椭圆中焦点三角形的性质

合集下载

椭圆的性质二 焦点三角形的性质

椭圆的性质二    焦点三角形的性质

||PF|2 |PF|1
a
ex
(a
ex)
2ex
2
4 5
x

5
x
0

∴0<|F2N|<8,∴0<|OM|<4.
若 P 在椭圆的右半部分时,同样可得出 0<|OM|<4,故选:B.
方法二 极限法,当 P 在左端点时,|OM|=4,在 P 上顶点时,|OM|=0,∴0<|OM|<4.
三 课后练习:
1.(2019·郑州第二次质量预测)已知椭圆 C:ax22+by22=1(a>b>0)的左、右焦点分别为 F1,F2,离心率为23,
x2
令椭圆方程为
a2
y2 b2
1(a b 0)
则由椭圆的定义有 | PF1 | | PF2 | 2a , | F1F2 | 2c ,

| PF1 | | PF2 |
| F1F2 | 2c
sin PF2F1 sin PF1F2 sin F1PF2
又 ∵ PF1F2 5PF2F1 , ∴ PF1F2 750 , PF2F1 150 ,
4.(2019
南昌模拟)P
为椭圆 x2 +y2=1 25 9
上一点,F1,F2
分别是椭圆的左、右焦点,过
P
点作
PH⊥F1F2

点 H,若 PF1⊥PF2,则|PH|=( )
A.25
B.8
4
3
C.8
D.9
4
解析:选 D 由椭圆 x2 +y2=1 得 a2=25,b2=9, 25 9
则 c= a2-b2= 25-9=4,∴|F1F2|=2c=8.由椭圆的定义可得|PF1|+|PF2|=2a=10,
A. (0, 3 ] 2

椭圆中的焦点三角形

椭圆中的焦点三角形

思路
1:当 F1PF2 最大时,由面积公: SF1PF2
b2tan 2源自可知,焦点三角形的面积也达到最大.
所以焦点三角形的面积最大时,P 在短轴的端点处.
思路 2: S 1 ×底×高. 点 P 的纵坐标的绝对值
2
F1F2 2c
当 P 点在椭圆上运动时,纵坐标的绝对值在短轴的端点处取得最大值,
所以 P 在短轴端点处焦点三角形取得面积的最大值.
证明:在 F1PF2 中,由余弦定理得:
cos
PF12 PF22 F1F22 2PF1 • PF2
(PF1 PF2 )2 2PF1 • PF2 4c2 2PF1 • PF2
4a2 4c2 2PF1 • PF2
1 2a2 2c2 PF1 • PF2
1
2a2 2c2 ( PF1 PF2 )2
1. 建构数学
椭圆的焦点三角形:
(1)定义:椭圆上任意一点(异于长轴端点)与椭 圆的两个焦点所组成的三角形叫椭圆的焦点三 角形.
(2)焦点三角形构成要素之间的关系
以椭圆方程为
x2 a2
y2 b2
1(a
b
0) 为例,两焦点分别为 F1, F2 , 椭圆上
任意一点为 P,设焦点三角形 PF1F2
①焦点三角形的构成: 三边:两条焦半径 PF1, PF2 ,焦距 F1F2 , 三角:设 F1PF2 , PF1F2 , PF2F1 .
1时,点
P
个数为
0

② max
90,
2b2 a2
1时,点
P
个数为
2

③ max
90,
2b2 a2
1时,点
P
个数为
4

2020高中数学 2.2.4 椭圆中焦点三角形的性质及应用教案 新人教A版选修1-1

2020高中数学 2.2.4 椭圆中焦点三角形的性质及应用教案 新人教A版选修1-1

高中数学 2.2.4 椭圆中焦点三角形的性质及应用教案 新人教A 版选修1-1,21θ=∠PF F 则2tan221θb S PF F =∆。

θcos 2)2(2122212212PF PF PF PF F F c -+== )cos 1(2)(21221θ+-+=PF PF PF PF θθθcos 12)cos 1(244)cos 1(24)(222222121+=+-=+-+=∴b c a c PF PF PF PF 1222121sin sin tan 21cos 2F PF b S PF PF b θθθθ∆∴===+ 性质二:已知椭圆方程为),0(12222>>=+b a by a x 左右两焦点分别为,,21F F 设焦点三角形21F PF ,若21PF F ∠最大,则点P 为椭圆短轴的端点。

