穷举算法
第五讲 穷举算法

第五讲穷举算法学习重点:1、了解穷举法的基本概念及用穷举法设计算法的基本过程。
2、能够根据具体问题的要求,使用穷举法设计算法,编写程序求解问题。
3、能对穷举法编写的程序进行优化学习过程:穷举算法是学生在学完了QB基本语句后最早接触到的算法。
一些简单的穷举算法题目如求水仙花数、找出缺失的数字等和小学生的数学学习紧密结合,程序也比较容易实现,因此学生的学习兴趣还是很高的。
近几年的省小学生程序设计竞赛中也常出现穷举算法的题目,如:2001年题四算24;2002年题三求素数个数与素数个数最多的排列;2005年回文数个数等题目,有些题虽然说用穷举算法实现比较勉强(如2002年题三的后半题求出素数个数最多的排列),但在考试时,如果一时想不出更好的办法,用穷举算法也不失为一种明智的选择。
穷举法,常常称之为枚举法,是指从可能的集合中一一穷举各个元素,用题目给定的约束条件判定哪些是无用的,哪些是有用的。
能使命题成立者,即为问题的解。
穷举是最简单,最基础,也是通常被认为非常没效率的算法,但是。
穷举拥有很多优点,它在算法中占有一席之地。
首先,穷举具有准确性,只要时间足够,正确的穷举得出的结论是绝对正确的;其次,穷举拥有全面性,因为它是对所有方案的全面搜索,所以,它能够得出所有的解。
采用穷举算法解题的基本思路:(1)确定穷举对象、穷举范围和判定条件;(2)一一列举可能的解,验证是否是问题的解一、穷举算法的实现在前面基础语句(for语句)的学习中,其实我们就用到了穷举。
比如培训教材p77【例5-7】打印九九乘法表中,被乘数A和乘数B都从1-9一一列举。
这样,九九乘法表中就不会遗失任何一句乘法口诀;在p79【例5-9】的数学灯谜题中,我们也是用了一一列举的方法,找出了A、B、C、D的取值范围。
下面我们再看两道例题:1、搬运砖头【问题描述】36 块砖, 36 人搬。
男搬 4 ,女搬 3 ,两个小儿抬一砖。
要求一次全搬完。
问需男、女、小儿各若干?【问题分析】题目要我们找出符合条件的男生、女生和小孩的人数。
1穷举法

竞赛辅导1------穷举法一、穷举法基本思想:是根据提出的问题穷举所有可能的状态,并用问题给定的条件寻找问题的解。
适用穷举的的问题需要满足下面两个条件:1) 可预先确定状态(搜索元/变量)的元素个数2)状态元素的可能值为一个连续的值域穷举算法的模式:1)搜寻问题解的可能范围:用循环或循环嵌套结构实现2)确定约束条件:3)程序的优化,以减少搜索范围和程序运行时间穷举算法的优点:1)由于穷举算法一般是现实生活问题的直译,因此比较直观,易于理解2)由于穷举算法建立在考察大量状态、甚至是穷举所有状态的基础上,所以算法正确性比较容易证明。
穷举算法的缺点:由于穷举的数据量过大,效率较低。
二、实例解析:穷举算法的一般设计过程先对问题进行直译,然后优化。
(一)、问题的“直译”:将自然语言描述的过程直接“翻译”成程序语言的实现过程(算法),找到搜索元,找到搜索元的数据范围和问题的约束条件。
例1、百鸡百钱问题:公鸡一只5文钱,母鸡一只3文钱,小鸡3只2文钱。
要求一百文钱买一百只鸡,编程计算各种鸡的具体数量。
分析:设三种鸡的数量为x,y,z ,则原问题可转化为在1=<x<100,1=<y<100,1=<z<100,范围内搜寻满足约束条件5*x + 3*y+z/3=100的x,y,z的值。
则,原问题可直接转化成的穷举算法如下:for x---1 to 100 dofor y---1 to 100 dobeginz=100-x-y;if 5*x + 3*y+z/3=100 then 输出x,y,z;end;{for}能直译的问题的一半的特点是:1)输出变量的个数确定,数据在可选范围内连续或者满足一定的递增(递减)关系2)约束条件直观,可以用解析式表达或者近似表达3)直译穷举算法时间复杂度为一个多项式。
4)数据范围较大时不适宜采用直译方法,时间耗费较大。
练习:1、求完全数:古希腊人认为因子的和等于它本身的数是一个完全数(自身因子除外),例如28的因子是1、2、4、7、14,且1+2+4+7+14=28,则28是一个完全数,编写一个程序求2-1000内的所有完全数。
穷举算法

