高中数学教案——排列 第二课时
排列第二课时教案

授课主要内容或板书设计2)(n m -+(1)(21!n n n n =-⋅=另外,我们规定 0! =1.学生口头列式回答:(1)10A 78910⨯⨯⨯1650123=⨯⨯教学设计重复数字的三位数?直接法:对排列方法分步思考。
位置分析法用分步计数原理:所求的三位数的个数是:1299998648A A⋅=⨯⨯=间接法:从0到9这10个数字中任取3个数字的排列数为310A,其中以0为排头的排列数为29A,因此符合条件的三位数的个数是32109648A A-=.四、指导应用——知识深化学生小组讨论:其中有多少奇数?练习2:由数字0,2, 5,7,9五个数字组成没有重复数字的四位数,其中大于2500有多少个?(让学生用直接法和间接法两种方法)例4: 7位同学站成一排,共有多少种不同的排法?分析:7个元素的全排列77A=5040.变题1:7位同学站成两排(前3后4),共有多少种不同的排法?分析:同上,还是7个元素的全排列77A=5040.变题2:7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?分析:问题可以看作:余下的6个元素的全排列即66A=720.变题3:甲、乙两同学必须相邻的排法共有多少种?分析:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有66A种方法;再将甲、乙两个同学“松绑”进行排列有22A种方法.所以这样的排法一共有62621440A A⋅=种体会直接法和间接法两种结题方法,拓宽学生的解题思路让学生讨论,体验小组学习相互的思维激发。
利用一道题目的若干变形题目,拓。
11在一个三角形中各边和它所对角...

高中新课程数学导学案设计一排列(第二课时)【学习目标】1.掌握无限制条件和有限制条件的排列应用问题2.能应用排列知识解决简单的实际应用问题【学习重难点】1.常见的解决排列问题的策略(重点)2.与数字有关的排列问题(难点)3.分类讨论在解题中的应用(易错点)【学法指导】特殊元素或特殊位置优先考虑,掌握“在”与“不在”、“邻”与“不邻”的处理方法。
【学习过程】一、合作探究(一)无限制条件的排列问题方法:把问题转化为排列问题,弄清n,m各指的是什么,直接利用排列数公式计算。
例1(课本第18页例2、例3)例2有5个不同的科研小课题,从中选3个由高二(18)班的3个学习兴趣小组进行研究,每组一个课题,共有多少种不同的安排方法?(二)有限制条件的排列问题排列问题的本质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上,或某个位子上不排某个元素。
方法:所谓有限制条件的排列问题是指某些元素或位置有特殊要求。
解决此类问题常从特殊元素或特殊位置入手进行解决,常用的方法有直接法和间接法,直接法又有分步法和分类法两种。
(1)直接法(i)分步法:按特殊元素或特殊位置优先安排,再安排一般元素(位置),依次分步解决相邻问题----“捆绑法”;不相邻问题----“插空法”(ii)分类法:直接按特殊元素当选情况或特殊位置安排进行分类解决。
(2)间接法:符合条件数等于无限制条件数与不符合条件数的差。
例3 7名师生站成一排照相留念,其中老师1人,男学生4人,女学生2人,在下列情况下,各有多少种不同站法?(1)两名女学生必须相邻而站;(2)4名男学生互不相邻;(3)若4名男学生身高都不等,按从高到低的顺序站;(4)老师不站中间,女学生不站两端。
例4(课本第19页例4)二、巩固训练:一个火车站有8股岔道,每股岔道只能停放1列火车,现需停放4列不同的火车,有多少种不同的停放方法?三、课堂小结:四、课后作业:1. 一部纪录影片在4个单位轮映,每一个单位放映1场,有多少种轮映次序?2.一个学生有20本不同的书,所有这些书能够以多少种不同的方式排在一个单层的书架上?3.学校要安排一场文艺晚会的11个节目的演出顺序,除第1个节目和最后1个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,共有多少种不同的排法?4.用0,1,2,3,4,5六个数字:(1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的五位数?(3)能组成多少个比1325大的无重复数字的四位数?二组合(第一课时)【学习目标】1. 理解组合、组合数的概念;2.会推导组合数公式,并会应用公式求值3.了解组合数的两个性质,并会求值、化简和证明【学习重难点】 1.组合的定义;组合数公式的应用(重点) 2. 组合数公式的推导(难点)3. 组合的概念及组合与组合数的区别(易错点)【学法指导】区分排列与组合的方法是首先弄清事件是什么,区分的标志是有无顺序。
排列教学设计第二课时

排列教学设计第二课时教学目标:1. 了解排列的定义和基本概念。
2. 学会计算排列问题的方式。
3. 能够解决实际问题中的排列情况。
教学准备:1. 排列相关的示例题目。