证明:设),(o o y x P ,由焦半径公式可知:o ex a PF +=1,o ex a PF -=1 在21PF F ∆中,2122121212cos PF PF F F PF PF -+=θ21221221242)(PF PF c PF PF PF PF --+=1))((24124422122--+=--=o o ex a ex a b PF PF c a =122222--ox e a b a x a ≤≤-0 22a x o ≤∴性质三:已知椭圆方程为),0(12222>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ证明:设,,2211r PF r PF ==则在21PF F ∆中,由余弦定理得:1222242)(2cos 212221221221212212221--=--+=-+=r r c a r r c r r r r r r F F r r θ.2112221)2(222222222122e a c a r r c a -=--=-+-≥ 命题得证。

椭圆中焦点三角形的性质及应用

椭圆中焦点三角形的性质及应用

椭圆中焦点三角形的性质及应用
又,故满足:故为直角三角形、说明:考查定义、利用已知、发挥联想,从而解题成功、性质一:已知椭圆方程为两焦点分别为设焦点三角形中则。

性质二:已知椭圆方程为左右两焦点分别为设焦点三角形,若最大,则点P为椭圆短轴的端点。

证明:设,由焦半径公式可知:,在中, = 性质三:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为性质四:已知椭圆方程为两焦点分别为设焦点三角形中则证明:设则在中,由余弦定理得:
命题得证。

(2000年高考题)已知椭圆的两焦点分别为若椭圆上存在一点使得求椭圆的离心率的取值范围。

简解:由椭圆焦点三角形性质可知即 ,于是得到的取值范围是性质五:已知椭圆方程为两焦点分别为设焦点三角形,则椭圆的离心率。

由正弦定理得:由等比定理得:而,∴。

已知椭圆的焦点是F1(-1,0)、F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项.(1)求椭圆的方程;(2)若点P在第三象限,且∠PF1F2=120,求tanF1PF2.解:(1)由题设2|F1F2|=|PF1|+|PF2|∴2a=4,又2c=2,∴b=∴椭圆的方程为=1.(2)设∠F1PF2=θ,则∠PF2F1=60-θ椭圆的离心率则,整理得:5sinθ=(1+cosθ)∴故,tanF1PF2=tanθ=.
第 1 页共 1 页。

