直流电机pid闭环数字控制设计

合集下载

PID控制PWM调节直流电机速度(12v)

PID控制PWM调节直流电机速度(12v)

本次设计主要研究的是PID控制技术在运动控制领域中的使用,纵所周知运动控制系统最主要的控制对象是电机,在不同的生产过程中,电机的运行状态要满足生产要求,其中电机速度的控制在占有至关重要的作用,因此本次设计主要是利用PID 控制技术对直流电机转速的控制。

其设计思路为:以AT89S51单片机为控制核心,产生占空比受PID算法控制的PWM脉冲实现对直流电机转速的控制。

同时利用光电传感器将电机速度转换成脉冲频率反馈到单片机中,构成转速闭环控制系统,达到转速无静差调节的目的。

在系统中采128×64LCD显示器作为显示部件,通过4×4键盘设置P、I、D、V四个参数和正反转控制,启动后通过显示部件了解电机当前的转速和运行时间。

因此该系统在硬件方面包括:电源模块、电机驱动模块、控制模块、速度检测模块、人机交互模块。

软件部分采用C语言进行程序设计,其优点为:可移植性强、算法容易实现、修改及调试方便、易读等。

本次设计系统的主要特点:(1)优化的软件算法,智能化的自动控制,误差补偿;(2)使用光电传感器将电机转速转换为脉冲频率,比较精确的反映出电机的转速,从而和设定值进行比较产生偏差,实现比例、积分、微分的控制,达到转速无静差调节的目的;(3)使用光电耦合器将主电路和控制电路利用光隔开,使系统更加安全可靠;(4)128×64LCD显示模块提供一个人机对话界面,并实时显示电机运行速度和运行时间;(5)利用Proteus软件进行系统整体仿真,从而进一步验证电路和程序的正确性,避免不必要的损失;(6)采用数字PID算法,利用软件实现控制,具有更改灵活,节约硬件等优点;(7)系统性能指标:超调量≤8%;调节时间≤4s;转速误差≤±1r/min。

1PID算法及PWM控制技术简介1.1PID算法控制算法是微机化控制系统的一个重要组成部分,整个系统的控制功能主要由控制算法来实现。

目前提出的控制算法有很多。

基于PID控制的步进电机位置闭环控制系统设计

基于PID控制的步进电机位置闭环控制系统设计

基于PID控制的步进电机位置闭环控制系统设计一、引言在现代自动化控制系统中,步进电机广泛应用于各种精密定位和定量控制需求的场景。

步进电机的控制涉及到位置的精确定位和稳定性的维持,这就需要一个有效的闭环控制系统来实现。

PID控制器被广泛应用于步进电机的闭环控制系统设计中,本文将探讨基于PID控制的步进电机位置闭环控制系统的设计原理和实现方法。

二、步进电机简介步进电机是一种特殊的直流电动机,通过控制脉冲信号的频率和顺序来实现精确控制。

步进电机的圆周分为若干等角度的步进角,每个步进角对应一个旋转角度,这使得步进电机在控制方面更加便捷和精确。

由于步进电机无需传感器反馈,因此常用于定量控制和精确位置控制的场合。

三、PID控制器原理PID控制器是一种经典的闭环控制器,其由比例(P)、积分(I)、微分(D)三个部分组成。

比例控制决定输出与偏差的比例关系,积分控制消除系统稳态误差和提高系统的响应速度,微分控制用于抑制系统对于负荷变化的敏感性。

PID控制器采用反馈控制策略,利用实际输出和期望输出之间的偏差来调整控制量。

四、步进电机位置闭环控制系统设计步进电机的位置闭环控制系统设计基于PID控制器。

首先,需要传感器来获得实际位置信息,然后与期望位置进行比较以获取偏差。

接下来,将偏差作为输入,经过PID控制器计算出控制量,并输出给步进电机驱动器。

步进电机驱动器根据控制量控制步进电机的旋转,从而实现位置的精确控制。

五、传感器选择为了获取步进电机的实际位置信息,需要选择合适的传感器。

常用的传感器包括光电编码器和霍尔传感器。

光电编码器具有高精度和高分辨率的特点,但价格较高;霍尔传感器则具有较低的价格和较高的可靠性,但分辨率较低。

根据具体需求和预算可选择合适的传感器。

六、PID参数调整PID控制器的性能很大程度上取决于参数的选择。

比例参数决定了响应的速度和稳定性,过大的比例参数会导致系统震荡,过小则导致响应速度慢;积分参数消除稳态误差,过大的积分参数会导致系统震荡,过小则无法消除稳态误差;微分参数能够抑制系统对负荷变化的敏感性,过大的微分参数会导致系统噪声,过小则无法起到抑制作用。