穷举算法思想
利用计算机运算速度快、精确度高的特点, 对要解决的问题的所有可能情况,一个不 漏地进行检查,从中找出符合要求的答案。
两个关键
一、确定穷举范围
有限
问题所涉及的情况有哪些,情况的种 数可不可以确定。
二、确定验证条件
分析出来的这些情况,需要满足什么 条件,才成为问题的答案。
经常使用循环+பைடு நூலகம்断的格式
查找数据
在一堆数据中查找某个数
穷举算法的应用
穷举算法是程序设计中使用得最为普遍 的一种 算法,通常穷举算法都是用多重循环来实现的。
你能举出运用穷举算法的例子吗? 密码暴力破解
如IBM为美军方设计的“飓风”破译机 查找罪犯指纹 超女“海选”
穷举算法及解题

穷举算法及解题穷举算法及解题例12-1 古希腊人认为因子的和等于它本身的数是一个完全数(自身因子除外),例如28的因子是1、2、4、7、14,且1+2+4+7+14=28,则28是一个完全数,编写一个程序求2~1000内的所有完全数。
问题分析(1)本题是一个搜索问题,搜索范围2~1000,找出该范围内的完全数;(2)完全数必须满足的条件:因子的和等于该数的本身;(3)问题关键在于将该数的因子一一寻找出来,并求出因子的和:分解因子的方法比较简单,采用循环完成分解因子和求因子的和。
程序如下:program p12_1;var a,b,s:integer;beginfor a:=2 to 1000 dobegins:=0;for b:=1 to a-1 doif a mod b =0 then s:=s+b;if a=s then beginwrite(a,'=',1,);for b:=2 to a-1 doif a mod b=0 then write('+',b);writeln;end;end;end.当程序运行后,输出结果:6=1+2+328=1+2+4+7+14496=1+2+4+8+16+31+62+124+248例12-3邮局发行一套票面有四种不同值的邮票,如果每封信所帖邮票张数不超过三枚,存在整数r,使得用不超过三枚的邮票,可以贴出连续的整数1、2、3、……、r来,找出这四种面值数,使得r值最大。
问题分析:本题则是知道每封信邮票数的范围(<=3),邮票有四种类型,编程找出能使面值最大邮票。
其算法是:(1) 面值不同的四种邮票,每封信所贴邮票不超过3张;(2) 用这四种邮票贴出连续的整数,并且使r值最大;(3) 用穷举法,找出所有符合条件的解;(4) 本题用集合的方法统计邮票的面值,提高判重的速度。
设四种邮票的面值分别为:a,b,c,d,根据题意设:a<b<c<d,因此a=1,用循环语句完成搜索。
穷举算法用到的算法结构

穷举算法用到的算法结构
穷举算法是一种基本的计算机算法,它通过枚举所有可能的组合来寻找答案。
在实际应用中,穷举算法常常需要用到以下几种算法结构:
1. 循环结构:穷举算法通常需要进行多次循环,以枚举所有可能的组合。
循环结构可以使用for、while、do-while等语句实现。
2. 条件结构:穷举算法需要判断每个组合是否符合要求,因此需要使用条件结构,如if、switch等语句。
3. 递归结构:有些问题可以用递归的方式求解,穷举算法也可以使用递归结构实现。
例如,在寻找n个人的所有可能握手方案时,可以通过递归实现。
4. 数组结构:穷举算法需要储存所有可能的组合,因此需要使用数组结构。
例如,在寻找n个数的所有可能排列时,可以使用数组储存这些数。
5. 集合结构:有些问题需要枚举一组数据的所有子集或排列,此时需要使用集合结构。
例如,在寻找n个物品的所有可能组合时,可以使用集合结构。
6. 栈和队列结构:有些穷举算法需要使用栈或队列对数据进行储存和访问。
例如,在寻找迷宫的所有可能通路时,可以使用栈或队列记录每个路径。
以上是穷举算法常用的算法结构,它们可以相互组合使用,以实现不同的算法。
在实际应用中,需要根据具体问题的特点选择合适的
算法结构。
穷举算法