马振保 椭圆焦点三角形的性质

马振保  椭圆焦点三角形的性质

椭圆焦点三角形的性质马振保椭圆是现行高中解析几何学的重要内容之一,且圆锥曲线知识既是高中数学的重点,又是难点.而椭圆焦点三角形相关问题.在求解这类问题时,许多学生常常感到束手无策,部分学生由于计算量大的繁锁,产生厌学数学的情绪.为了解除这种困惑,培养或提高学生学习数学的兴趣,让学生掌握一定的解题方法或数学思想是很必要的.在数学中,我们常常是利用性质去讨论问题,因此,文章首先探讨椭圆焦点三角形的性质,然后再讨论这些性质的应用.椭圆上一点与其两焦点所构成的三角形叫做椭圆的焦点三角形.椭圆焦点三角形的性质以椭圆)0(12222>>=+b a by a x 的两个焦点1F ,2F 及椭圆上任意一点P (除长轴上两个端点外)为顶点的21PF F ∆,叫做椭圆的焦点三角形.设21PF F ∠=θ,21F PF ∠=α,12F PF ∠=β,椭圆的离心率为e ,则有以下性质:图1性质1 θcos 12221+=⋅b PF PF . 证明:在21PF F ∆中,由余弦定理,有2221212221)2(cos 2c F F PF PF PF PF ==⋅⋅-+θa PF PF 221=+221222142a PF PF PF PF =⋅++∴2212124cos 224c PF PF PF PF a =⋅⋅-⋅-∴θ整理,得.cos 12221θ+=⋅b PF PF例1 如图2:1F 、2F 分别为椭圆)0(12222>>=+b a by a x 的左、右焦点,点P 在椭圆上,2POF ∆是面积为1的正三角形,求2b 的值.图2分析:此题按常规思路是从12=∆POF S 入手,即=S 224360sin 21c PO OF =⋅︒,求得.3342=c 所以点P 的坐标分别为2c ,c 23.由于点P 在椭圆上,有⎪⎩⎪⎨⎧=+=+22222221434ac b bc a c 解此方程组就可得到2b 的值.但这涉及到解二元二次方程组,计算量很大,非常麻烦.若用性质1求解可使运算得以简化.解:连接,1PF 则︒=∠9021PF F , 有21221PF F POF S S ∆∆=︒⋅⋅⋅=∴90sin 2121121PF PF.290sin 90cos 1241122=∴⋅+⋅=∴︒︒b b 性质2 .2tan221θ⋅=∆b S PF F证明:由性质1得θsin 212121⋅⋅⋅=∆PF PF S PF F .2tan cos 1sin sin cos 1221222θθθθθ⋅=+⋅=⋅+⋅=b b b 例2 已知1F 、2F 是椭圆1256422=+y x 的两个焦点,P 是椭圆上任一点,且321π=∠PF F ,求21PF F ∆的面积.分析:如果设P 点的坐标为),(y x ,由P 点在已知椭圆上且321π=∠PF F ,利用这两个条件,列出关于x ,y 的两个方程,解出x ,y .再求21PF F ∆的面积,这种方法,运算量大且过程繁杂,须另寻捷径.知道321π=∠PF F ,可以直接利用性质2求解,使运算量简化.解:2tan221θ⋅=∆b S PF F.33256tan2521=⋅=∴∆πPF F S 例3已知点),(00y x P )0(0>y 是椭圆)0(12222>>=+b a by a x 上任一点,且θ=∠21PF F .求证:2tan 20θ⋅=c b y . 证明: 0212221211y c h F F S PF F ⋅⋅=⋅⋅=∆ 2tan221θ⋅=∆b S PF F=⋅⋅∴0221y c 2tan 2θ⋅b00>y.2tan 20θ⋅=∴c b y例4 点P 是椭圆14522=+y x 上一点,以点P 以及焦点1F 、2F 为顶点的三角形的面积等于1,求点P 的坐标.分析:要求点P 的坐标,不妨设P 点坐标为),(00y x ,由P 点在已知椭圆上和21PF F ∆的面积等于1,可列两个方程,解方程可得点P 的坐标.此题也可在例3的基础上进行求解.解:设P 点坐标为),(00y x ,则有cc S c b y PF F 12tan 2120==⋅=∆θ122=-=b a c.1100±=∴=∴y y把10±=y 代入14522=+y x 得.2150±=x .1215121512151215),),(,),(,),(,坐标为(点----∴P 性质3)12arccos(22-≤<ab O θ.证明:由正弦定理,有θαβsin sin sin 2121F F PF PF ==)](180sin[sin sin sin sin sin 2121βαβαθβα+-+=+=+∴F F PF PF2cos2sin 22cos2sin2)sin(sin sin βαβαβαβαβαβα+⋅+⋅-+⋅=++=2sin 12cos 12cos 2cosθβαβαβα=+≤+-=θcos 12-= a PF PF 221=+)(44222221b a c F F -==θθcos 12cos 122222222-≤-∴-≤-∴b a a b a a即2222cos aa b -≥θ. 因为πθ<<0,所以 2222arccos a a b -≤θ.当点P 在长轴上的端点时,0=θ,这时,21PF F ∆不存在,因此,)12arccos(022-≤<ab θ.性质4 离心率 .2cos2cosβαβα-+=e 证明:由正弦定理,有)sin(sin sin sin 212121βαθαβ+===F F F F PF PF2cos2sin 22cos2sin2sin sin )sin(2121βαβαβαβαβαβα-⋅++⋅+=++=+∴PF PF F F .2cos2cosβαβα-+==∴e ac例5(2004年福建高考题)已知1F 、2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若2ABF ∆是正三角形,求这个椭圆的离心率.分析:由2ABF ∆是正三角形可知122AF AF =,根据椭圆的第一定义可求得a AF 2322⋅=.再由22130cos AF F F =︒可求得离心率e.若用性质4解题,求解更简便.解:根据已知条件有.30,902121︒︒=∠=∠A F F F AF (如图3).3330cos 60cos 23090cos23090cos2cos 2cos ==-+=-+=∴︒︒︒︒︒︒βαβαe图3性质5ee+-=⋅112tan2tanβα. 证明:由正弦定理,有θαβsin sin sin 2121F F PF PF ==βαβαβαθsin sin )sin(sin sin sin 2121++=+=+∴PF PF F F=++==∴βαβαsin sin )sin(a c e 2cos2sin 22cos2sin2βαβαβαβα-+++ 2sin2sin 2cos 2cos 2sin2sin 2cos 2cos 2cos 2cosβαβαβαβαβαβα⋅+⋅⋅-⋅=-+= 2tan2tan12tan 2tan 1βαβα⋅+⋅-= ee+-=⋅∴112tan2tanβα. 例 6 如图4,P 是椭圆12222=+by a x 上一点,1F 、2F 是焦点,已知,2,1221αα=∠=∠F PF F PF 求椭圆的离心率.图4分析:知道,2,1221αα=∠=∠F PF F PF 我们可以直接利用性质5解题. 解:由性质5有e e ee +-=⋅=⋅∴+-=⋅11cos 2cos 2sin cos sin 2cos 2sin1122tan 2tan 22αααααααααee +-=+-∴11cos cos cos 122ααα 化简,得.1cos 2-=αe以上五个椭圆焦点三角形的性质是高考考查的重点也是难点,值得我们去重视这部分内容的教学,而双曲线的焦点三角形性质可以类比椭圆的去学习。