2. 板书和白板笔。
3. 学生练习册。
教学过程:一、引入 (10分钟)1. 教师可以用例子引入排列的概念,如从一组数字中找出所有可能的排列。
2. 向学生提问,询问他们对排列是否有了解,有没有使用过排列进行计算。
二、讲解排列的概念和定义 (15分钟)1. 板书排列的定义,并向学生解释清楚。
2. 解释排列的特点,即元素的顺序很重要。
3. 让学生举例说明他们对排列的理解。
三、排列的计算方法 (20分钟)1. 讲解如何计算排列的总数,采用公式的方式进行计算。
2. 利用板书和示例题目,解释排列总数的计算步骤。
3. 强调计算排列时乘法原理的应用。
四、练习与巩固 (25分钟)1. 学生在练习册上完成一些简单的排列练习题。
2. 教师逐个检查学生的答案,并解释出错的地方。
3. 给学生一些实际例子,让他们应用排列的知识解决问题。
五、拓展应用 (20分钟)1. 将排列应用到实际问题中,如组队、抽奖等情况。
2. 让学生分组讨论,提出不同的排列应用场景,向全班汇报他们的想法。
3. 引导学生思考更多实际问题中可能需要排列解决的情况。
六、总结 (10分钟)1. 教师回顾课堂内容,向学生总结排列的要点。
2. 对学生进行简要的概念检测,确保他们对排列有了基本的理解。
3. 加强对排列计算方法和应用的强调,鼓励学生在实际生活中运用排列知识。
拓展活动:1. 学生可以用排列的知识设计一个抽奖活动,然后向全班展示他们的设计方案。
2. 学生可以在家中观察生活中能够应用排列的场景,并记录下来,与同学分享。
评价方法:1. 教师在课堂上观察学生的参与情况并给予反馈。
2. 教师检查学生在练习册上的完成情况,给予批改和评价。
3. 教师可以进行简答题或应用题的小测验,以检查学生对排列的理解和应用能力。
高中数学排列组合教案

高中数学排列组合教案高中数学排列组合教案(精选篇1)教学内容:简单的排列和组合教学目标:1.知识能力目标:①通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数。
②初步培养有序地全面地思考问题的能力。
③培养初步的观察、分析、及推理能力。
2.情感态度目标:①感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣。
②初步培养有顺序地、全面地思考问题的意识。
③使学生在数学活动中养成与人合作的良好习惯。
教学重点:经历探索简单事物排列与组合规律的过程。
教学难点:初步理解简单事物排列与组合的不同。
教学准备:多媒体课件、数字卡片、1角、2角、5角的人民币。
教学过程:一、创设情境,引发探究师:今天老师带你们去一个很有趣的地方,哪呢?我们今天要到“数学广角”里去走一走、看一看。
二、操作探究,学习新知。
(一)组合问题l、看一看,说一说师:今天老师给大家带来了几件漂亮的衣服,你们来挑选吧。
(课件出示主题图)师引导思考:这么多漂亮的衣服,你们用一件上装在搭配一件下装可以怎么穿呢?(指名学生说一说)2、想一想,摆一摆(l)引导讨论:有这么多种不同的穿法,那怎样才能做到不遗漏、不重复呢?①学生小组讨论交流,老师参与小组讨论。
②学生汇报(2)引导操作:小组同学互相合作,把你们设计的穿法有序的贴在纸板上。
(要求:小组长拿出学具衣服图片、纸板。
)①学生小组合作操作摆,教师巡视参与小组活动。
②学生展示作品,介绍搭配方案。
③生生互相评价。
(3)师引导观察:第一种方案(按上装搭配下装)有几种穿法?(4种)第二种方案(按下装搭配上装)有几种穿法? (4种)师小结:不管是用上装搭配下装,还是用下装搭配上装,只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。
在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。
、操作探究,学习新知。
(二)排列问题1、初步感知排列(1)师:我们穿上漂亮的衣服,来到了数学广角,可是这有一扇密码门,(出示课件:密码门)我们只要说对密码,就可以到数学广角游玩了。
高中数学 第一章 计数原理 1.2 排列与组合 1.2.2 组合(第2课时)教案 新人教A版选修2-

1.2.2 组合第二课时教学目标知识与技能了解组合数的性质,会利用组合数的性质简化组合数的运算;能把一些计数问题抽象为组合问题解决,会利用组合数公式及其性质求解计数问题.过程与方法通过具体实例,经历把具体事例抽象为组合问题,利用组合数公式求解的过程.情感、态度与价值观能运用组合要领分析简单的实际问题,提高分析问题的能力.重点难点教学重点:组合数的性质、利用组合数公式和性质求解相关计数问题.教学难点:利用组合数公式和性质求解相关计数问题.教学过程引入新课提出问题1:判断以下问题哪个是排列问题,哪个是组合问题,并回顾排列和组合的区别和联系.(1)从A、B、C、D四个景点选出2个进行游览;(2)从甲、乙、丙、丁四个学生中选出2个人担任班长和团支部书记.活动设计:教师提问.活动成果:(1)是组合问题,(2)是排列问题.1.