最新沪科版八年级数学一元二次方程应用题专项训练

合集下载

【必刷题】2024八年级数学上册一元二次方程解法专项专题训练(含答案)

【必刷题】2024八年级数学上册一元二次方程解法专项专题训练(含答案)

【必刷题】2024八年级数学上册一元二次方程解法专项专题训练(含答案)试题部分一、选择题:1. 已知方程x^2 5x + 6 = 0,下列哪个选项是它的一个解?A. x = 2B. x = 3C. x = 4D. x = 52. 方程2x^2 4x + 1 = 0的解为:A. x = 1B. x = 1/2C. x = 1/2D. x = 13. 下列哪个方程是一元二次方程?A. x^2 + 3x 2 = 0B. 2x + 5 = 0C. 3x^3 2x^2 + x 1 = 0D. x^2 + y^2 = 14. 一元二次方程x^2 3x + 1 = 0的解为:A. x = 1,x = 2B. x = 1,x = 1C. x = 2,x = 2D. x = 3,x = 35. 方程x^2 4x + 4 = 0的解是:A. x = 2B. x = 2C. x = 0D. x = 2(重根)6. 已知方程x^2 (2a+1)x + a^2 = 0,若a为正数,则方程的解为:A. x = a,x = 1B. x = a,x = aC. x = a+1,x = a1D. x = 2a,x = 2a7. 方程x^2 5x + 6 = 0的解中,较大的是:A. 2B. 3C. 4D. 58. 若方程x^2 (2k+1)x + k^2 = 0有两个不相等的实数根,则k 的取值范围是:A. k > 0B. k < 0C. k ≠ 0D. k = 09. 方程x^2 2x 3 = 0的解为:A. x = 3,x = 1B. x = 3,x = 1C. x = 3,x = 1D. x = 3,x = 110. 方程x^2 6x + 9 = 0的解是:A. x = 3B. x = 3C. x = 0D. x = 3(重根)二、判断题:1. 一元二次方程的解一定是两个实数根。

2. 方程x^2 2x + 1 = 0的解为x = 1。

八年级数学下册-专题. 一元二次方程的解法【八大题型】(举一反三)(沪科版)(解析版)

八年级数学下册-专题. 一元二次方程的解法【八大题型】(举一反三)(沪科版)(解析版)