椭圆焦点三角形的性质

椭圆焦点三角形的性质

椭圆的焦点三角形 基础再现: 已知椭圆22122:1(0)x y C a b a b+=>>的焦点为21,F F ,长轴端点为21,A A ,短轴端点为21,B B ,P 为椭圆上任意一点,O 为坐标原点.1. 焦半径1PF 的范围:[]c a c a +-,.类似的:OP 的范围:[]a b ,.2. 焦点三角形的周长:c a L 22+=.3.[]22221,b c b PF PF -∈⋅,当且仅当P 位于短轴端点时取得22c b -,长轴端点时取得2b . 4. 21PF F ∠在点P 位于短轴端点时取得最大值.类似的:21PA A ∠在点P 位于短轴端点时取得最大值.特别的:过焦点的所有弦中通径通径最短,通径:ab L 22= 5. 焦点三角形的面积: ⅰ.2121sin 21PF F PF PF S ∠⋅⋅=. ⅱ.p y c b b S =⋅=+⋅=2tan cos 1sin 22θθθ,当且仅当点P 位于短轴端点时面积取得最大值bc . 6.22121cos e PF F -≥∠,其中e 为椭圆离心率. 7. PF F F PF PF F e 212121sin sin sin ∠+∠∠=,其中e 为椭圆离心率. 实战演练1.已知椭圆()()221:1,3,0,3,02516x y C A C +=-,B 为椭圆上一点,则在ABC ∆中BC A sin sin sin +的值为 .2.已知21,F F 为椭圆221:12516x y C +=的两个焦点,过1F 的直线交椭圆于B A ,,且1222=+B F A F ,则=AB .3.如图,把椭圆2212516x y +=的长轴AB 分成8分,过每个分点作x 轴的垂线交椭圆的上半部分于1P ,2P ,……7P 七个点,F 是椭圆的一个焦点,则127......PF P F P F +++= .4.已知椭圆()012222>>=+b a b y a x 的左右焦点分别为F ₁(-c ,0)、F ₂(c,0),且椭圆上存在一点P 使得∠F ₁PF ₂ =90°,则椭圆离心率e 的取值范围是: .5.若P 是椭圆16410022=+y x 上的一点,1F 、2F 分别是其左右焦点,且︒=∠6021PF F ,则△21PF F 的面积=S ,点P 的坐标为 .6.已知椭圆1:222=+y ax C (a >1)的左右焦点分别为1F 、2F ,P 为椭圆上一点,且︒=∠6021PF F ,则||||21PF PF ⋅的值为 .7.已知椭圆14:22=+y x C 的左右焦点分别为1F 、2F , P 是椭圆上一点,当△21PF F 的面积为1时,21PF PF ⋅的值为 .8.已知椭圆22194x y +=的左右焦点分别为1F 、2F ,点P 为其上的动点,当12F PF ∠为钝角时,点P 横坐标的取值范围是 .9.已知椭圆221164x y +=的左右焦点分别为1F 、2F ,点M 为其上的动点,当12F MF ∆为直角三角形时,12F MF ∆的面积=S .若将第9题椭圆方程变为2212516x y +=,则12F MF ∆的面积=S . 10.已知椭圆221259x y +=的左右焦点分别为1F 、2F ,点P 为其上的动点,且1260PF F ∠= ,则12F PF ∆的面积=S .11.已知椭圆221259x y +=的左右焦点分别为1F 、2F ,点P 为其上的动点,直线1PF 的斜率为73,则12F PF ∆的面积=S .。