组合的概念:一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n 个不同元素中取出m个元素的一个组合.2.组合与排列的区别和联系:(1)区别:①排列有顺序,组合无顺序.②相同的组合只需选出的元素相同,相同的排列那么需选出的元素相同,并且选出元素的顺序相同.(2)联系:①都是从n个不同的元素中选出m(m≤n)个元素;②排列可以看成先组合再全排列.设计意图:复习组合的概念,检查学生的掌握情况.提出问题2:利用上节课所学组合数公式,完成以下两个练习: 练习1:求证:C m n =n m C m -1n -1.(本式也可变形为:mC m n =nC m -1n -1)练习2:计算:①C 310和C 710;②C 37-C 26与C 36;③C 411+C 511. 活动设计:学生板演.活动成果:练习2答案:①120,120 ②20,20 ③792.1.组合数的概念:从n 个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号C mn 表示.2.组合数的公式:C m n=A mn A m m =n(n -1)(n -2)…(n -m +1)m !或C mn =n !m !(n -m)!(n ,m∈N ,且m≤n).设计意图:复习组合数公式,为得到组合数的性质打下基础.探索新知提出问题1:由问题2练习中所求的几个组合数,你有没有发现一些规律,能不能总结并证明一下?活动设计:小组交流后请不同的同学总结补充. 活动成果:1.性质:(1)C mn =C n -mn ;(2)C mn +1=C mn +C m -1n .2.证明:(1)∵C n -mn =n !(n -m)![n -(n -m)]!=n !m !(n -m)!,又C mn =n !m !(n -m)!,∴C m n =C n -mn .(2)C m n +C m -1n =n !m !(n -m)!+n !(m -1)![n -(m -1)]!=n !(n -m +1)+n !m m !(n -m +1)!=(n -m +1+m)n !m !(n -m +1)!=(n +1)!m !(n -m +1)!=C mn +1,∴C mn +1=C mn +C m -1n .设计意图:引导学生自己推导出组合数的两个性质.运用新知类型一:组合数的性质 1(1)计算:C 37+C 47+C 58+C 69; (2)求证:C nm +2=C nm +2C n -1m +C n -2m .(1)解:原式=C 48+C 58+C 69=C 59+C 69=C 610=C 410=210;(2)证明:右边=(C nm +C n -1m )+(C n -1m +C n -2m )=C nm +1+C n -1m +1=C nm +2=左边. [巩固练习]求证:C 1n +2C 2n +3C 3n +…+nC nn =n2n -1.证明:左边=C 1n +2C 2n +3C 3n +…+nC nn =C 11C 1n +C 12C 2n +C 13C 3n +…+C 1n C nn ,其中C 1i C in 可表示先在n 个元素里选i 个,再从i 个元素里选一个的组合数.设某班有n 个同学,选出假设干人(至少1人)组成兴趣小组,并指定一人为组长.把这种选法按取到的人数i 分类(i =1,2,…,n),那么选法总数即为原式左边.现换一种选法,先选组长,有n 种选法,再决定剩下的n -1人是否参加,每人都有两种可能,所以组员的选法有2n -1种,所以选法总数为n2n -1种.显然,两种选法是一致的,故左边=右边,等式成立.[变练演编]求证:C 1n +22C 2n +32C 3n +…+n 2C nn =n(n +1)2n -2.证明:由于i 2C in =C 1i C 1i C in 可表示先在n 个元素里选i 个,再从i 个元素里选两个(可重复)的组合数,所以原式左端可看成在上题中指定一人为组长的基础上,再指定一人为副组长(可兼职)的组合数.对原式右端我们可分为组长和副组长是否是同一个人两种情况.假设组长和副组长是同一个人,那么有n2n -1种选法;假设组长和副组长不是同一个人,那么有n(n-1)2n -2种选法.∴共有n2n -1+n(n -1)2n -2=n(n +1)2n -2种选法.显然,两种选法是一致的,故左边=右边,等式成立.类型二:有约束条件的组合问题2在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件. (1)有多少种不同的抽法?(2)抽出的3件中恰好有1件是次品的抽法有多少种? (3)抽出的3件中至少有1件是次品的抽法有多少种?解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有 C 3100=100×99×981×2×3=161 700种.(2)从2件次品中抽出1件次品的抽法有C 12种,从98件合格品中抽出2件合格品的抽法有C 298种,因此抽出的3件中恰好有1件次品的抽法有C 12×C 298=9 506种.