专题17.2一元二次方程的解法【八大题型】【沪科版】【题型1用直接开平方法解一元二次方程】 (1)【题型2配方法解一元二次方程】 (3)【题型3公式法解一元二次方程】 (8)【题型4因式分解法解一元二次方程】 (10)【题型5用指定方法解一元二次方程】 (13)【题型6用适当的方法解一元二次方程 (18)【题型7用换元法解一元二次方程】 (24)【题型8配方法的应用】 (28)【知识点1直接开平方法解一元二次方程】根据平方根的意义直接开平方来解一元二次方程的方法,叫做直接开平方法.直接降次解一元二次方程的步骤:①将方程化为x2=p(p≥0)或(mx+n)2=p(p≥0,m≠0)的形式;②直接开平方化为两个一元一次方程;③解两个一元一次方程得到原方程的解.【题型1用直接开平方法解一元二次方程】【例1】(2023春·八年级课时练习)将方程(2-1)2=9的两边同时开平方,得2-1=________,即2-1=________或2-1=________,所以1=________,2=________.【答案】±33-32-1【分析】依照直接开平方法解一元二次方程的方法及步骤,一步步解出方程即可.【详解】∵(2-1)2=9∴2-1=±3∴2-1=3,2-1=-3∴1=2,2=-1【点睛】此题考查解一元二次方程直接开平方法,掌握运算法则是解题关键.【变式1-1】(2023春·全国·八年级专题练习)解下列方程:4(x﹣1)2﹣36=0(直接开方法)【答案】x1=4,x2=﹣2.【分析】直接利用开方法进行求解即可得到答案;【详解】解:∵4−12−36=0∴(x﹣1)2=9,∴x﹣1=±3,∴x1=4,x2=﹣2【变式1-2】(2023·全国·八年级假期作业)如果方程(−5)2=−7可以用直接开平方求解,那么的取值范围是().A.>0B.O7C.>7D.任意实数【答案】B【分析】根据−7≥0时方程有实数解,可求出m的取值范围.【详解】由题意可知−7≥0时方程有实数解,解不等式得O7,故选B.【点睛】形如rm2=a的一元二次方程当a≥0时方程有实数解.【变式1-3】(2023春·安徽蚌埠·八年级校联考阶段练习)用直接开平方解下列一元二次方程,其中无解的方程为()A.x2+9=0B.-2x2=0C.x2-3=0D.(x-2)2=0【答案】A【分析】根据负数没有平方根即可求出答案.【详解】解:(A)移项可得2=−9,故选项A无解;(B)−22=0,即2=0,故选项B有解;(C)移项可得2=3,故选项C有解;(D)−22=0,故选项D有解;故选A.【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.【知识点2配方法解一元二次方程】将一元二次方程配成(x+m)2=n的形式,再用直接开平方法求解,这种解一元二次方程的方法叫配方法.用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.【题型2配方法解一元二次方程】【例2】(2023春·八年级统考课时练习)用配方法解方程,补全解答过程.32−52=12.解:两边同除以3,得______________________________.移项,得2−16=56.配方,得_________________________________,即(−112)2=121144.两边开平方,得__________________,即−112=1112,或−112=−1112.所以1=1,2=−56.【答案】2−56=162−16+(112)2=56+(112)2−112=±1112【分析】方程两边除以3把二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.【详解】32−52=12.解:两边同除以3,得2−56=16.移项,得2−16=56.配方,得2−16+(112)2=56+(112)2,即(−112)2=121144.两边开平方,得−112=±1112,即−112=1112,或−112=−1112.所以1=1,2=−56.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.【变式2-1】(2023春·全国·八年级专题练习)用配方法解一元二次方程:(1)2−3−1=0(配方法);(2)22−7【答案】(1)x1x2(2)x1=12,x2=3【分析】(1)将常数项移动到右边,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;(2)方程两边都除以2并将常数项移动到右边,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.(1)解:2−3−1=0,方程变形得:x2-3x=1,配方得:x2-3x+94=1+94,即(x-32)2=134,开方得:x-32=±,解得:x1=,x2=;(2)解:移项得:22−7=−3系数化1得:2−72=−32两边加上一次项系数一半的平方得:2−72+=−32+配方得:−=2516开方得:−74=±54解得:x1=12,x2=3.【点睛】本题考查了一元二次方程的解法:配方法.熟练掌握配方法的一般步骤是解题的关键.【变式2-2】(2023春·山西太原·八年级阶段练习)用配方法解一元二次方程22−5+2=0.请结合题意填空,完成本题的解答.解:方程变形为22−5+(52)2−(52)2+2=0,.......................第一步配方,得(2−52)2−174=0........................................第二步移项,得(2−52)2=174...........................................第三步两边开平方,得2−52=±...................................第四步即2−522−5................................第五步所以1=2=..................................第六步(1)上述解法错在第步;(2)请你用配方法求出该方程的解.【答案】(1)一;(2)1=2,2=12.【详解】试题分析:将方程二次项系数化为1,常数项移动右边,两边都加上(54)2,左边化为完全平方式,右边合并,开方转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.试题解析:变形得:2−52+1=0,变形得:2−52=−1,配方得:2−52+(54)2=−1+(54)2,即(−54)2=916,开方得:−54=±34,则1=2,2=12.考点:解一元二次方程-配方法.【变式2-3】(2023春·全国·八年级专题练习)(1)请用配方法解方程22−6+3=0;(2)请用配方法解一元二次方程B2+B+=【答案】(1)1=2=2)1=2=【分析】(1)先将两边同时除以二次项系数;再移项,将常数项移到右边;左右两边同时加上一次项系数的一半的平方,将左边写成完全平方式,最后再直接开平方;(2)先将两边同时除以二次项系数;再移项,将常数项移到右边;左右两边同时加上一次项系数的一半的平方,将左边写成完全平方式,最后再直接开平方;【详解】解:(1)22−6+3=0两边同时除以2得:2−3+32=0,移项得:2−3=−32,两边同时加上(32)2得:2−3+(32)2=−32+(32)2,配方得:(−3234,解得:1=2=(2)B2+B+=0≠0两边同时除以得:2++=0,移项得:2+=−,两边同时加上(2)2得:2+2+(2)2=−+(2)2,配方得:(+2)2=−4B+242,当2−4B解得:1=2=当2−4B=0时,1=2=−2,当2−4B<0时,该方程无实数根.【点睛】本题主要考查用配方法解一元二次方程,解题时要注意解题步骤的准确运用,在含字母参数时要注意是否需要分类讨论.【知识点3公式法解一元二次方程】当b2−4ac≥0时,方程ax2+bx+c=0(a≠0)通过配方,其实数根可写为x=式子叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式,把各项系数的值直接代入这个公式,这种解一元二次方程的方法叫做公式法.【题型3公式法解一元二次方程】【例3】(2023·上海·八年级假期作业)用公式法解下列方程:(1)3=52+610=【答案】(1)方程无解(2)方程无解【分析】先把原方程化为一般式,然后判断Δ的符号,如果Δ≥0,则用公式法求解即可,如果Δ<0,则原方程无解.【详解】(1)解:3=52+6化为一般式得:52−3+6=0,∴=5,=−3,=6,∴Δ=2−4B=−32−4×5×6=−111<0,∴原方程无解;(210=化为一般式得2+14+145=0,∴=1,=14,=145,∴Δ=2−4B=142−4×1×145=−384<0,∴原方程无解.【点睛】本题主要考查了解一元二次方程,熟知公式法解一元二次方程是解题的关键.【变式3-1】(2023春·全国·八年级专题练习)用公式法解一元二次方程:22+7−4=0(用公式法求解).【答案】1=12,2=−4【分析】按照公式法解一元二次方程的步骤求解即可.【详解】解:∵a=2,b=7,c=-4,∴△=72-4×2×(-4)=81,∴x=∴1=12,2=−4.【点睛】此题考查公式法解一元二次方程,熟练掌握解题步骤是关键.【变式3-2】(2023春·河南·八年级校考阶段练习)用公式法解方程:(−1)(−2)=5.【答案】1=2=【分析】将原方程化为一般形式,根据求根公式,即可求解.【详解】解:原方程化为一般形式,得,2−3−3=0,则=1,=−3,=−3,∴Δ=(−3)2−3)=21,∴==∴1=2=【点睛】本题主要考查用公式法求解一元二次方程的解,掌握求根公式的计算方法是解题的关键.【变式3-3】(2023·江苏·八年级假期作业)用公式法解下列方程:(1)92+1=66;(2)22+4322=0【答案】(1)1=32=3(2)1=−6+22,2=−6−22【分析】运用公式法求解即可.