椭圆焦点三角形的性质

椭圆焦点三角形的性质




1 f P F1
PF 2 l S i n 一


t an
两个 交 点 ( O , 一6 ) 、 ( 0 , 6 ) 。若 点 P 的 横 坐标 为 0 , 则 点 P在圆 z +Y 一C 上 , 故 /F PF 2为直 角 ; 若 点
P 的横 坐标 ∈( 一a , 0 ) U( 0 , a ) , 则 点 P在圆 z 。 + Y 。 一C 外 , 故 F PF 为锐 角 。 当c >6时 , 椭 导 。
例 2 已知 F 1 、 F z 是椭圆 c: x z T y Z —l ( 口 >6
P F 2 。若 △PF F z的面积 为 9 , 则6 一
四个 交点 。联 立 +西 Y 一 1和 。 +Y 一c , 得 一
,, n 。



解: 由椭 圆焦 点三 角形 的性 质 2 , 知 9 —6 z t d , n
性质 1 : 设以原点为圆心, 以 椭 圆 的 两 个 焦 点 的
由c >b , 知 在 椭 圆 上 存 在 点 P, 使
F P F 是锐角、 直角、 钝角。 设点 P的横 坐标 为 。 由椭 圆焦 点 三 角 形 的 性 质 1及 其 探 究 , 知: 当 F PF 为 直 角 时 , z 一 ± 二 一 ± 3 ;当
2 r l
z ∈ f 一 互 , — - b 2 1 , 则 点P 在 圆 z z + z 一 ≥ 羔 2 ( 字) 一
f 内 , 故 F P F。 为钝 角 。
中学生数理亿. 赢I l 赢三使用
椭 园 焦 点 三 角 开 乡 白 勺J } 生质
一 甘 肃

秒杀题型 焦点三角形(椭圆与双曲线)

秒杀题型 焦点三角形(椭圆与双曲线)

2020年高考数学试题调研之秒杀圆锥曲线压轴题之秒杀题型三:椭圆、双曲线焦点三角形椭圆的焦点三角形:椭圆上任意一点P 与两焦点1F 、2F 构成的三角形:12PF F ∆。

秒杀题型一:性质:1.周长为定值:2()a c +。

2.12,F PF θ∠=当点P 靠近短轴端点时θ增大,当点P 靠近长轴端点时θ减小;与短轴端点重合时θ最大。

类比:(注:椭圆中端点三角形(长轴两端点与椭圆上一点构成)当P 在短轴端点时顶角最大。

)。

1.(2017年新课标全国卷I 文12)设A 、B 是椭圆C 1323=+m y x 长轴的两个端点,若C 上存在点M 满足︒=∠120AMB ,则m 的取值范围是()A.(][)+∞,91,0 B.(][)+∞,93,0 C.(][)+∞,41,0 D.(][)+∞,43,0【解析】:当03m <<时,椭圆的焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 60ab≥= ,即≥.得01m <≤;当3m >时,椭圆的焦点在y 轴上,要使C 上存在点M 满足120AMB ∠= ,则tan 60ab ≥= ,≥,得9m ≥,故m 的取值范围为(][)+∞,91,0 ,选A.秒杀题型二:3.三角形面积:212tan 22S c y c y b θ=⨯⨯=⨯=,max ,S bc =即P 与短轴端点重合时面积最大。