(3)解法1 从100件产品抽出的3件中至少有1件是次品,包括有1件次品和有2件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法有C 12×C 298种,因此根据分类加法计数原理,抽出的3件中至少有一件是次品的抽法有C 12×C 298+C 22×C 198=9 604种.解法2抽出的3件产品中至少有1件是次品的抽法的种数,也就是从100件中抽出3件的抽法种数减去3件中都是合格品的抽法的种数,即C 3100-C 398=161 700-152 096=9 604种.点评:“至少〞“至多〞的问题,通常用分类法或间接法求解. [巩固练习]1.4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有C 34,C 24×C 16,C 14×C 26种方法,所以,一共有C 34+C 24×C 16+C 14×C 26=100种方法. 解法二:(间接法)C 310-C 36=100.2.按以下条件,从12人中选出5人,有多少种不同选法? (1)甲、乙、丙三人必须当选; (2)甲、乙、丙三人不能当选; (3)甲必须当选,乙、丙不能当选; (4)甲、乙、丙三人只有一人当选; (5)甲、乙、丙三人至多2人当选;(6)甲、乙、丙三人至少1人当选;解:(1)C 33C 29=36;(2)C 03C 59=126;(3)C 11C 49=126;(4)C 13C 49=378; (5)方法一:(直接法)C 03C 59+C 13C 49+C 23C 39=756, 方法二:(间接法)C 512-C 33C 29=756;(6)方法一:(直接法)C 13C 49+C 23C 39+C 33C 29=666, 方法二:(间接法)C 512-C 03C 59=666. [变练演编]有翻译人员11名,其中5名精通英语、4名精通法语,还有2名英、法语皆通.现欲从中选出8名,其中4名译英语,另外4名译法语,一共可列多少X 不同的?解:分三类:第一类:2名英、法语皆通的均不选,有C 45C 44=5种;第二类:2名英、法语皆通的选一名,有C 12C 35C 44+C 12C 45C 34=60种; 第三类:2名英、法语皆通的均选,有A 22C 35C 34+C 25C 44+C 45C 24=120种. 根据分类加法计数原理,共有5+60+120=185种不同的. [达标检测]1.计算:(1)C 399+C 299;(2)2C 38-C 39+C 28.2.从6位同学中选出4位参加一个座谈会,要求X 、王两人中至多有一个人参加,那么有不同的选法种数为________.3.从7人中选出3人参加活动,那么甲、乙两人不都入选的不同选法共有______种. 答案:课堂小结1.知识收获:组合数的性质,用组合数公式解决简单的计数问题. 2.方法收获:化归的思想方法. 3.思维收获:化归的思想方法.补充练习[基础练习]1.求证:(1)C mn +1=C m -1n +C mn -1+C m -1n -1;(2)C m +1n +C m -1n +2C mn =C m +1n +2.2.某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有______.3.100件产品中有合格品90件,次品10件,现从中抽取4件检查.(1)都不是次品的取法有多少种?(2)至少有1件次品的取法有多少种?(3)不都是次品的取法有多少种?4.从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,那么一共有多少种不同的取法?38=56;3.解:(1)C490=2 555 190;(2)C4100-C490=C110C390+C210C290+C310C190+C410=1 366 035;(3)C4100-C410=C190C310+C290C210+C390C110+C490=3 921 015.4.解:分为三类:1奇4偶有C16C45;3奇2偶有C36C25;5奇有C56,所以一共有C16C45+C36C25+C56=236种不同的取法.[拓展练习]现有8名青年,其中有5名能胜任英语翻译工作;有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,那么有多少种不同的选法?解:我们可以分为三类:①让两项工作都能担任的青年从事英语翻译工作,有C24C23;②让两项工作都能担任的青年从事德语翻译工作,有C34C13;③让两项工作都能担任的青年不从事任何工作,有C34C23.所以一共有C24C23+C34C13+C34C23=42种方法.设计说明本节课是组合的第二课时,本节课的主要目标有两个,一个是学生在教师的问题驱动下自主探究组合数的性质,并在老师的带领下,体会组合数公式的应用;另一个是体会把具体计数问题化归为组合问题的过程.