分析
• 这是1998年全国分区联赛普及组试题(简称 NOIP1998pj,以下同)。此题数据规模不大, 可以进行枚举,如果我们不加思地以每一个数 位为枚举对象,一位一位地去枚举: for a:=1 to 9 do for b:=1 to 9 do ……… for i:=1 to 9 do • 这样下去,枚举次数就有99次,如果我们分别 设三个数为x,2x,3x,以x为枚举对象,穷举的 范围就减少为93,在细节上再进一步优化, 枚举范围就更少了。
使用穷举的条件
• 可预先确定解的个数n • 解变量a1、a2、an的可能值为一个连续 的值域
算法归纳
• • • • • •
• • • • • • • •
设:ai1-----解变量ai的最小值,aik----解变量ai的最大值(1《=i〈=n) a11<=a1<=a1k a21<=a2<=a2k ai1<=ai<=aik an1<=an<=ank 我们称解变量为穷举变量,即解题过程中需要列举出的变量(很明显,要列举出 变量的每个值,我们一般都使用for循环) 例如某问题的穷举变量有三个:a1,a2,a3,其中1〈=a1〈=2;2〈=a2〈=4;5 〈=a3〈=7 则可以列出本问题的所有可能解共18组(略) 在上述可能解的集合中,满足问题给定的检验条件的解元素就是问题的可能解 for a1:=a11 to a1k do for a2:=a21 to a2k do for a3:=a31 to a3k do for an:=an1 to ank do if (a1.a2.ai,an)满足检验条件 then 输出问题的解(a1,a2,ai,an)
•
(CHN,ENG) (CHN,FRH) (CHN,JPN) ( ENG,FRH) ( ENG,JPN)
穷举法详细

第三讲穷举法一、穷举法的基本概念穷举方法是基于计算机特点而进行解题的思维方法。
一般是在一时找不出解决问题的更好途径(即从数学上找不到求解的公式或规则)时,可以根据问题中的的部分条件(约束条件)将所有可能解的情况列举出来,然后通过一一验证是否符合整个问题的求解要求,而得到问题的解。
这样解决问题的方法我们称之为穷举算法。
穷举算法特点是算法简单,但运行时所花费的时间量大。
有些问题所列举出来的情况数目会大得惊人,就是用高速的电子计算机运行,其等待运行结果的时间也将使人无法忍受。
因此,我们在用穷举方法解决问题时,应尽可能将明显的不符合条件的情况排除在外,以尽快取得问题的解。
二、穷举算法模式穷举算法模式:(1)问题解的可能搜索的范围:用循环或循环嵌套结构实现(2)写出符合问题解的条件。
(3)能使程序优化的语句,以便缩小搜索范围,减少程序运行时间。
三、使用穷举法设计算法穷举法应用很多,比如一些密码破译软件通常就是用的穷举算法。
如在QQ上,OicqPassOver这个工具穷举你的口令,它根据机器性能最高可以每秒测试20000个口令,如果口令简单,一分钟内,密码就会遭到破译。
下面我们来以三个例子说明穷举法的具体应用。
实例一:古希腊人认为因子的和等于它本身的数是一个完全数(自身因子除外),例如28的因子是1、2、4、7、14,且1+2+4+7+14=28,则28是一个完全数,编写一个程序求2~1000内的所有完全数。
分析:(1)本题是一个搜索问题,搜索范围 2~1000,找出该范围内的完全数;(2)完全数必须满足的条件:因子的和等于该数据的本身。
(3)问题关键在于将该数的因子一一寻找出来,并求出因子的和。
程序如下:Program p3_1 ;Var a , b,s :integer ;BeginFor a:=2 to 1000 doBeginS:=0 ;For b:=1 to a -1 doIf a mod b =0 then s:=s+b ; { 分解因子并求和 }If a=s then beginWrite( a, ‘=’ ,1, );For b:=2 to a -1 doIf a mod b=0 then write( ’+’, b );Writeln ;End;End;End.当程序运行后,输出结果:6 = 1 + 2 + 328 = 1 + 2 + 4 + 7 + 14496 =1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248实例二:(第七届全国青少年信息学(计算机)奥林匹克分区联赛初赛试题)在A,B两个城市之间设有N个路站(如下图中的S1,且N<100),城市与路站之间、路站和路站之间各有若干条路段(各路段数≤20,且每条路段上的距离均为一个整数)。
穷举法——精选推荐