【详解】(1)解:=9,=−66,=1,∴2−662−4×9×1=180,∴=∴原方程的解为:1=32=3(2)解:=2,=43,=−22,∴2432−4×2×−22=64,∴=∴原方程的解为:1=−6+22,2=−6−22.【点睛】本题考查了运用公式法解一元二次方程,熟练掌握一元二次方程的求根公式=关键.【知识点4因式分解法概念】当一个一元二次方程的一边是0,另一边能分解为两个一次因式的乘积时,就可以把解这样的一元二次方程转化为解两个一元一次方程,这种解一元二次方程的方法叫做因式分解法.【题型4因式分解法解一元二次方程】【例4】(2023·上海·八年级假期作业)用因式分解法解下列方程:(1)2+32=;(2)2−12−2−1【答案】(1)1=0 ,2=(2)1=12 ,2=1【分析】利用因式分解法解方程即可.【详解】(1)解:∵2+32=,∴2+32−=0,∴2+3−1=0,∴2+3−1=0或=0,解得1=0,2=(2)解:∵2−12−2−1=0,∴2−1−2−1=0,即−12−1=0,∴−1=0或2−1=0,解得1=12,2=1.【点睛】本题主要考查了解一元二次方程,熟知因式分解法解一元二次方程的步骤是解题的关键.【变式4-1】(2023春·全国·八年级专题练习)用因式分解法解方程:x(x-1)=2(x-1)(因式分解法).【答案】1=1,2=2【分析】先把等号右边变形为0,再将左边分解因式,即可解出未知数的值.【详解】解:x(x-1)=2(x-1),移项,得x(x-1)-2(x-1)=0,∴(x-1)(x-2)=0,∴x-1=0或x-2=0,解得:1=1,2=2.【点睛】本题考查解一元二次方程-因式分解法,解题的关键是掌握因式分解法解一元二次方程的一般步骤.【变式4-2】(2023·江苏·八年级假期作业)解下列一元二次方程:(2+1)2+42+1+4=0;【答案】1=2=−32【分析】使用完全平方公式对方程进行变形,再求得结果.【详解】解:(2+1)2+42+1+4=02+1+22=0(2+3)2=02+3=0∴1=2=−32.【点睛】本题考查了解一元二次方程,其中准确使用完全平方公式进行变形是解题的关键.【变式4-3】(2023春·海南儋州·八年级专题练习)因式分解法解方程:(1)3(x-5)2=2(5-x);(2)abx2-(a2+b2)x+ab=0(ab≠0);【答案】(1)1=5,2=133(2)1=,2=【分析】(1)分解因式,即可得出两个两个一元一次方程,求出方程的解即可;(2分解因式,即可得出两个两个一元一次方程,求出方程的解即可;【详解】(1)解:3(x-5)2=2(5-x)方程变形为:3(−5)2+2(−5)=0,∴(−5)3(−5)+2=0,∴(−5)(3−13)=0,∴1=5,2=133;(2)解:abx2-(a2+b2)x+ab=0(B−p(B−p=0,∵B≠0,∴≠0,≠0,∴1=,2=【题型5用指定方法解一元二次方程】【例5】(2023春·八年级单元测试)按照指定方法解下列方程:(1)32−15=0(用直接开平方法)(2)2−8+15=0(用因式分解法)(3)2−6+7=0(用配方法)(4)2+2=22(用求根公式法)【答案】(1)1=5,2=−5(2)1=3,2=5(3)1=3+2,2=3−2(4)1=2=2【分析】(1)把15移到右边,两边同时除以3,然后直接开平方求根;(2)用十字相乘法因式分解求出方程的根;(3)二次项系数是1,一次项系数是6,把7移到右边,用配方法解方程;(4)把右边的项移到左边,用求根公式求出方程的根.【详解】(1)解:32−15=0,∴2=5,解得:1=5,2=−5.(2)2−8+15=0,∴(−3)(−5)=0,∴−3=0或−5=0,解得:1=3,2=5.(3)2−6+7=0,∴2−6=−7∴2−6+9=2∴(−3)2=2∴−3=±2解得:1=3+2,2=3−2.(4)2+2=22,∴2−22+2=0,∴Δ=−222−4×1×2=0,∴=解得:1=2=2.【点睛】本题考查的是解一元二次方程,根据题目的要求,熟练掌握各种解法.【变式5-1】(2023·全国·八年级专题练习)解方程:(1)42=16.(直接开平方法)(2)22−3+1=0(配方法)(3)−2+−2=0(因式分解法)(4)22−6+1=0(公式法)【答案】(1)1=2,2=−2(2)1=1,2=12(3)1==−(4)1=2=【分析】(1)利用直接开平方法解方程;(2)利用配方法得到−=116,然后利用直接开平方法解方程;(3)利用因式分解法解方程.(4)求出2−4B=28,根据公式即可求出答案;【详解】(1)解:42=16,两边除以4得:2=4,两边开平方得:=±2,∴1=2,2=−2;(2)解:22−3+1=0,∴2−32=−12,∴2−3+916=−12+916,即−=116,∴−34=±14所以1=1,2=12;(3)解:−2+−2=0∴−2+1=0,∴−2=0或+1=0,所以1=2,2=−1.(4)解:22−6+1=0,∵=2,=−6,=1,∴2−4B=−62−4×2×1=28>0,∴==∴1=2=【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.【变式5-2】(2023春·海南省直辖县级单位·八年级校考阶段练习)解方程:(1)+62=9(直接开平方法)(2)2+−6=0;(公式法)(3)o−2)+−2=0;(因式分解法)(4)2+2−120=0(配方法)【答案】(1)1=−3,2=−9(2)1=2,2=−3(3)1=2,2=−1(4)1=10,2=−12【分析】(1)利用直接开平方法解此方程,即可求解;(2)利用公式法解此方程,即可求解;(3)利用因式分解法解此方程,即可求解;(4)利用配方法解此方程,即可求解.【详解】(1)解:由原方程得:+6=±3,解得1=−3,2=−9,所以,原方程的解为1=−3,2=−9;(2)解:在方程2+−6=0中,=1,=1,=−6,∴Δ=12−4×1×−6=25,∴=−1±252=−1±52解得1=2,2=−3,所以,原方程的解为1=2,2=−3;(3)解:由原方程得:(−2)+1=0,解得1=2,2=−1,所以,原方程的解为1=2,2=−1;(4)解:由原方程得:2+2=120,得2+2+1=120+1,得+12=121,得+1=±11解得1=10,2=−12,所以,原方程的解为1=10,2=−12.【点睛】本题考查了一元二次方程的解法,熟练掌握和运用一元二次方程的解法是解决本题的关键.【变式5-3】(2023·山东淄博·统考二模)请分别用公式法和配方法两种方法解方程:2+2−1=0.【答案】1=2−1,2=−2−1【分析】用配方法解方程,首先移项,把常数项移到等号的右边,再将二次项系数化为1,然后在方程的左右两边同时加上一次项系数一半的平方,即可使左边变形成完全平方式,右边是常数,直接开方即可求解;用公式法解方程,首先找出方程中二次项系数a,一次项系数b及常数项c,计算出根的判别式,由根的判别式大于0,得到方程有解,将a,b及c的值代入求根公式即可求出原方程的解.【详解】解:配方法,移项得2+2=1,配方得:2+2+1=1+1,即+12=2开方得:+1=±2解得:1=2−1,2=−2−1;公式法:∵=1,=2,=−1,∴222−4×1×(−1)=8>0,∴=2=−1±2,∴1=2−1,2=−2−1.【点睛】此题考查了解一元二次方程-公式法和配方法,解题时要注意解题步骤的准确应用.【题型6用适当的方法解一元二次方程【例6】(2023·全国·八年级假期作业)用适当方法解下列方程:(1)(2−1)2=9;(2)122−45−525=0;(3)(3−1)2−(+1)2=0;(4)(−2)2+o−2)=0;(5)122−52+1=0;(6)0.32+0.5=0.3+2.1.【答案】(1)1=2,2=−1(2)1=354,2=−5(3)1=1,2=0(4)1=1,2=2(5)1=52+43,2=52−43(6)1=73,2=−3【分析】利用直接开平方法,配方法、因式分解法,公式法解出方程的解.【详解】(1)解:(2−1)2=9直接开平方可得:2−1=±3,2−1=3或2−1=−3∴原方程的解为:1=2,2=−1;(2)解:122−45−525=042−15−175=0因式分解得:4−35+5=0,∴原方程的解为:1=354,2=−5;(3)解:(3−1)2−(+1)2=0,平方差因式分解得:3−1−+13−1++1=0,整理得:2−24=0,∴原方程的解为:1=1,2=0;(4)(−2)2+o−2)=0,提取公因式可得:−2−2+=0,整理得:−22−2=0,∴原方程的解为:1=1,2=2;(5)解:∵方程122−52+1=0,Δ=−522−4×12×1=48,∴原方程的解为:1=52+43,2=52−43;(6)0.32+0.5=0.3+2.1,32+2−21=0,因式分解得:3−7+3=0,∴原方程的解为:1=73,2=−3【点睛】本题主要考查利用恰当的方法求解一元二次方程,解题时注意对方法的合理选择.【变式6-1】(2023春·河南南阳·八年级统考期中)请选择适当方法解下列方程:(1)2−3+=3(2)−6=2−8(3)3−3=2−1+1【答案】(1)1=3,2=−12(2)1=(3)1=2=【分析】(1)利用因式分解法解一元二次方程即可;(2)利用因式分解法解一元二次方程即可;(3)利用公式法解一元二次方程即可.【详解】(1)解:2−3+=3原方程可变形为2−3+−3=0方程左边因式分解,得−32+1=0所以−3=0或2+1=0所以1=3,2=−12;(2)解:−6=2−8原方程可化为2−8+16=0∴−42=0∴1=2=4;(3)解:3−3=2−1+1原方程可化中2−9+2=0∵ 2−4B=−92−4×1×2=73>0∴ =9±732∴1=2=【点睛】此题考查了解一元二次方程,正确掌握一元二次方程的解法:直接开平方法、公式法、配方法、因式分解法,并能根据每个一元二次方程的特点选择恰当的解法是解题的关键.【变式6-2】(2023春·山东枣庄·八年级统考期中)用适当方法解下列方程:(1)92−1=0(2)42−4+1=0(3)2−6−3=0(4)2−6+9=5−22.