本节课的设计特点是:教师的问题是主线,学生的探究活动是主体,师生合作,共同完成知识和方法的总结.备课资料相同元素分组分配问题解决方法:档板法.(1)参加联赛的10个名额要分配到高三年级的8个班级中,那么每个班级至少一个名额的分配方法有______种;(2)10个相同的小球全部放入编号为1、2、3的盒子中,那么使每个盒子中球的个数不小于盒子的编号数的方法有______种.解析:利用档板法.(1)相当于在排成一排的10个“1〞所形成的9个空隙中,选出7个插入7块档板的方法,每一种插板方法对应一种名额分配方法,有C79种方法;(2)可以首先在2、3号盒子中先分别放入1、2个球,然后在剩余的7个球排成一排形成的6个空隙中选出2个空隙各插入一块板,有C26种方法.注:档板法的使用比较灵活,且对数学思想方法要求较高,现利用档板法证明一个不定方程的自然数解的组数的结论:方程x1+x2+…+x m=n(m,n∈N,m,n≥2)的自然数解有C m-1n+m-1组.简证:转化为正整数解的组数,利用档板模型有:作代换y i=x i+1(i=1,2,…,m),那么方程x1+x2+…+x m=n的自然数解的组数,即y1+y2+…+y m=n+m的正整数解的组数,相当于把n+m个球分成m份,每份至少1个的方法数,即在n+m-1个球的间隙中放置m-1个档板的方法种数,即C m-1n+m-1.。
高中数学教案——排列 第二课时

课 题: 10.2排列 (二)教学目的: 1进一步理解排列和排列数的概念,理解阶乘的意义,会求正整数的阶乘;2.掌握排列数的另一个计算公式,并能熟练应用公式解决排列数的化简、证明等问题教学重点:排列数公式的应用教学难点:排列数公式的应用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据笔者观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.排列、组合问题解题方法比较灵活,问题思考的角度不同,就会得到不同的解法.若选择的切入角度得当,则问题求解简便,否则会变得复杂难解.教学中既要注意比较不同解法的优劣,更要注意提醒学生体会如何对一个问题进行认识思考,才能得到最优方法.教学过程:一、复习引入:1 分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++ 种不同的方法2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤所以符号m n A 只表示排列数,而不表示具体的排列5.排列数公式:(1)(2)(1)m n A n n n n m =---+ (,,m n N m n *∈≤) 说明:(1)公式特征:第一个因数是n ,后面每一个因数比它前面一个 少1,最后一个因数是1n m -+,共有m 个因数;(2)全排列:当n m =时即n 个不同元素全部取出的一个排列全排列数:(1)(2)21!n n A n n n n =--⋅= (叫做n 的阶乘)二、讲解新课:1 阶乘的概念:n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列,这时(1)(2)321n n A n n n =--⋅⋅ ;把正整数1到n 的连乘积,叫做n的阶乘表示:!n , 即n n A =n 规定0!1=.2.排列数的另一个计算公式:(1)(2)(1)m n A n n n n m =---+ (1)(2)(1)()321()(1)321n n n n m n m n m n m ---+-⋅⋅=---⋅⋅ =!()!n n m -即 m n A =!()!n n m - 三、讲解范例:例1.计算:①66248108!A A A +-;② 11(1)!()!n m m A m n ----. 解:①原式876543216543218710987⨯⨯⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=⨯-⨯⨯⨯ =5765432513056(89)623⨯⨯⨯⨯⨯=-⨯-; ②原式(1)!1(1)!()!()!m m m n m n -==---. 例2.解方程:3322126x x x A A A +=+.解:由排列数公式得:3(1)(2)2(1)6(1)x x x x x x x --=++-,∵3x ≥,∴ 3(1)(2)2(1)6(1)x x x x --=++-,即2317100x x -+=, 解得 5x =或23x =,∵3x ≥,且x N *∈,∴原方程的解为5x =. 例3.解不等式:2996x x A A ->. 解:原不等式即9!9!6(9)!(11)!x x >⋅--, 也就是16(9)!(11)(10)(9)!x x x x >--⋅-⋅-,化简得:2211040x x -+>, 解得8x <或13x >,又∵29x ≤≤,且x N *∈,所以,原不等式的解集为{}2,3,4,5,6,7.例4.