1.(高考题)已知1F ,2F 是椭圆1:2222=+by a x C )0(>>b a 的两个焦点,P 为椭圆C 上一点,21PF PF ⊥.若21F PF ∆的面积为9,则b =.【解析】:由椭圆焦点三角形面积公式得:94tanb 22==b π,3=∴b 。

〖母题1〗已知12,F F 是椭圆22195x y +=的焦点,点P 在椭圆上且123F PF π∠=,求12F PF ∆的面积.【解析】:由椭圆定义及余弦定理得:533。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

焦点三角形习题性质一:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为ab 22性质二:已知椭圆方程为),0(12222>>=+b a b y a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则2tan221θb S PF F =∆.证明:记2211||,||r PF r PF ==,由椭圆的第一定义得.4)(,2222121a r r a r r =+∴=+在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =--+θ 即.4)cos 1(242212c r r a =+-θ.cos 12cos 1)(222221θθ+=+-=∴b c a r r由任意三角形的面积公式得:2tan 2cos 22cos2sin2cos 1sin sin 2122222121θθθθθθθ⋅=⋅=+⋅==∆b b b r r S PF F ..2tan 221θb S PF F =∴∆同理可证,在椭圆12222=+bx a y (a >b >0)中,公式仍然成立.性质三:已知椭圆方程为),0(12222>>=+b a by a x 两焦点分别为,,21F F 设焦点三角形21F PF 中,21θ=∠PF F 则.21cos 2e -≥θ性质三证明:设,,2211r PF r PF ==则在21PF F ∆中,由余弦定理得:1222242)(2cos 212221221221212212221--=--+=-+=r r c a r r c r r r r r r F F r r θ.2112221)2(222222222122e a c a r r c a -=--=-+-≥ 命题得证。

