正周期为π的所有函数为() A.①②③B.①③④C.②④ D.①③ 5.(2014?四川)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动1个单位长度 B.向右平行移动1个单位长度 C.向左平行移动π个单位长度 D.向右平行移动π个单位长度 6.(2014?陕西)函数f(x)=cos(2x+)的最小正周期是() A.B.πC.2πD.4π 7.(2014?辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递减B.在区间[,]上单调递增 C.在区间[﹣,]上单调递减D.在区间[﹣,]上单调递增 8.(2014?江西)在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为() A.﹣B.C.1 D. 9.(2014?福建)将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法 正确的是() A.y=f(x)是奇函数 B.y=f(x)的周期为π C.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点(﹣,0)对称 10.(2014?安徽)若将函数f(x)=sin2x+cos2x的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是() A.B.C.D. 二.填空题 11.函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为_________ .

三角函数的图像与性质知识点及题型归纳总结

三角函数的图像与性质知识点及题型归纳总结 知识点讲解 1.“五点法”作图原理 在确定正弦函数])2,0[(sin π∈=x x y 的图像时,起关键作用的5个点是 )0,2(),1,2 3(),0,(),1,2(),0,0(ππ ππ-. 在确定余弦函数])2,0[(cos π∈=x x y 的图像时,起关键作用的5个点是 )1,2(),0,2 3(),1,(),0,2(),1,0(ππ ππ-. 2.

3.)sin(?+=wx A y 与)0,0)(cos(>>+=w A wx A y ?的图像与性质 (1)最小正周期:w T π2= . (2)定义域与值域:)sin(?+=wx A y ,)?+=wx A y cos(的定义域为R ,值域为[-A ,A ]. (3)最值 假设00>>w A ,. ①对于)sin(?+=wx A y , ?? ???-∈+-=+∈+=+; )(22;)Z (22A Z k k wx A k k wx 时,函数取得最小值当时,函数取得最大值当ππ ?ππ? ②对于)?+=wx A y cos(, ? ? ?-∈+=+∈=+;)(2;)Z (2A Z k k wx A k k wx 时,函数取得最小值当时,函数取得最大值 当ππ?π? (4)对称轴与对称中心. 假设00>>w A ,. ①对于)sin(?+=wx A y ,

? ????? ? +==+∈=+=+=±=+∈+=+).0,()sin(0)sin()()sin(1)sin()(2 000000x wx y wx Z k k wx x x wx y wx Z k k wx 的对称中心为 时,,即当的对称轴为时,,即当??π???ππ? ②对于)?+=wx A y cos(, ??? ?? ? ?+==+∈+=+=+=±=+∈=+).0,()cos(0)cos()(2)cos(1 )cos()(0000 00x wx y wx Z k k wx x x wx y wx Z k k wx 的对称中心为时,,即当的对称轴为时,,即当??ππ???π? 正、余弦曲线的对称轴是相应函数取最大(小)值的位置.正、余弦的对称中心是相应函数与x 轴交点的位置. (5)单调性. 假设00>>w A ,. ①对于)sin(?+=wx A y , ?? ??? ?∈++∈+?∈++-∈+. )](223,22[)](22,22[减区间增区间;Z k k k wx Z k k k wx ππππ?ππππ? ②对于)?+=wx A y cos(, ? ? ??∈+∈+?∈+-∈+.)](2,2[)](2,2[减区间增区间; Z k k k wx Z k k k wx πππ?πππ? (6)平移与伸缩 由函数x y sin =的图像变换为函数3)3 2sin(2++=π x y 的图像的步骤; 方法一:)3 22 (π π + →+ →x x x .先相位变换,后周期变换,再振幅变换,不妨采用谐音记忆:我们“想 欺负”(相一期一幅)三角函数图像,使之变形. ?????→?=个单位 向左平移的图像3 sin π x y 的图像)3 sin(π + =x y 12 ????????→所有点的横坐标变为原来的 纵坐标不变 的图像)3 2sin(π + =x y 2?????????→所有点的纵坐标变为原来的倍 横坐标不变 的图像)3 2sin(2π +=x y ?????→?个单位 向上平移33)3 2sin(2++=πx y 方法二:)3 22(π π+→+→x x x .先周期变换,后相位变换,再振幅变换. 的图像x y sin =1 2 ????????→所有点的横坐标变为原来的 纵坐标不变 ?????→?=个单位 向左平移的图像6 2sin π x y

三角函数的图像与性质题型归纳总结

三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型1 已知函数解析式确定函数性质 【思路提示】一般所给函数为y =A sin(ωx +φ)或y =A cos(ωx +φ),A>0,ω>0,要根据 y =sin x ,y =cos x 的整体性质求解。 一、函数的奇偶性 例1 f (x )=sin ()x ?+(0≤?<π)是R 上的偶函数,则?等于( ) A.0 B . 4πC .2 π D .π 【评注】由sin y x =是奇函数,cos y x =是偶函数可拓展得到关于三角函数奇偶性的重要结论:sin()(); y A x k k Z ??π=+=∈(1)若是奇函数,则 sin()+ (); 2 y A x k k Z π ??π=+=∈(2)若是偶函数,则 cos()(); 2 y A x k k Z π ??π=+=+ ∈(3)若是奇函数,则 cos()(); y A x k k Z ??π=+=∈(4)若是偶函数,则 tan()().2k y A x k Z π ??=+= ∈(5)若是奇函数,则 .()sin ||a R f x x a a ∈=-变式1已知,函数为奇函数,则等于( ) A.0 B .1 C .1-D .1 ± 2.0()cos()()R f x x x R ???∈==+∈变式设,则“”是“为偶函数”的( ) A 充分不必要条件 B .必要不充分条 C .充要条件 D .无关条件 3.()sin()0()f x x f x ω?ω=+>变式设,其中,则是偶函数的充要条件是( ) A.(0)1f =B .(0)0f =C .'(0)1f =D .'(0)0 f = 2.()sin(2)()()2f x x x R f x π =-∈例设,则是( ) A.π最小正周期为的奇函数B .π最小正周期为的偶函数 C .2π 最小正周期为 的奇函数D .2π 最小正周期为的偶函数 2()sin 1()()f x x x R f x =-∈变式1.若,则是( ) A.π最小正周期为的奇函数 B .π最小正周期为的偶函数 C .π最小正周期为2的奇函数D .π最小正周期为2的偶函数

高考题历年三角函数题型总结

高考题历年三角函数题型总结 ?? ??? 正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .

三角函数高考常见题型

三角函数高考常见题型 三角函数题是高考数学试卷的第一道解答题,试题难度一般不大,但其战略意义重大,所以稳拿该题14分对文理科学生都至关重要。分析近年高考试卷,可以发现,三角解答题多数喜欢和平面向量综合在一起,且向量为辅,三角为主,主要有以下五类: 一、运用同角三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。 例题1.(2012全国卷大纲7)已知α为第二象限角,sin cos αα+= ,则cos2α= (A )3- (B )9- (C )9 (D )3 【答案】A . 例题2.【2012高考真题山东理7】若42ππθ?? ∈????,,sin 2θ,则sin θ= (A ) 35 (B )45 (C )4 (D )34 【答案】D 例题 3.(2011浙江)(6)若02 π α<< ,02π β- <<,1 cos()43 πα+=, cos()423 πβ-= cos()2βα+= (A ) 3 (B )3- (C )9 (D )9 - 【答案】C 例4. 已知向量33(cos ,sin ),(cos ,sin ),[,]22222 x x x x x π π==-∈且a b 。 (1)若||+>a b x 的取值范围; (2)函数()||f x =?++a b a b ,若对任意12,[ ,]2 x x π π∈,恒有12|()()|f x f x t -<,

求t 的取值范围。 解:(1)||||1,cos 2,||22cos 22cos 3x x x ==?=∴ +=+=->Q a b a b a b , 即35cos .[,],26 x x x ππ ππ<- ∈∴<≤Q 。 (2)2 1 3()||cos 22cos 2(cos )2 2 f x x x x =?++=-=-- a b a b 。 max min 1cos 0,()3,()1x f x f x -≤≤∴==-Q , 又12max min |()()|()()4,4f x f x f x f x t -≤-=∴>Q 【习题1】 1.【2012高考真题辽宁理7】已知sin cos 2αα-=,α∈(0,π),则tan α= (A) -1 (B) 22- (C) 22 (D) 1 【答案】A 2.【2012高考真题江西理4】若tan θ+1 tan θ =4,则sin2θ= A . 15 B. 14 C. 13 D. 1 2 【答案】D 3.【2012高考重庆文5】sin 47sin17cos30cos17 -o o o o (A )32- (B )12-(C )12 (D )3 2 【答案】C 4.【2012高考真题四川4】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =, 连接EC 、ED 则sin CED ∠=( ) A 、 31010 B 、1010 C 、510 D 、5 15 【答案】B 5.(2012考江苏11)α为锐角,若4cos 65απ? ?+= ?? ?,则)122sin(π+a 的值为 ▲ ;

高考中常见的三角函数题型和解题方法-数学秘诀

第12讲 三角函数 高考试题中的三角函数题相对比较传统,难度较低,位置靠前,重点突出。因此,在复习过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质。以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识。 一、知识整合 1.熟练掌握三角变换的所有公式,理解每个公式的意义,应用特点,常规使用方法等;熟悉三角变换常用的方法——化弦法,降幂法,角的变换法等;并能应用这些方法进行三角函数式的求值、化简、证明;掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题. 2.熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质;熟练掌握正弦函数、余弦函数、正切函数、余切函数图象的形状、特点,并会用五点画出函数sin()y A x ω?=+的图象;理解图象平移变换、伸缩变换的意义,并会用这两种变换研究函数图象的变化. 二、高考考点分析 2004年各地高考中本部分所占分值在17~22分,主要以选择题和解答题的形式出现。主要考察内容按综合难度分,我认为有以下几个层次: 第一层次:通过诱导公式和倍角公式的简单运用,解决有关三角函数基本性质的问题。如判断符号、求值、求周期、判断奇偶性等。 第二层次:三角函数公式变形中的某些常用技巧的运用。如辅助角公式、平方公式逆用、切弦互化等。 第三层次:充分利用三角函数作为一种特殊函数的图象及周期性、奇偶性、单调性、有界性等特殊性质,解决较复杂的函数问题。如分段函数值,求复合函数值域等。 三、方法技巧 1.三角函数恒等变形的基本策略。 (1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2 θ=tanx ·cotx=tan45°等。 (2)项的分拆与角的配凑。如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2 x ;配凑角:α=(α+β)-β,β= 2 β α+- 2 β α-等。 (3)降次与升次。(4)化弦(切)法。 (4)引入辅助角。asin θ+bcos θ=22b a +sin(θ+?),这里辅助角?所在象限由a 、b 的符号确定,?角的值由tan ?= a b 确定。 2.证明三角等式的思路和方法。 (1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。 (2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。 3.证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等。 4.解答三角高考题的策略。 (1)发现差异:观察角、函数运算间的差异,即进行所谓的“差异分析”。 (2)寻找联系:运用相关公式,找出差异之间的内在联系。 (3)合理转化:选择恰当的公式,促使差异的转化。 四、例题分析

相关文档
最新文档