求证:(1)n m n m n n n m A A A --=⋅;(2)(2)!135(21)2!n n n n =⋅⋅-⋅ .证明:(1)!()!!()!m n m n n m n A A n m n n m --⋅=-=-n n A =,∴原式成立(2)(2)!2(21)(22)43212!2!n n n n n n n n ⋅-⋅-⋅⋅⋅=⋅⋅ 2(1)21(21)(23)312!n n n n n n n ⋅-⋅⋅--⋅=⋅ !13(23)(21)!n n n n ⋅⋅--== 135(21)n ⋅⋅-= 右边 ∴原式成立 说明:(1)解含排列数的方程和不等式时要注意排列数m n A 中,,m n N *∈且m n ≤这些限制条件,要注意含排列数的方程和不等式中未知数的取值范围;(2)公式(1)(2)(1)m n A n n n n m =---+ 常用来求值,特别是,m n 均为已知时,公式m n A =!()!n n m -,常用来证明或化简 例5.化简:⑴12312!3!4!!n n -++++ ;⑵11!22!33!!n n ⨯+⨯+⨯++⨯ ⑴解:原式11111111!2!2!3!3!4!(1)!!n n =-+-+-++-=- 11!n - ⑵提示:由()()1!1!!!n n n n n n +=+=⨯+,得()!1!!n n n n ⨯=+-, 原式()1!1n =+-说明:111!(1)!!n n n n -=--. 四、课堂练习: 1.若!3!n x =,则x = ( ) ()A 3n A ()B 3n n A - ()C 3n A ()D 33n A -2.与37107A A ⋅不等的是 ( )()A 910A ()B 8881A ()C 9910A ()D 1010A 3.若532m mA A =,则m 的值为 ( ) ()A 5 ()B 3 ()C 6 ()D 74.计算:5699610239!A A A +=- ; 11(1)!()!n m m A m n ---=⋅- . 5.若11(1)!242m m m A --+<≤,则m 的解集是 . 6.(1)已知101095m A =⨯⨯⨯ ,那么m = ;(2)已知9!362880=,那么79A = ;(3)已知256n A =,那么n = ;(4)已知2247n n A A -=,那么n = .7.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?8.一部纪录影片在4个单位轮映,每一单位放映1场,有多少种轮映次序? 答案:1. B 2. B 3. A 4. 1,1 5. {}2,3,4,5,66. (1) 6 (2) 181440 (3) 8 (4) 57. 16808. 24五、小结 :排列数公式的两种形式及其应用六、课后作业:七、板书设计(略)八、课后记:。
高中数学排列与组合教案

高中数学排列与组合教案教学目标:1. 理解排列与组合的概念。
2. 能够应用排列与组合的知识解决实际问题。
3. 提高学生的逻辑思维能力和解决问题的能力。
教学内容:1. 排列的概念及其性质。
2. 组合的概念及其性质。
3. 排列与组合的应用。
教学过程:第一课时:1. 引入排列与组合的概念,通过实际例子引发学生对排列与组合的认识。
2. 讲解排列的定义和性质,例如排列中元素不重复出现的特点。
3. 给学生布置一些排列练习题,让他们熟悉排列的运算方法和规律。
第二课时:1. 复习排列的概念和性质。
2. 讲解组合的定义和性质,例如组合中元素可重复出现的特点。
3. 给学生布置一些组合练习题,让他们熟悉组合的运算方法和规律。
第三课时:1. 复习排列与组合的概念和性质。
2. 讲解排列与组合的应用,例如在排队、选做题目等实际问题中的运用。
3. 给学生布置一些综合排列与组合的练习题,让他们能够灵活运用排列与组合的知识解决问题。
教学反馈:1. 对学生在排列与组合方面的理解进行总结和反馈。
2. 引导学生思考排列与组合在日常生活中的应用,并展开讨论。
教学评价:通过作业、课堂表现和练习题的表现评价学生对排列与组合的掌握程度和应用能力。
教学延伸:鼓励学生深入学习排列与组合知识,并拓展到更高级的数学领域,如概率论等。
教学资源:教科书、课件、练习题。
教学提醒:教师应注意引导学生通过实例来理解排列与组合的概念,激发学生的学习兴趣和思考能力。
同时,要关注学生的学习状态,及时调整教学方法,确保学生的学习效果。
人教版高中数学 教案+学案综合汇编 第1章:排列组合和概率 课时02