例1. 若P 是椭圆16410022=+y x 上的一点,1F 、2F 是其焦点,且︒=∠6021PF F , 求△21PF F 的面积.例1.解法一:在椭圆16410022=+y x 中,,6,8,10===c b a 而.60︒=θ 记.||,||2211r PF r PF ==Θ点P 在椭圆上,∴由椭圆的第一定义得:.20221==+a r r在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方,得:.1443)(21221=-+r r r r.144340021=-∴r r 从而.325621=r r .336423325621sin 212121=⨯⨯==∆θr r S PF F 解法二:在椭圆16410022=+y x 中,642=b ,而.60︒=θ.336430tan 642tan221=︒==∴∆θb S PF F例2.已知P 是椭圆192522=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点,212121=,则△21PF F 的面积为( ) A. 33 B. 32 C. 3 D.33 解:设θ=∠21PF F ,则21cos 2121==θ,.60︒=∴θ .3330tan 92tan221=︒==∴∆θb S PF F 故选答案A.例3.已知椭圆191622=+y x 的左、右焦点分别是1F 、2F ,点P 在椭圆上. 若P 、1F 、2F 是一个直角三角形的三个顶点,则点P 到x 轴的距离为( ) A.59 B. 779 C. 49 D. 49或779解:若1F 或2F 是直角顶点,则点P 到x 轴的距离为半通径的长492=a b ;若P 是直角顶点,设点P 到x 轴的距离为h ,则945tan 92tan221=︒==∆θb S PF F ,又,7)2(2121h h c S PF F =⋅⋅=∆ 97=∴h ,.779=h 故选D.1. 椭圆1244922=+x y 上一点P 与椭圆两个焦点1F 、2F 的连线互相垂直,则△21PF F 的面积为( )A. 20B. 22C. 28D. 24 解:24,90221=︒==∠b PF F θ,∴2445tan 242tan 221=︒==∆θb S PF F .故选D.2. 椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积为1时,21PF PF ⋅的值为( )A. 0B. 1C. 3D. 6 解:设θ=∠21PF F ,Θ12tan2tan221===∆θθb S PF F ,∴︒=︒=90,452θθ,021=⋅PF PF .故选A.3. 椭圆1422=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积最大时,21PF PF ⋅的值为( )A. 0B. 2C. 4D. 2- 解:3,1,2===c b a ,设θ=∠21PF F ,Θ 2tan 2tan 221θθ==∆b S PF F ,∴当△21PF F 的面积最大时,θ为最大,这时点P 为椭圆短轴的端点,︒=120θ, ∴2120cos cos ||||22121-=︒=⋅=⋅a PF PF PF PF θ.故答案选D. 4.已知椭圆1222=+y ax (a >1)的两个焦点为1F 、2F ,P 为椭圆上一点,且︒=∠6021PF F ,则||||21PF PF ⋅的值为( )A .1B .31C .34D .32 解:︒==∠6021θPF F ,1=b ,3330tan 2tan221=︒==∆θb S PF F , 又Θ||||43sin ||||21212121PF PF PF PF S PF F ⋅=⋅=∆θ, ∴33||||4321=⋅PF PF ,从而34||||21=⋅PF PF . 故答案选C.5. 已知椭圆的中心在原点,对称轴为坐标轴,1F 、2F 为焦点,点P 在椭圆上,直线1PF 与2PF 倾斜角的差为︒=∠9021PF F ,△21PF F 的面积是20,且c/a=√5/3, 求椭圆的标准方程.解:设θ=∠21PF F ,则︒=90θ. Θ 2045tan 2tan 22221==︒==∆b b b S PF F θ,又Θ3522=-==a b a ace , ∴95122=-ab ,即952012=-a .解得:452=a .∴所求椭圆的标准方程为1204522=+y x 或1204522=+x y .专题2:离心率求法:1.若椭圆的两个焦点与它的短轴的两个端点是一个 正方形的四个顶点,则椭圆的离心率为( )1.解析:选A.如图所示,四边形B 1F 2B 2F 1为正方形,则△B 2OF 2为等腰直角三角形, ∴c a =22.2.若一个椭圆长轴的长度、短轴的长度和焦距 成等差数列,则该椭圆的离心率是( )2.解析:选B.由题意知2b =a +c ,又b 2=a 2-c 2,∴4(a 2-c 2)=a 2+c 2+2ac .∴3a 2-2ac -5c 2=0.∴5c 2+2ac -3a 2=0.∴5e 2+2e -3=0.∴e =35或e =-1(舍去).3.若椭圆的短轴长为6,焦点到长轴的一个端点的最近距离是1,则椭圆的离心率为________.3.解析:依题意,得b =3,a -c =1.又a 2=b 2+c 2,解得a =5,c =4,∴椭圆的离心率为e =c a =45. 答案:454.已知A 为椭圆x 2a 2+y 2b2=1(a >b >0)上的一个动点,直线AB 、AC 分别过焦点F 1、 F 2,且与椭圆交于B 、C 两点,若当AC 垂直于x 轴时,恰好有|AF 1|∶|AF 2|=3∶1,求该椭圆的离心率.4.解:设|AF 2|=m ,则|AF 1|=3m ,∴2a =|AF 1|+|AF 2|=4m . 又在Rt△AF 1F 2中,|F 1F 2|=|AF 1|2-|AF 2|2=22m .∴e =2c 2a =|F 1F 2|2a =22m 4m =22.5.如图所示,F 1、F 2分别为椭圆的左、右焦点,椭圆上点M 的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的23,求椭圆的离心率.5. 解:法一:设椭圆的长半轴、短半轴、半焦距长分别为a 、b 、c .则焦点为F 1(-c,0),F 2(c,0),M 点的坐标为(c ,23b ),则△MF 1F 2为直角三角形. 在Rt△MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2,即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a .所以b 2a 2=49.∴e 2=c 2a 2=a 2-b 2a 2=1-b 2a 2=59, ∴e =53.法二:设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),则M (c ,23b ).代入椭圆方程,得c 2a 2+4b29b2=1,所以c 2a 2=59,所以c a =53,即e =53.椭圆中焦点三角形的性质及应用(答案)性质二离心率求法:。

相关文档
最新文档