第16章 穷举算法与实验穷举方法是基于计算机特点而进行解题的思维方法。
一般是在一时找不出解决问题的更好途径(即从数学上找不到求解的公式或规则)时,可以根据问题中的的部分条件(约束条件)将所有可能解的情况列举出来,然后通过一一验证是否符合整个问题的求解要求,而得到问题的解。
这样解决问题的方法我们称之为穷举算法。
穷举算法特点是算法简单,但运行时所花费的时间量大。
因此,我们在用穷举方法解决问题时,应尽可能将明显的不符合条件的情况排除在外,以尽快取得问题的解。
虽然穷举法效率并不高,但是适应一些没有明显规律可循的问题的解决。
因为穷举算法就是从所有可能的情况中搜索正确的答案,所以一般可按如下步骤: 第1步: 对于一种可能的情况,列举出来并计算其结果;第2步:判断结果是否满足要求,如果不满足则执行第1步来搜索下一个可能的情况,如果满足要求,则表示寻找到一个正确的答案,执行下一步操作,如寻找其他正确(合适)的答案或者中断循环。
16.1三角形数问题16.1.1 问题描述将 ,F ,E ,D ,C ,B ,A 这六个变量排成如图所示的三角形,这六个变量分别取[1,6]上的整数,且均不相同。
求使三角形三条边上的变量之和相等的全部解。
如图就是一个解。
A 6B C 3 1D F 2 4E 516.1.2 问题分析程序引入变量123456,,,,,i i i i i i ,代表,F ,E ,D ,C ,B ,A 并让它们分别顺序取1至6的正整数,在它们互不相同的前提条件下,测试由它们排成的如图所示的三角形三条边上的变量之和是否相等,如相等即为一种满足要求的排列,把它们输出。
当这些变量取尽所有的组合后,程序就可得到全部可能的解。
细节见下面的程序。
【程序1】%穷举法解三角形数 for i1=1:6 for i2=1:6 if i1==i2 continue;endfor i3=1:6if i1==i3 || i2==i3continue;endfor i4=1:6if i1==i4 || i2==i4 || i3==i4continue;endfor i5=1:6if i1==i5 || i2==i5 || i3==i5 || i4==i5continue;endfor i6=1:6if i1==i6 || i2==i6 || i3==i6 || i4==i6 || i5==i6continue;endif i1+i2+i4==i1+i3+i6 && i1+i2+i4==i4+i5+i6fprintf ('%6d\n',i1) ;fprintf ('%4d%4d\n',i2,i3) ;fprintf ('%2d%4d%4d\n\n',i4,i5,i6) ;endendendendendendEnd16.1.3 问题讨论按穷举法编写的程序通常不能适应变化的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两个关键
一、确定穷举范围
有限
问题所涉及的情况有哪些,情况的种 数可不可以确定。
二、确定验证条件
分析出来的这些情况,需要满足什么 条件,才成为问题的答案。
经常使用循环+判断的格式
查找数据
在一堆数据中查找某个数
穷举算法的应用
穷举算法是程序设计中使用得最为普遍 的一种 算法,通常穷举算法都是用多重循环来实现的。
你能举出运用穷举算法的例子吗? 密码暴力破解
如IBM为美军方设计的“飓风”破译机 查找罪犯指纹 超女“海选”