人教版高中数学教案+学案综合汇编第章排列组合和概率排列【复习基本原理】1.加法原理做一件事,完成它可以有n类办法,第一类办法中有m1种不同的方法,第二办法中有m2种不同的方法……,第n办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+m3+…m n种不同的方法.2.乘法原理做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,.那么完成这件事共有N=m1⨯m2⨯m3⨯…⨯m n种不同的方法.3.两个原理的区别:【练习1】1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同的机票?2.由数字1、2、3可以组成多少个无重复数字的二位数?请一一列出.【基本概念】1.什么叫排列?从n个不同元素中,任取m(nm )个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n个不同元素中取出m个元素的一个排列....2.什么叫不同的排列?元素和顺序至少有一个不同.3.什么叫相同的排列?元素和顺序都相同的排列.4.什么叫一个排列?【例题与练习】1.由数字1、2、3、4可以组成多少个无重复数字的三位数?2.已知a、b、c、d四个元素,①写出每次取出3个元素的所有排列;②写出每次取出4个元素的所有排列.【排列数】1. 定义:从n 个不同元素中,任取m(n m ≤)个元素的所有排列的个数叫做从n个元素中取出m 元素的排列数,用符号m n p 表示.用符号表示上述各题中的排列数.2. 排列数公式:m n p =n(n-1)(n-2)…(n-m+1)=1n p ;=2n p ;=3np ;=4n p ;计算:25p = ; 45p = ;215p = ; 【课后检测】1. 写出:① 从五个元素a 、b 、c 、d 、e 中任意取出两个、三个元素的所有排列; ② 由1、2、3、4组成的无重复数字的所有3位数.③ 由0、1、2、3组成的无重复数字的所有3位数.2. 计算:① 3100p ② 36p ③ 2848p 2p - ④712812p p。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:10.2排列(二)
教学目的:
1进一步理解排列和排列数的概念,理解阶乘的意义,会求正整数的阶乘;
2.掌握排列数的另一个计算公式,并能熟练应用公式解决排列数的化简、证明等问题
教学重点:排列数公式的应用
教学难点:排列数公式的应用
授课类型:新授课
课时安排:1课时
教具:多媒体、实物投影仪
内容分析:
学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如
果不需要,是组合问题;否则是排列问题.
排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据笔者观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.
排列、组合问题解题方法比较灵活,问题思考的角度不同,就会得到不同的解法.若选择的切入角度得当,则问题求解简便,否则会变得复杂难解.教学中既要注意比较不同解法的优劣,更要注意提醒学生体会如何对一个问题进行认识思考,才能得到最优方法.
教学过程:
一、复习引入:
1 分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法
2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法
3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....
排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....
说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;
(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同
4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排
列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示
注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的顺序.....
排成一列,不是数;“排列数”是指从n 个不同元
素中,任取m (m n ≤所以符号m n A 只表示排列数,而不表示具体的排列
5.排列数公式:(1)(2)(1)m n A n n n n m =---+(,,m n N m n *∈≤)
说明:(1)公式特征:第一个因数是n ,后面每一个因数比它前面一个 少1,最后一个因数是1n m -+,共有m 个因数;
(2)全排列:当n m =时即n 个不同元素全部取出的一个排列
全排列数:(1)(2)21!n n A n n n n =--⋅=(叫做n 的阶乘)
二、讲解新课: 1 阶乘的概念:n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个
全排列,这时(1)(2)321n n A n n n =--⋅⋅;把正整数1到n 的连乘积,叫做n 的阶乘表示:!n , 即n n A =n 规定0!1=.