【答案】(1)1=13,2=−13;(2)1=2=12;(3)1=3+23,2=3−23;(4)1=2,2=83.【分析】(1)利用解一元二次方程—直接开平方法,进行计算即可;(2)利用解一元二次方程—因式分解法,进行计算即可;(3)利用解一元二次方程—配方法,进行计算即可;(4)利用解一元二次方程—因式分解法,进行计算即可;【详解】(1)92−1=0,92=1,2=19,1=13,2=−13;(2)42−4+1=0,2−12=0,2=1,1=2=12;(3)2−6−3=0,2−6=3,2−6+9=3+9,−32=12,−3=±23,1=3+23,2=3−23;(4)2−6+9=5−22,−32−5−22=0,−3+5−2−3−5−2=0,2−3−8=0,1=2,2=83.【点睛】本题考查解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键.【变式6-3】(2023·宁夏中卫·八年级校考期中)用适当方法解方程(1)6−12−25=0;(2)2−−1(3)2+18=;(4)+1−1+2+3=8.【答案】(1)1=1,2=−23(2)1=1,3(3)1=2=(4)1=−3,2=1【分析】(1)先移项,然后利用开平方的方法解方程即可;(2)先移项,然后利用因式分解法解方程即可;(3)利用因式分解法解方程即可;(4)先把原方程化为一般式,然后利用因式分解法解方程即可.【详解】(1)解:∵6−12−25=0,∴6−12=25,∴6−1=±5,解得1=1,2=−23;(2)解:∵2−=3−1,∴−1−3−1=0,∴−3−1=0,∴−3=0或−1=0,解得1=1,2=(3)解:∵2+18=,∴2−+18=0,∴−=解得1=2=4(4)解:+1−1+2+3=8整理得:2+2−3=0,∴+3−1=0,∴+3=0或−1=0,解得1=−3,2=1.【点睛】本题主要考查了解一元二次方程,熟知解一元二次方程的方法是解题的关键.【题型7用换元法解一元二次方程】【例7】(2023春·山西忻州·八年级统考阶段练习)阅读和理解下面是小康同学的数学小论文,请仔细阅读,并完成相应的任务:利用换元法求方程的解我们知道,一元二次方程的解法有四种:直接开平方法,配方法,因式分解法,公式法.有一类一元二次方程,利用上述四种方法求解不仅很复杂,而且也容易出错,这时我们可以用一种新的解方程的方法—换元法,下面举例说明:例:解方程:(5r32)2−(5+3)−15=0.解析:本题若将方程化为一般形式较复杂,如果设5r32=,则原方程可化为2−2−15=0,∴(−1)2=16,∴−1=±4,∴1=5,2=−3,∴5r32=5或5r32=−3,∴方程的解为1=75,2=−95.任务:(1)上述小论文的解析过程中,解方程2−2−15=0的过程主要用了______.A.直接开平方法B.配方法C.因式分解法D.公式法(2)解方程:−2=3−2−2.【答案】(1)B(2)原方程的解是=3【分析】(1)根据小康同学的解答过程即可判断;(2)设=−2,用换元法求解.【详解】(1)解:由解题过程可知,上述小论文的解析过程中,解方程2−2−15=0的过程主要用了配方法,故答案为:B;(2)解:设=−2,则原方程可化为2=3−2,即2+2−3=0,∴−1+3=0,∴1=1,2=−3(不合题意,舍去),∴−2=1,∴=3,经检验=3是原方程的解,所以原方程的解是=3.【点睛】本题考查了换元法解方程,因式分解法和配方法解一元二次方程,以及无理方程的解法,掌握换元法的解题思路是解答本题的关键.【变式7-1】(2023春·山东青岛·八年级统考期末)已知2+22−2+2−6=0,求2+2的值.【答案】3【分析】把2+2看作一个整体,设2+2=,利用换元法得到新方程2−−6=0,求解即可.【详解】解:设2+2=,据题意,得2−−6=0.解得1=3,2=−2.∵2+2≥0,∴2+2==3,故答案为:3.【点睛】本题主要考查了解一元二次方程,熟知换元法解一元二次方程是解题的关键.【变式7-2】(2023春·甘肃平凉·八年级校考阶段练习)已知实数x满足(2−p2−2(2−p−3=0,则代数式2−+2020的值为_______.【答案】2023【分析】设=2−,则原方程转化为关于t的一元二次方程2−2−3=0,利用因式分解法解该方程即可求得t的值;然后整体代入所求的代数式进行解答,注意判断方程的根的判别式≥0,方程有解.【详解】解:设=2−,由原方程,得2−2−3=0,整理,得−3+1=0,所以=3或=−1.当=3时,2−=3,则2−+2020=2023;当=−1时,2−=−1即2−+1=0时,=−12−4×1×1<0,方程无解,此种情形不存在.故答案是:2023.【点睛】本题考查了换元法解一元二次方程.换元的实质是转化,关键是构造元和设元,理论依据是等量代换.【变式7-3】(2023春·全国·八年级专题练习)解下列方程:(1)2(2﹣7p2﹣21(2﹣7p+10=0;(2)22+32﹣422+3=0【答案】(1)x1x2x3x4(2)1=﹣2.5,2=1,3=﹣0.5,4=﹣1【分析】(1)利用换元法,先设2﹣7=,然后根据解一元二次方程的方法,可以得到a的值,然后即可得到该方程的解;(2)利用换元法,先设22+3=,然后根据解一元二次方程的方法,可以得到a的值,然后即可得到该方程的解【详解】(1)解:22−72−212﹣7+10=0设2−7=,则22−21+10=02−1−10=0∴2−1=0或−10=0,解得,1=0.5,2=10,∴2−7=0.5或2−7=10,∴22−=027−,解得,x1x2x3x4(2)解:22+32﹣422+3﹣5=0设22+3=,则2−4−5=0−5+1=0,∴−5=0或+1=0,解得,1=5,2=﹣1,∴22+3=5或22+3=﹣1,∴22+3−5=0或22+3+1=0,解得,1=−2.5,2=1,3=−0.5,4=−1【点睛】本题考查换元法在一元二次方程的求解中的应用,掌握该方法是解题关键.【题型8配方法的应用】【例8】(2023·全国·八年级假期作业)若=52−4B+2−2+8+3(、为实数),则的最小值为__________.【答案】−2【分析】运用配方法将=52−4B+2−2+8+3变形为=2−+12++22−2,然后根据非负数的性质求出的最小值即可.【详解】解:=52−4B+2−2+8+3=42−4B+2+4−2+1+2+4+4−2=2−2+22−+1++22−2=2−+12++22−2∵、为实数,∴2−+12≥0,+2≥0,∴的最小值为−2,故答案为:−2.【点睛】本题主要考查了配方法的应用,非负数的性质,解题时注意配方的步骤,注意在变形的过程中不要改变式子的值.【变式8-1】(2023·全国·八年级假期作业)已知=6−25,=2−2(m为任意实数),则M、N的大小关系为()A.<B.>C.=D.不能确定【答案】B【分析】求出−的结果,再判断即可.【详解】根据题意,可知−=2−2−6+25=2−8+16+9=(−4)2+9>0,所以>.故选:B.【点睛】本题主要考查了整式的加减运算,配方法的应用,掌握配方法是解题的关键.【变式8-2】(2023·四川达州·模拟预测)选取二次三项式B2+B+≠0中的两项,配成完全平方式的过程叫配方.例如①选取二次项和一次项配方:2−4+2=−22−2;②选取二次项和常数项配方:2−4+2=−22+22−4,或2−4+2=+22−4+22③选取一次项和常数项配方:2−4+2=2−22−2根据上述材料,解决下面问题:(1)写出2−8+4的两种不同形式的配方;(2)已知2+2+B−3+3=0,求的值.【答案】(1)答案解析;(2)1.【分析】(1)根据配方法的步骤根据二次项系数为1,常数项是一次项系数的一半的平方进行配方和二次项和常数项在一起进行配方即可.+−22=0,再根据偶次幂的非负(2)根据配方法的步骤把2+2+B−3+3=0变形为性质得到+2=0−2=0,求出x,y的值,即可得出答案.【详解】解:(1)2−8+4=2−8+16−16+4=(−4)2−12,或2−8+4=2−4+4−8+4=−22−4.(2)∵2+2+B−3+3=0,∴2+B+24+324−3+3=0,即+−22=0.∴+2=0−2=0,解得=−1=2.∴=−12=1.【变式8-3】(2023·四川成都·统考二模)在测量时,为了确定被测对象的最佳值,经常要对同一对象测量若干次,然后选取与各测量数据的差的平方和为最小的数作为最佳近似值.例如测量数据为0.8,1.2,1.3,1.5时,设最佳值为a,那么(−0.8)2+(−1.2)2+(−1.3)2+(−1.5)2应为最小,此时=_________;设某次实验测量了m次,由这m次数据的得到的最佳值为1;又测量了n次,这n次数据得到的最佳值为2,则利用这+次数据得到的最佳值为__________.【答案】 1.2B1+B2r【分析】利用完全平方公式展开后合并,再将(−0.8)2+(−1.2)2+(−1.3)2+(−1.5)2配方得到4−1.22+1.26,则利用非负数的性质得到当=1.2时,代数式有最小值;+次数据得到的最佳值为+个数据的平均数.【详解】解:(−0.8)2+(−1.2)2+(−1.3)2+(−1.5)2=2−1.6+0.82+2−2.4+1.22+2−2.6+1.32+2−3+1.52=42−9.6+7.02=4−1.22+1.26,∵4−1.22≥0,∴当=1.2时,(−0.8)2+(−1.2)2+(−1.3)2+(−1.5)2有最小值;∵m次数据的得到的最佳值为1,n次数据得到的最佳值为2,设最佳值为a,与个数据的差的平方和为o−1)2+,与个数据的差的平方和为o−2)2+,o−1)2++o−2)2+=B2−2B2+B2−2B2+B22+=(+p−−(B1+B2)2++B12+B22++当=B1+B2r时,o−1)2++o−2)2+最小,∴+次数据得到的最佳值为B1+B2r.故答案为:1.2,B1+B2r.【点睛】本题考查了配方法:根据完全平方公式为2±2B+2=±2,二次项系数为1的多项式配成完全平方式是加上一次项系数一半的平方,注意等式是恒等变形是解题关键.。