直流电动机双闭环调速系统设计

直流电动机双闭环调速系统设计

1 设计方案论证电流环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。

方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。

转速环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。

方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。

2双闭环调速控制系统电路设计及其原理综述随着现代工业的开展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。

相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。

双闭环控制那么很好的弥补了他的这一缺陷。

双闭环控制可实现转速和电流两种负反应的分别作用,从而获得良好的静,动态性能。

其良好的动态性能主要表达在其抗负载扰动以及抗电网电压扰动之上。

正由于双闭环调速的众多优点,所以在此有必要对其最优化设计进展深入的探讨和研究。

本次课程设计目的就是旨在对双闭环进展最优化的设计。

整流电路本次课程设计的整流主电路采用的是三相桥式全控整流电路,它可看成是由一组共阴接法和另一组共阳接法的三相半波可控整流电路串联而成。

共阴极组VT1、VT3和VT5在正半周导电,流经变压器的电流为正向电流;共阳极组VT2、VT4和VT6在负半周导电,流经变压器的电流为反向电流。

变压器每相绕组在正负半周都有电流流过,因此,变压器绕组中没有直流磁通势,同时也提高了变压器绕组的利用率。

三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。

为使负载电流连续平滑,有利于直流电动机换向及减小火花,以改善电动机的机械特性,一般要串入电感量足够大的平波电抗器,这就等同于含有反电动势的大电感负载。

三相桥式全控整流电路的工作原理是当a=0°时的工作情况。

直流电机速度PID控制系统设计毕业论文(设计).doc.doc

直流电机速度PID控制系统设计毕业论文(设计).doc.doc

序号(学号〉: 161240303长春大学 毕业设计(论文)直流电机速度PID 控制系统设计李一丹国际教育学院自动化1612403曹福成2016 年 5 月 30 0姓 名 学 院 专 业 班 级 指导教师直流电机速度PID控制系统设计摘要:针对现有的直流电机控速难的问题,本文设计了一种基于ATmegal6L单片机的直流电机速度控制系统。

本系统以ATinegal6L单片机为主控制器,搭载了L298n为电机驱动,通过霍尔元件进行测速,通过按键控制电机的转动方向和转动速度,并配以温度传感器DS18B20对温度进行监测,通过PID算法调节PW\1 进行对速度控制。

该系统包括的模块主要有单片机为主体的控制模块、电机的驱动模块、对电机速度进行监测的模块、由LCD1602构成的显示ky r模块、电源模块和按键控制模块等。

本系统可以通过PID算法实现可编程脉宽波形对直流电机的速度进行控制,并且可以显示出当前电机的转速。

关键词:单片机;PID算法;直流电机The design of DC motor speed control system with PID Abstract: According to the existing DC motor speed control problem, this paper describes the design of a DC motor speed control system based on ATmegal6L MCU. To ATMEGA16L microcontroller as the main controller for the system, equipped with a L298n for motor drive, through the hall element of speed, through the buttons to control the motor rotation direction and the rotation speed, and the temperature sensor DS18B20 the temperature monitoring, PID algorithm is used to adjust the PWM control of the speed. The system includes the following modules display microprocessor control module, as the main body of the motor drive module, monitoring module, the speed of motor is composed of LCD1602 module, power supply module and key control module.This system can realize through PID algorithm to control the speed of the programming pulse waveforms of DC motor, and can display the current motor speed.Keywords: single chip microcomputer, PID algorithm, DC motor ky r戈ml ml ——II —In —In | * 11—I 1111 ml 1111目录Bit (1)l.i选题背景及意义 (1)1.2国内外研宄现状 (2)1.3木文主要研究的内容 (3)第2章总体方案论述 (4)ky r2.1系统主要传感器介绍 (4)2.1.1温度传感器 (4)2.1.2转速检测模块 (5)2.2系统总体功能及方案选择 (6)2.2.1系统所需模块及功能 (6)2.2.2主控制器选择 (8)第3章系统总体硬件设计 (10)3.1单片机最小系统 (10)3.1.1ATmegal6L单片机的引脚分布 (10)3.1.2最小系统的硬件电路 (13)3.2电机驱动电路 (14)3.3温度检测电路 (15)3.4光电管提示电路和按键控制电路 (15)3.5LCD1602 显示电路 (16)3.6电源电路 (17)3.7本章小节 (18)第4章系统软件设计 (19)4.1系统总体流程图 (19)4.2 PID算法简介 (19)4.2.1PID算法介绍 (20)4.2.2HD算法结果 (21)4.3系统调试步骤 (21)4.4误差分析即改进方法 (22)给论 (23)致谢 (24)参考文献 (25)隱 (26)附录I系统总体硬件电路图 (26)附录II系统中部分程序 (27)ky r In—ml ml ml ml | , I af—.第1章绪论1.1选题背景及意义电动机简称电机,俗称马达,在现实生活中,我们处处都可以见到电机的身影,小到小学生玩的电动四驱车,大到炼钢厂用的滚动罐,这些都是电机家族的成员。