2.排列数的另一个计算公式:
(1)(2)(1)m n A n n n n m =---+
(1)(2)(1)()321()(1)321n n n n m n m n m n m ---+-⋅⋅=---⋅⋅=!()!
n n m - 即 m n A =!()!
n n m - 三、讲解范例:
例1.计算:①66248108!A A A +-;② 11
(1)!()!n m m A m n ----. 解:①原式876543216543218710987
⨯⨯⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=⨯-⨯⨯⨯ =5765432513056(89)623
⨯⨯⨯⨯⨯=-⨯-; ②原式(1)!1(1)!()!()!
m m m n m n -==---.
例2.解方程:3322126x x x A A A +=+.
解:由排列数公式得:3(1)(2)2(1)6(1)x x x x x x x --=++-,
∵3x ≥,∴ 3(1)(2)2(1)6(1)x x x x --=++-,即2317100x x -+=, 解得 5x =或23
x =,∵3x ≥,且x N *∈,∴原方程的解为5x =. 例3.解不等式:2996x x A A ->. 解:原不等式即9!9!6(9)!(11)!
x x >⋅--, 也就是16(9)!(11)(10)(9)!
x x x x >--⋅-⋅-,化简得:2211040x x -+>, 解得8x <或13x >,又∵29x ≤≤,且x N *∈,
所以,原不等式的解集为{}2,3,4,5,6,7.
例4.求证:(1)n m n m n n n m A A A --=⋅;(2)(2)!135(21)2!n n n n =⋅⋅-⋅.
证明:(1)!()!!()!
m n m n n m n A A n m n n m --⋅=-=-n n A =,∴原式成立(2)(2)!2(21)(22)43212!2!n n n n n n n n ⋅-⋅-⋅⋅⋅=⋅⋅
2(1)21(21)(23)312!n n n n n n n ⋅-⋅⋅--⋅=⋅ !13(23)(21)!n n n n ⋅⋅--==135(21)n ⋅⋅-=右边 ∴原式成立 说明:(1)解含排列数的方程和不等式时要注意排列数m n A 中,,m n N *
∈且m n ≤这些限制条件,要注意含排列数的方程和不等式中未知数的取值范围;
(2)公式(1)(2)(1)m n A n n n n m =---+常用来求值,特别是,m n 均为已
知时,公式m n A =!()!
n n m -,常用来证明或化简 例5.化简:⑴12312!3!4!!n n -++++;⑵11!22!33!!n n ⨯+⨯+⨯++⨯ ⑴解:原式11111111!2!2!3!3!4!(1)!!
n n =-+-+-++-=-11!n - ⑵提示:由()()1!1!!!n n n n n n +=+=⨯+,得()!1!!n n n n ⨯=+-, 原式()1!1n =+- 说明:111!(1)!!
n n n n -=--. 四、课堂练习: 1.若!3!n x =
,则x = ( ) ()A 3n A ()B 3n n A - ()C 3n A ()D 33n A -
2.与37107
A A ⋅不等的是 ( ) ()A 910A ()
B 8881A ()
C 9910A ()
D 1010A
3.若532m m
A A =,则m 的值为 ( ) ()A 5 ()
B 3 ()
C 6 ()
D 7
4.计算:5699610
239!A A A +=- ; 11(1)!()!n m m A m n ---=⋅- . 5.若11
(1)!242m m m A --+<≤,则m 的解集是 . 6.(1)已知101095m A =⨯⨯⨯,那么m = ;
(2)已知9!362880=,那么79A = ;
(3)已知256n A =,那么n = ;
(4)已知2247n n A A -=,那么n = .
7.一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?
8.一部纪录影片在4个单位轮映,每一单位放映1场,有多少种轮映次序? 答案:1. B 2. B 3. A 4. 1,1 5. {}2,3,4,5,6
6. (1) 6 (2) 181440 (3) 8 (4) 5
7. 1680
8. 24
五、小结 :排列数公式的两种形式及其应用
六、课后作业:
七、板书设计(略)
八、课后记:。