一元二次方程的应用题专项训练(含解析)

一元二次方程的应用题专项训练(含解析)

解应用题步骤1.审题;2.设未知数,包括直接设未知数和间接设未知数两种;3.找等量关系列方程;4.解方程;5.判断解是否符合题意;6.写出正确的解.考点/易错点1 循环问题:单循环公式: x x 1 2-()=总次数 双循环公式: x x 1-()=总次数 注:双循环常见题型:①送礼物(礼尚往来);②球赛:每支球队分别以主、客场身份和其他球队交锋两次。

考点/易错点2 增长率问题(1)增长率问题的有关公式:增长数=基数×增长率 %100-⨯=计划计划实际增长率 (2)连续两次增长,且增长率相等的问题:若原来为m ,现在为n ,增长率为x ,满足公式)()1(2n m n x m <=+如果是连续两次下降则为:)()1(2n m n x m >=-考点/易错点3 传播问题可传染人数 共传染人数第0轮 1(传染源) 1第1轮 x x+1第2轮 x(x+1) 1+x+ x(x+1)列方程 1+x+ x(x+1)= 21x +()=总被传染人数 考点/易错点4 经济问题常用的公式:(1)利润=售价-进价;(2)售价=标价×折扣;(3)%100-⨯=进价进价售价利润率 (4) 总利润=一件商品的利润×销售量(5)销售额=单价×销售量例题精析例题1、一次会议上,每两个参加会议的人都握了一次手,有人统(总)计一共握了45次手,这次参加会议到会的人数是多少 分析:设参加会议有x 人,每个人都与其他(x-1)人握手,共握手次数为 x (x-1)。

解:设参加会议有x 人,依题意得21x (x-1)=45, 整理得:x 2-x-90=0解得x 1=10,x 2=-9,(舍去)答:这次参加会议到会的人数是10人.练习 (2014•天津)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为__________________.例题2雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款 12100元. (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款解:(1)设捐款增长率为x ,根据题意列方程得,10000×(1+x )2=12100,解得x1=,x2=(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.练习 (2013•贵阳)2010年底某市汽车拥有量为100 万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的 年平均增长率;(2) 该市交通部门为控制汽车拥有量的增长速 度,要求到2013年底全市汽车拥有量不超过155. 52万辆,预计2013年报废的汽车数量是2012年 底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求例题3 有一种传染性疾病,蔓延速度极快.据统汁,在人群密集的某城市里,通常情况下,每人一天能传染给若干人,通过计算解答下面的问题:(1)现有一人患了这种疾病,开始两天共有225人患上此病,求每天一人传染了几人(2)两天后,人们有所觉察,这样平均一个人一天以少传播5人的速度在递减,求再过两天共有多少人患有此病解:(1)设每天一人传染了x 人,依题意得(1+x )2=225,解得:x 1=14,x 2=-16(不合题意,舍去)答:每天一人传染了14人。

第17章 一元二次方程-利用一元二次方程解决实际问题拓展 22--23学年沪科版数学八年级下册

第17章 一元二次方程-利用一元二次方程解决实际问题拓展 22--23学年沪科版数学八年级下册

利用一元二次方程解决传播问题
例7 2020年3月,新冠肺炎疫情在中国已经得到有效控制,但在全球却开始持续蔓延,这是对人类
的考验,将对全球造成巨大影响.新冠肺炎具有人传人的特性,若一人携带病毒,未进行有
效隔离,经过两轮传染后共有256人感染新冠肺炎,求: (1)每轮传染中平均每个人传染了几个人? (2)如果这些病毒携带者,未进行有效隔离,按照这样的传染速度,第三轮传染后,共有多
(可利用的墙长为19 m),另外三边利用学校现有总长38 m的铁栏围成.若围成的面积为180
m2,试求出自行车车棚的长和宽;
19米
A
D
分析 设AB=x,则BC=38﹣2x,则可表示出矩形面积,列方程求解即可,x
根据墙长19m这个限制条件确定正确答案.
B
C
38﹣2x
解答 设AB=x,则BC=38﹣2x;
例4 某钢厂1月份钢产量4万吨,2,3月份产量持续增长,第一季度共生产13.24万吨,求2,3月 份平均每月的增长率.
分析 设平均每月的增长率为x,根据1月份的产量依次求出2月份,3月份的产量,
根据:1月份钢产量+2月份钢产量+ 3月份钢产量= 13.24,列方程求解即可. 解答 解:设2、3月份平均每月的增长率为x,
解答 解:设月平均增长率为x,5月份的营业额为2800×(1+x),6月份的营业额为2800(1+x)2 根据题意列方程得:2800(1+x)2=3388, 解得:x=110 或 x -1201(舍去) 答:月平均增长率为10%.
求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过 两次变化后的数量关系为a(1±x)2=b.其中增长取“+”,降低取“﹣”
(1)设每件衬衫降价x元时,每天可销售__(__2_0_+__2_x_)__件,每件盈利__(__4_0_﹣__x_)___元;

一元二次方程应用题专项练习(含答案)

一元二次方程应用题专项练习(含答案)

一元二次方程应用题专项练习1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。

在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价4、现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒?5、某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元6、在一块面积为888平方厘米的矩形材料的四角,各剪掉一个大小相同的正方形(剪掉的正方形作废料处理,不再使用),做成一个无盖的长方体盒子,要求盒子的长为25cm,宽为高的2倍,盒子的宽和高应为多少?7、一元二次方程解应用题将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。

商店为了赚取8000元的利润,这种商品的售价应定为多少?应进货多少?1、解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600展开后化简得:x²-44x+144=0即(x-36)(x-4)=0∴x=4或x=36(舍)即每件降价4元2、解:设增加x (8+x)(12+x)=96+69 x=3增加了3行3列3、解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得:y=(x-30)[60+2(70-x)]-500=-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4、解:设边长x则(19-2x)(15-2x)=774x^2-68x+208=0x^2-17x+52=0(x-13)(x-4)=0,当x=13时19-2x<0不合题意,舍去故x=45、解:衬衫降价x元2100=(50-x)(30+2x)=1500+70x-x^2x^2-70x+600=0(x-10)(x-60)=0x-60=0 x=60>50 舍去x-10=0 x=106、解:设剪去正方形的边长为x,x同时是盒子的高,则盒子宽为2x; 矩形材料的尺寸:长:25+2x宽:4x;(25+2x)*4x=888,解得:x1=6,x2=-18.5(舍去)盒子的宽:12cm;盒子的高:6cm。