直流电机闭环调速控制系统设计和实现

直流电机闭环调速控制系统设计和实现

实验报告直流电机闭环调速控制系统设计和实现班级:姓名:学号:时间:指导老师:2012年6月一、实验目的1.了解闭环调速控制系统的构成。

2.熟悉PID 控制规律,并且用算法实现。

二、实验设备PC 机一台,TD-ACC+实验系统一套,i386EX 系统板一块三、实验原理根据上述系统方框图,硬件线路图可设计如下,图中画“○”的线需用户自行接好。

上图中,控制机算机的“DOUT0”表示386EX 的I/O 管脚P1.4,输出PWM 脉冲经驱动后控制直流电机,“IRQ7”表示386EX 内部主片8259 的7 号中断,用作测速中断。

实验中,用系统的数字量输出端口“DOUT0”来模拟产生 PMW 脉宽调制信号,构成系统的控制量,经驱动电路驱动后控制电机运转。

霍尔测速元件输出的脉冲信号记录电机转速构成反馈量。

在参数给定情况下,经PID 运算,电机可在控制量作用下,按给定转速闭环运转。

系统定时器定时1ms,作为系统采样基准时钟;测速中断用于测量电机转速。

直流电机闭环调速控制系统实验的参考程序流程图如下:四、实验步骤1.参照图 6.1-3 的流程图,编写实验程序,编译、链接。

2.按图6.1-2 接线,检查无误后开启设备电源,将编译链接好的程序装载到控制机中。

3.打开专用图形界面,运行程序,观察电机转速,分析其响应特性。

4.若不满意,改变参数:积分分离值Iband、比例系数KPP、积分系数KII、微分系数 KDD 的值后再观察其响应特性,选择一组较好的控制参数并记录下来。

5.注意:在程序调试过程中,有可能随时停止程序运行,此时DOUT0 的状态应保持上次的状态。

当DOUT0 为1 时,直流电机将停止转动;当DOUT0 为0 时,直流电机将全速转动,如果长时间让直流电机全速转动,可能会导致电机单元出现故障,所以在停止程序运行时,最好将连接DOUT0的排线拔掉或按系统复位键.五、心得体会此次实验是直流电机闭环调速控制系统的设计和实现,通过这次实验,让我了解了闭环调速控制系统的基本构成。

基于MATLAB的数字PID直流电机调速系统

基于MATLAB的数字PID直流电机调速系统

基于MATLAB的数字PID直流电机调速系统本文主要研究基于MATLAB的数字PID直流电机调速系统。

直流电机是工业生产中常用的电机,其调速系统对于保证生产效率和质量至关重要。

因此,研究直流电机调速系统的控制方法和参数设计具有重要意义。

本文将首先介绍直流电机的数学模型和调速系统的工作原理,然后探讨常规PID控制器的设计方法和参数控制原理,最后通过MATLAB仿真实验来研究数字PID控制器的设计和应用。

2 直流电机调速系统的数学模型直流电机是一种常见的电动机,其数学模型可以用电路方程和动力学方程来描述。

电路方程描述了电机的电气特性,动力学方程描述了电机的机械特性。

通过这两个方程可以得到直流电机的数学模型,为后续的控制器设计提供基础。

3 直流电机调速系统的工作原理直流电机调速系统是通过控制电机的电压和电流来改变电机的转速。

其中,电压和电流的控制可以通过PWM技术实现。

此外,还可以通过变换电机的电极连接方式来改变电机的转速。

直流电机调速系统的工作原理是控制电机的电压和电流,从而控制电机的转速。

4 常规PID控制器的设计方法和参数控制原理常规PID控制器是一种常见的控制器,其控制原理是通过比较实际输出值和期望输出值来调整控制器的参数,从而实现控制目标。

常规PID控制器的参数包括比例系数、积分系数和微分系数,这些参数的选取对于控制器的性能有重要影响。

常规PID控制器的设计方法是通过试错法和经验公式来确定参数值。

5 数字PID控制器的设计和应用数字PID控制器是一种数字化的PID控制器,其优点是精度高、可靠性强、适应性好。

数字PID控制器的设计方法是通过MATLAB仿真实验来确定控制器的参数值。

数字PID控制器在直流电机调速系统中的应用可以提高系统的控制精度和稳定性。

6 结论本文主要研究了基于MATLAB的数字PID直流电机调速系统,介绍了直流电机的数学模型和调速系统的工作原理,探讨了常规PID控制器的设计方法和参数控制原理,最后研究了数字PID控制器的设计和应用。

双闭环直流调速系统设计

双闭环直流调速系统设计

双闭环直流调速系统设计1.电机数学模型的建立首先要建立电机的数学模型,这是设计双闭环直流调速系统的基础。

根据电机的参数和运动方程,可以得到电机的数学模型,一般为一组耦合的非线性微分方程。

2.速度内环设计速度内环负责实现期望速度的跟踪控制。

常用的设计方法是采用比例-积分(PID)控制器。

PID控制器的输出是速度的修正量,通过与期望速度相减得到速度误差,然后根据PID算法计算控制器输出。

PID控制器的参数调节是一个关键问题,可以通过试探法、经验法或优化算法等方法进行调节,以实现最佳的速度跟踪性能。

3.电流外环设计电流外环的作用是保证电机的电流输出与速度内环控制输出的一致性。

一般采用PI调节器进行设计。

PI调节器的参数通过试探法、经验法或优化算法等方法进行调节,以实现电流输出的稳定性。

4.稳定性分析与系统稳定控制设计好速度内环和电流外环后,需要对系统的稳定性进行分析。

稳定性分析可以通过线性化方法、根轨迹法、频率响应法等方法进行。

分析得到系统的自然频率、阻尼比等参数后,可以根据稳定性准则进行系统稳定控制。

常用的控制方法包括模型预测控制、广义预测控制、滑模控制等。

5.鲁棒性设计在双闭环直流调速系统设计中,鲁棒性是一个重要的指标。

通过引入鲁棒性设计方法,可以提高系统对参数扰动和外部干扰的抑制能力。

常用的鲁棒性设计方法包括H∞控制、μ合成控制等。

以上是双闭环直流调速系统设计的一般步骤,具体的设计过程可能因实际应用和控制要求的不同而有所差异。

设计双闭环直流调速系统需要深入了解电机的特性和系统的控制需求,综合运用控制理论和工程方法,通过模拟仿真和实验验证来不断调整和优化控制参数,以实现系统的高性能调速控制。

DIP算法控制

DIP算法控制

PID算法控制___实验报告开课实验室:2012 年 4 月日学院物电学院年级、专业、班09光信2班姓名成绩课程名称Dsp实验实验项目名称PID算法控制指导老师签名一、实验目的1.掌握利用ICETEK-VC5509-A板与ICETEK-CTR板上带速度反馈的直流电机 B 的连接和控制原理。

2.熟悉VC5509DSP 的通用IO端口和定时器的编程使用。

3.学习利用数字PID控制算法控制电机转速。

二、实验原理1.直流电机测速原理:直流电机B:在ICETEK-CTR 板上有一个带速度反馈的直流电机B,它的额定工作电压为+12V,额定转速为6500转,带有速度反馈线路,反馈信号为方波脉冲,其频率与转速成正比(电机转动一圈产生两个脉冲)。

电机闭环控制系统:如图在DSP系统板的控制下形成闭环速度控制系统,DSP发送的PWM波控制直流电机的转速,通过速度反馈,DSP 可实时读取当前速度值,利用DSP中运行的控制程序根据速度读数控制PWM 的脉宽,从而实现闭环调速控制。

2.数字PID控制器:将偏差的比例(P)、积分(I)和微分(D)通过线性组合构成控制量,用这一控制量对被控对象进行控制,这样的控制器称PID控制器。

⑴模拟PID控制原理:模拟PID控制系统原理图如图所示。

该系统由模拟PID控制器和被控对象组成。

图中,r(t)瑞泰创新——ICETEK-VC5509-A评估板软件实验指导III-122是给定值,y(t)是系统的实际输出值,给定值与实际输出值构成控制偏差e(t)e(t)=r(t)-y(t)e(t)作为PID控制器的输入,u(t)作为PID控制器的输出和被控对象的输入比例环节的作用是对偏差瞬间做出快速反应。