沪科版八年级下一元二次方程测试卷

沪科版八年级下一元二次方程测试卷

注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、选择题(题型注释)1.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=1962.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是()A.a>2 B.a<2C.a<2且a≠1 D.a<-23.某厂改进工艺降低了某种产品的成本,两个月内从每件产品250元,降低到了每件160元,平均每月降低率为()A.15%B.20%C.5%D.25%4.湛江市2009年平均房价为4 000元/m2,连续两年增长后,2011年平均房价为5 500元/m2,设这两年房价年平均增长率为x,根据题意,下面所列方程正确的是 ( ) A.5 500(1+x)2=4 000B.5 500(1-x)2=4 000C.4 000(1-x)2=5 500D.4 000(1+x)2=5 5005.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A.a=c B.a=bC.b=c D.a=b=c6.已知关于x x2+a=0有两个相等的实数根,则a的值是 ( )A.1 B.-7.若一元二次方程x2+2x+m=0有实数根,则m的取值范围是 ( )A.m≤-1 B.m≤1 C.m≤4 D.m8.用配方法解方程x2-2x-3=0,配方后的方程可以是( )A.(x-1)2=4 B.(x+1)2=4C.(x-1)2=6 D.(x-1)2=16第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)9.关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),则方程2(2)0a x m b +++=的解是________.10.若关于x 的一元二次方程kx 2+4x+3=0有实根,则k 的非负整数值是 .11.若a 为一元二次方程x 2﹣3x+m=0的一个根,﹣a 为一元二次方程x 2+3x ﹣m=0的一个根,则a 的值为 .12.已知关于x 的二次方程(1﹣2k )x 2﹣2x ﹣1=0有实数根,则k 的取值范围是 .13.已知m 和n 是方程2x 2-5x -3=0________.三、计算题(题型注释)14.解方程(1)用配方法解方程:2410x x +-=.(2)用公式法解方程:210x x --=15.(8分)(1 (2)()()2234x x x ++=- 16.解方程(30分)(1)24120x x +-=(2)2250x x +-=(3)22310x x +-=(4)23(1)(1)x x x -=-(5 (6)234(3)x x -=-四、解答题(题型注释)17.解方程(1)062=-x x (2)()()021312=++-+x x18.已知关于x 的一元二次方程x 2+(m+3)x+m+1=0.⑴求证:无论m 取何值,原方程总有两个不相等的实数根;⑵若x 1,x 2m 的值,并求出此时方程的两根. 19.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定,如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加一棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购了多少棵树苗? 2021.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采用适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件,设每件商品降价x 元,据此规律,请回答:(1)商场日销售量增加________件,每件商品盈利________元.(用含x 的代数式表示) (2)在上述条件不变,销售正常的情况下,每件商品降价多少元时,商场日盈利可达2 100元?22.已知关于x 的一元二次方程ax 2+bx +1=0(a≠0)有两个相等的实数根,求23.在实数范围内定义运算“⊕”,其法则为a ⊕b =a 2-b 2,求方程(4⊕3)⊕x =24的解.24.已知x 1、x 2是方程2x 2+3x -1=0的两个实数根,不解方程,求①(x 1-x 2)225.若关于x 的一元二次方程x 2+4x +2k =0有实数根,求k 的取值范围及k 的非负整数值.参考答案1.C【解析】本题考查了由实际问题抽象出一元二次方程,增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.如果该厂八、九月份平均每月的增长率为x ,那么可以用x 分别表示八、九月份的产量,然后根据题意可得出方程.解:依题意得八、九月份的产量为50(1+x )、50(1+x )2,∴50+50(1+x )+50(1+x )2=196. 故选C . 2.C. 【解析】试题分析:根据题意得:△=b 2-4ac=4-4(a-1)=8-4a >0,且a-1≠0, 解得:a <2,且a ≠1. 故选C.考点: 1.根的判别式;2.一元二次方程的定义. 3.B . 【解析】试题分析:如果设平均每月降低率为x ,根据题意可得250(1﹣x )2=160, 解得:x=20%. 故选B .考点:一元二次方程. 4.D【解析】增长率问题公式a(1±x)2=b ,故选D. 5.A【解析】∵方程ax 2+bx +c =0(a≠0)有两个相等的实数根,∴b 2-4ac =0 又∵a +b +c =0,∴b =- (a +c)∴(a +c)2-4ac =0,∴(a -c)2=0,∴a =c. 6.B【解析】∵方程有两个相等的实数根, ∴22-4×1×(-a)=0,解得a =-1. 7.B【解析】∵方程x 2+2x +m =0有实数根. ∴22-4×1×m≥0,解得m≤1. 8.A【解析】移项,得:x 2-2x =3,配方,得:x 2-2x +1=3+1,即(x -1)2=4. 9.14x =-,21x =-. 【解析】试题分析:∵关于x 的方程2()0a x m b ++=的解是12x =-,21x =(a ,m ,b 均为常数,0a ≠),∴方程2(2)0a x m b +++=变形为2[(2)]0a x m b +++=,即此方程中22x +=-或21x +=,解得14x =-,21x =-.故答案为:14x =-,21x =-.考点:一元二次方程的解.10.1【解析】再由k考点:一元二次方程根的判别式11.3或0【解析】本题考查的是一元二次方程的根即方程的解的定义.把a和﹣a分别代入这两个方程,然后得到两个新的方程,解此方程即可得到a的值.解:把a和﹣a分别代入一元二次方程x2﹣3x+m=0和一元二次方程x2+3x﹣m=0,得到两个新的方程a2﹣3a+m=0①和a2﹣3a﹣m=0②,把①②相加得到2a2﹣6a=0,所以a=3或a=0.12.0≤k≤1且k≠【解析】一元二次方程有实数根,即根的判别式△≥0,找出a,b,c的值代入,列出关于k的不等式,求其取值范围即得.解:因为关于x的二次方程(1﹣2k)x2﹣2x﹣1=0有实数根,所以△=b2﹣4ac=(﹣2)2﹣4(1﹣2k)×(﹣1)=4﹣4k≥0,解之得,k≤1.又因为k≥0,1﹣2k≠0,即k≠,所以k的取值范围是0≤k≤1且k≠.13【解析】∵m,n是2x2-5x-3=0的两个根,∴m+n(14.(1)x1x2(2)x1x2【解析】试题分析:(1)移项,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.(2)首先确定a、b、c的值,计算出△的值就可以求出其值.试题解析:(1)移项,x2+4x=1x2+4x+4=1+4(x+2)2=5∴x+2=解得:x 1x 2(2)原方程变形为: x 2-x-1=0.∴a=1,b=-1,c=-1, ∴b 2-4ac=1-4×(-1)=5. ∴∴x 1x 2考点:1.解一元二次方程-配方法.2.解一元二次方程-公式法. 15.(1(2)12x =-, 【解析】试题分析:(1)△(2)原方程整理得:()()223(4)0x x x +++-=,∴(2)(32)0x x x +++-=,∴(2)(21)0x x ++=,∴12x =-,考点:1.解一元二次方程-公式法;2.解一元二次方程-因式分解法. 16.(1)16x =-,22x =;(2(3(4)11x =,(5(6)13x =,【解析】试题分析:(1)(6)(2)0x x +-=,∴16x =-,22x =; (2)△=224241(5)240b ac -=-⨯⨯-=>,(3)△=2342(1)170-⨯⨯-=>, (4)23(1)(1)0x x x ---=,∴(1)(33)0x x x ---=,∴(1)(23)0x x --=,∴11x =,(5)△ (6)234(3)0x x ---=,∴(3)[14(3)]0x x ---=,∴(3)(413)0x x --+=,∴13x =,考点:1.解一元二次方程-公式法;2.解一元二次方程-因式分解法. 17.(1) x 1=0,x 2=6;(2) x 1=0,x 2=1 【解析】试题分析:运用因式分解法求解即可. 试题解析:(1)∵062=-x x∴x(x-6)=0解得:x 1=0,x 2=6(2)[(x+1)-1][(x+1)-2]=0 x(x-1)=0解得:x 1=0,x 2=1考点:解一元二次方程----因式分解法.18.(1)证明见解析;(2)m=-3时,x 1x 2m=1时,x 1x 2 【解析】试题分析:(1)根据关于x 的一元二次方程x 2+(m+3)x+m+1=0的根的判别式△=b 2-4ac 的符号来判定该方程的根的情况;(2)根据根与系数的关系求得x 1+x 2=-(m+3),x 1•x 2=m+1;然后由已知条件“|x 1-x 2x 1-x 2)2=(x 1+x 2)2-4x 1x 2=8,从而列出关于m 的方程,通过解该方程即可求得m 的值;最后将m 值代入原方程并解方程.试题解析:(1)证明:∵△=(m+3)2-4(m+1)=(m+1)2+4∵无论m 取何值,(m+1)2+4恒大于0 ∴原方程总有两个不相等的实数根 (2)∵x 1,x 2是原方程的两根 ∴x 1+x 2=-(m+3),x 1•x 2=m+1…5分∵|x 1-x 2∴(x 1-x 2)2=2∴(x 1+x 2)2-4x 1x 2=8∴[-(m+3)]2-4(m+1)=8∴m2+2m-3=0解得:m1=-3,m2=1当m=-3时,原方程化为:x2-2=0解得:x1x2当m=1时,原方程化为:x2+4x+2=0解得:x1x2考点: 1.根的判别式;2.根与系数的关系.19.80.【解析】试题分析:根据设该校共购买了x棵树苗,由题意得:x[120-0.5(x-60)]=8800,进而得出即可.试题解析:因为60棵树苗售价为120元×60=7200元<8800元,所以该校购买树苗超过60棵,设该校共购买了x棵树苗,由题意得:x[120-0.5(x-60)]=8800,解得:x1=220,x2=80.当x=220时,120-0.5×(220-60)=40<100,∴x=220(不合题意,舍去);当x=80时,120-0.5×(80-60)=110>100,∴x=80,答:该校共购买了80棵树苗.考点: 一元二次方程的应用.20.【解析】试题分析:把已知平方求出a的值,代入即可求值.∴a-7a+1=0,,考点: 完全平方公式.21.(1)2x (50-x)【解析】(2) 每件商品降价20元,商场日盈利可达2 100元.(2)解:由题意,得(30+2x)(50-x)=2 100解之得x1=15,x2=20.∵该商场为尽快减少库存,降价越多越吸引顾客. ∴x =20.答:每件商品降价20元,商场日盈利可达2 100元. 22.4 【解析】解:∵方程ax 2+bx +1=0(a≠0)有两个相等的实数根, ∴b 2-4a =0,∴b 2=4a , 将b 2=4a=4.23.x 1=5,x 2=-5 【解析】解:∵(4⊕3)⊕x =24,∴(42-32)⊕x =24,即7⊕x =24.∴72-x 2=24,∴x 2=25. ∴x 1=5,x 2=-5.24②3 【解析】解:由一元二次方程根与系数的关系可知: x 1+x 2x 1·x 2 所以①(x 1-x 2)2=x 12-2x 1x 2+x 22=(x 12+2x 1x 2+x 22)-4x 1x 2=(x 1+x 2)2-4x 1x23.25.k≤2 0,1,2 【解析】解:∵方程有两个实数根,∴42-4×1×(2k)≥0,解得k≤2.所以k 的取值范围为k≤2,满足条件的k 的非负整数值有三个:0,1,2.。

沪科版八年级下册数学17.1一元二次方程同步练习(含解析)

沪科版八年级下册数学17.1一元二次方程同步练习(含解析)

沪科版八年级下册数学17.1一元二次方程同步练习一、选择题(本大题共8小题)1.下列方程是一元二次方程的是( )A .x-2=0B .x 2-4x-1=0C .x 2-2x-3 D .xy+1=02.把一元二次方程4)3()1(2+-=-x x x 化成一般式之后,其二次项系数与一次项分别是( )A .2,-3B .-2,-3C .2,-3xD .-2,-3x3.若关于x 的一元二次方程x 2+5x+m 2-1=0的常数项为0,则m 等于( )A .1B .2C .1或-1D .04.一元二次方程22(1)(1)1x a x x x -+=--化成一般式后,二次项系数为1,一次项系数为1-,则a 的值为( ).A.-1B. 1C.2D.-25.下列一元二次方程中常数项是0的是( )A. 042=-x xB. 8122=xC. 12=-x xD. 642+=x x6.把方程2(x 2+1)=5x 化成一般形式ax 2+bx+c=0后,a+b+c 的值是( )A .8B .9C .-2D .-17.若关于x 的一元二次方程中02=++c bx ax 有一个根是-1,则下列结论正确的是( )A. 1=++c b aB. 0=+-c b aC. 0=++c b aD. 1-=+-c b a8.若关于x 的一元二次方程为ax 2+bx+5=0(a ≠0)的解是x=1,则2013-a-b 的值是( )A .2018B .2008C .2014D .2012二、填空题(本大题共6小题)9.当m= 时,关于x 的方程5)3(72=---x x m m是一元二次方程; 10.方程3x 2=5x+2的二次项系数为 ,一次项系数为 .11.若关于x 的一元二次方程(m-2)x 2+x+m 2-4=0的一个根为0,则m 值是 .12.根据题意列一元二次方程:有10个边长均为x 的正方形,它们的面积之和是200,则有13.已知x=1是一元二次方程x 2+mx+n=0的一个根,则m 2+2mn+n 2的值为 .14.已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)有一个根为1,一个根为-1,则a+b+c= ,a-b+c= .三、计算题(本大题共4小题)15.若(m+1)x|m|+1+6-2=0是关于x 的一元二次方程,求m 的值.16.关于x 的方程(m 2-8m+19)x 2-2mx-13=0是否一定是一元二次方程?请证明你的结论.17.一元二次方程0)1()1(2=++++c x b x a 化为一般式后为01232=-+x x ,试求222a b c +-的值的算术平方根.18.根据下列问题,列出关于x 的方程,并将其化为一元二次方程的一般形式:(1)两连续偶数的积是120,求这两个数中较小的数.(2)绿苑小区住宅设计中,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多11米,那么绿地的长为多少?(3)某种产品原来成本价是25元,后经过技术改进,连续二次降低成本,现在这种产品的成本价仅16元,试问平均每次降低成本的百分率为多少?参考答案:一、选择题(本大题共8小题)1.B分析:根据一元二次方程的定义可得解答。

沪科版八年级数学下册一元二次方程应用专题(含完整解析及答案)

沪科版八年级数学下册一元二次方程应用专题(含完整解析及答案)