偏差一旦产生,控制器立即产生控制作用,使控制量向减少偏差的方向变化。

控制作用的强弱取决于比例系数P K ,P K 越大,控制越强,但过大的P K 会导致系统震荡,破坏系统的稳定性。

积分环节的作用是把偏差的积累作为输出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广西大学实验报告纸
实验题目:直流电机PID闭环数字控制设计
序号学号姓名贡献排名成绩
1(组长): 1
2(组员): 2
3(组员):
学院:电气工程学院报告形成日期
指导老师:胡立坤2015.10.20 【实验任务安排以及各组员贡献说明】
一起对实验原理和目的进行探讨和分析,并在matlab的simulink中搭建模拟进行仿真;董永昌编写PID程序和实验预习的撰写;一起对实验现象进行分析探讨得出实验结论,由苏建福完成最终实验报告的撰写。

【实验时间】2015年10月17日
【实验地点】综合楼实验室。

【实验目的】
1、巩固闭环控制系统的概念;
2、了解闭环控制系统中反馈量的引入方法;
3、掌握PID算法数字化的方法和编程及不同PID算法的优缺点。

【实验设备与软件】
1、labACT实验台
2、labACT软件
3、MA TLAB/Simulink仿真软件
【实验原理】
1、PID控制原理
按偏差的比例积分微分控制是过程控制中应用最广泛的一种控制规则。

由PID控制规则构成PID调节器是一种线性调节器
式中u(t)——调节器的输出信号;e (t)——调节器的偏差信号; Kp——调节×器的比例系数; Ti——调节器的积分时间常数; Td——调节器的微分时间常数。

图一 PID控制原理框图
比例调节作用:按比例反应系统的偏差产生调节作用。

比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统不稳定。

积分调节作用:消除稳态误差。

积分作用的强弱取决与积分时间常数iT,iT越小,积分作用就越强。

微分调节作用:微分作用反映系统偏差信号的变化率,产生超前的控制作用。

在偏差还没有形成之前,已被微分调节作用消除,改善系统的动态性能。

2、PID算法的数字实现与经验整定
在输出不振荡时,增大比例增益,减小积分时间常数,增大微分时间常数
标准PID算法:由于本次试验采用的计算机控制系统是一种时间离散控制系统。

因此,为了用计算机实现PID控制必须将其离散化,用数字形式的差分方程来代替连续系统的微分方程
令积分系数,微分系数,则PID位置控制算式表达
容易将上式转化成增量算式
3.直流电机的闭环调速原理
图2 直流电机闭环调速系统原理图
4、被模拟对象模型描述
该闭环调速实验中直流电机对象可通过实验测得其空载是的标准传递函数如下
【实验内容、方法、过程与分析】
1、通过给定的电机模型公式,在simulink中搭建直流电机闭环调速仿真模型。

搭建的模型
一、标准PID实验程序
int pid(int P,int I,int D,int E)
{ int KI,KD,KP,U;
KP=P;
KI=5*KP/I;
KD=D*P/5;
II=II+E;
U=KP*E+KD*(E-E0)+KI*II;
E0=E;
return U;}
Simulink中的仿真结果
实验得出结果
2电机转速由250转/min到1500转/min
Simulink中的仿真结果实验得出结果
3、电机转速由250转/min到2000转/min
Simulink中的仿真结果实验得出结果
Simulink中的仿真结果
实验得出结果
标准PID实验数据
跃变(*50转/min)超调量峰值时间调整时间稳态误差5——20 18.7% 0.05 0.11 20
5——30 21.7% 0.06 0.17 4
5——40 28.4% 0.08 0.22 8
5——50 35.44% 0.1 0.26 20
实验数据及实验图分析:
当取适当的PID参数时,可以使控制系统响应加快,使电机的暂态性能提高,即响应快,能够迅速达到设定值;且稳态性能良好,稳态误差小。

二、积分分离PID控制程序及实验结果
电机转速由250转/min到2500转/min
三、不完全微分PID控制程序及实验结果
电机转速由250转/min到2500转/min
实验数据表:(电机转速由250转/min到2500转/min)
超调量峰值时间调整时间稳态误差标准PID 35.44% 0.1 0.26 20
积分分离PID 35.92% 0.12 0.24 40
不完全微分PID 44.26% 0.14 0.25 20
【实验结论与总结】。

相关文档
最新文档