沪科版八年级数学下册一元二次方程应用专题1.(2013•珠海)某渔船出海捕鱼,2010年平均每次捕鱼量为10吨,2012年平均每次捕鱼量为8.1吨,求2010年﹣2012年每年平均每次捕鱼量的年平均下降率.2.(2013•重庆)“4•20”雅安地震后,某商家为支援灾区人民,计划捐赠帐篷16800顶,该商家备有2辆大货车、8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m顶,每辆小货车每次比原计划少运300顶,为了尽快将帐篷运送到灾区,大货车每天比原计划多跑次,小货车每天比原计划多跑m次,一天恰好运送了帐篷14400顶,求m的值.3.(2013•襄阳)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?4.(2013•泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?5.(2013•汕头)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?6.(2013•泉州)某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l(cm)与时间t(s)满足关系:l=t2+t(t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.(1)甲运动4s后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?7.(2013•衢州)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.8.(2013•绵阳)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?9.(2012•徐州)为了倡导节能低碳的生活,某公司对集体宿舍用电收费作如下规定:一间宿舍一个月用电量不超过a千瓦时,则一个月的电费为20元;若超过a千瓦时,则除了交20元外,超过部分每千瓦时要交元.某宿舍3月份用电80千瓦时,交电费35元;4月份用电45千瓦时,交电费20元.(1)求a的值;(2)若该宿舍5月份交电费45元,那么该宿舍当月用电量为多少千瓦时?10.(2012•襄阳)为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m,宽20m的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)11.(2012•山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?12.(2012•钦州)近年来,某县为发展教育事业,加大了对教育经费的投入,2009年投入6000万元,2011年投入8640万元.(1)求2009年至2011年该县投入教育经费的年平均增长率;(2)该县预计2012年投入教育经费不低于9500万元,若继续保持前两年的平均增长率,该目标能否实现?请通过计算说明理由.13.(2012•黔南州)2012年3月25日央视《每周质量播报》报道“毒胶囊”的事件后,全国各大药店的销售都受到不同程度的影响,4月初某种药品的价格大幅度下调,下调后每盒价格是原价格的,原来用60元买到的药品下调后可多买2盒.4月中旬,各部门加大了对胶囊生产监管力度,因此,药品价格4月底开始回升,经过两个月后,药品上调为每盒14.4元.(1)问该药品的原价格是多少,下调后的价格是多少?(2)问5、6月份药品价格的月平均增长率是多少?14.(2012•乐山)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.15.(2012•大庆)已知等边△ABC的边长为3个单位,若点P由A出发,以每秒1个单位的速度在三角形的边上沿A→B→C→A方向运动,第一次回到点A处停止运动,设AP=S,用t表示运动时间.(1)当点P由B到C运动的过程中,用t表示S;(2)当t取何值时,S等于(求出所有的t值);(3)根据(2)中t的取值,直接写出在哪些时段AP?16.(2011•襄阳)汽车产业是我市支柱产业之一,产量和效益逐年增如.据统计,2008年我市某种品牌汽车的年产量为6.4万辆,到2010年,该品牌汽车的年产量达到10万辆.若该品牌汽车年产量的年平均增长率从2008年开始五年内保持不变,则该品牌汽车2011的年产量为多少万辆?17.(2011•西宁)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房者持币观望.为了加快资金周转,房地产开发商对价格两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元.请问哪种方案更优惠?18.(2011•辽阳)随着家庭轿车拥有量逐年增加,渴望学习开车的人也越来越多.据统计,某驾校2008年底报名人数为3 200人,截止到2010年底报名人数已达到5 000人.(1)若该驾校2008年底到2010年底报名人数的年平均增长率均相同,求该驾校的年平均增长率.(2)若该驾校共有10名教练,预计在2011年底每个教练平均需要教授多少人?19.(2011•广安)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?20.(2011•常州)某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x天的总销量y1(千克)与x 的关系为y1=﹣x2+40x;乙级干果从开始销售至销售的第t天的总销量y2(千克)与t的关系为y2=at2+bt,(2)若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?(说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)21.(2010•天津)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.青山村种的水稻2007年平均每公顷产8000kg,2009年平均每公顷产9680kg,求该村水稻每公顷产量的年平均增长率.解题方案:设该村水稻每公顷产量的年平均增长率为x.(1)用含x的代数式表示:①2008年种的水稻平均每公顷的产量为_________;②2009年种的水稻平均每公顷的产量为_________;(2)根据题意,列出相应方程_________;(3)解这个方程,得_________;(4)检验:_________;(5)答:该村水稻每公顷产量的年平均增长率为_________%.22.(2009•天津)如图①:要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2x,则每个竖彩条的宽为3x.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD.结合以上分析完成填空:如图②:用含x的代数式表示:AB=_________cm;AD=_________cm;矩形ABCD的面积为_________cm2;列出方程并完成本题解答.23.(2009•常德)常德市工业走廊南起汉寿县太子庙镇,北至桃源县盘塘镇创元工业园.在这一走廊内的工业企业2008年完成工业总产值440亿元,如果要在2010年达到743.6亿元,那么2008年到2010年的工业总产值年平均增长率是多少?《常德工业走廊建设发展规划纲要(草案)》确定2012年走廊内工业总产值要达到1200亿元,若继续保持上面的增长率,该目标是否可以完成?24.(2008•义乌市)义乌市是一个“车轮上的城市”,截止2007年底全市汽车拥有量为114508辆.己知2005年底全市汽车拥有量为72983辆.请解答如下问题:(1)2005年底至2007年底我市汽车拥有量的年平均增长率?(结果精确到0.1%)(2)为保护城市环境,要求我市到2009年底汽车拥有量不超过158000辆,据估计从2007年底起,此后每年报废的汽车数量是上年底汽车拥有量的4%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同,结果精确到个位)25.(2008•西藏)黄冈百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装因应降价多少元?26.(2008•宁波)2008年5月1日,目前世界上最长的跨海大桥﹣﹣杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的3时20分缩短到2时.(1)求A地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?27.(2007•宜昌)椐报道,2007年“五•一”黄金周宜昌市共接待游客约80万人,旅游总收入约2.56亿元.其中县区接待的游客人数占全市接待的游客人数的60%,而游客人均旅游消费(旅游总收入÷旅游总人数)比城区接待的游客人均旅游消费少50元.(1)2007年“五•一”黄金周,宜昌市城区与县区的旅游收入分别是多少万元?(2)预计2008年“五•一”黄金周与2007年同期相比,全市旅游总收入增长的百分数是游客人均旅游消费增长百分数的2.59倍,游客人数增长的百分数是游客人均旅游消费增长百分数的1.5倍.请估计2008年“五•一”黄金周全市的旅游总收入是多少亿元?(保留3个有效数字)28.(2007•呼伦贝尔)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?29.(2005•扬州)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?30.(2002•河北)图形的操作过程:在图①中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分);在图②中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分).(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影;(2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1=_________,S2=_________,S3=_________.(3)联想与探索:如图④在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少并说明你的猜想是正确的.沪科版八年级数学下册一元二次方程应用专题参考答案与试题解析1.(2013•珠海)某渔船出海捕鱼,2010年平均每次捕鱼量为10吨,2012年平均每次捕鱼量为8.1吨,辆大货车、8辆小货车运送帐篷.计划大货车比小货车每辆每次多运帐篷200顶,大、小货车每天均运送一次,两天恰好运完.(1)求大、小货车原计划每辆每次各运送帐篷多少顶?(2)因地震导致路基受损,实际运送过程中,每辆大货车每次比原计划少运200m顶,每辆小货车每次比原计划少运300顶,为了尽快将帐篷运送到灾区,大货车每天比原计划多跑次,小货车每天比原计1+m1+(1)求每轮传染中平均一个人传染了几个人?4.(2013•泰安)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;一个雏形,如图所示,甲、乙两点分别从直径的两端点A、B以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l(cm)与时间t(s)满足关系:l=t2+t(t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.(1)甲运动4s后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?l=t+甲走过的路程为+t则+t+4t=21则+t+4t=63(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.=(舍去)即正方形的边长为销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商辆,××x+不是整数,故不符合题意,=13用电量不超过a千瓦时,则一个月的电费为20元;若超过a千瓦时,则除了交20元外,超过部分每千瓦时要交元.某宿舍3月份用电80千瓦时,交电费35元;4月份用电45千瓦时,交电费20元.(1)求a的值;20+元,得,元.则宽20m的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?×.2011年投入8640万元.(1)求2009年至2011年该县投入教育经费的年平均增长率;(2)该县预计2012年投入教育经费不低于9500万元,若继续保持前两年的平均增长率,该目标能否销售都受到不同程度的影响,4月初某种药品的价格大幅度下调,下调后每盒价格是原价格的,原来用60元买到的药品下调后可多买2盒.4月中旬,各部门加大了对胶囊生产监管力度,因此,药品价格4月底开始回升,经过两个月后,药品上调为每盒14.4元.(1)问该药品的原价格是多少,下调后的价格是多少?xxx=10大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.角形的边上沿A→B→C→A方向运动,第一次回到点A处停止运动,设AP=S,用t表示运动时间.(1)当点P由B到C运动的过程中,用t表示S;(2)当t取何值时,S等于(求出所有的t值);(3)根据(2)中t的取值,直接写出在哪些时段AP?,建立关于×S=S=,;.S=S=;汽车的年产量为6.4万辆,到2010年,该品牌汽车的年产量达到10万辆.若该品牌汽车年产量的年平行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房者持币观望.为了加快资金周转,房地产开发商对价格两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元.××年底报名人数为3 200人,截止到2010年底报名人数已达到5 000人.(1)若该驾校2008年底到2010年底报名人数的年平均增长率均相同,求该驾校的年平均增长率.=(不合实际,舍去)政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x天的总销量y1(千克)与x 的关系为y1=﹣x2+40x;乙级干果从开始销售至销售的第t天的总销量y2(千克)与t的关系为y2=at2+bt,(2)若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?)根据表中的数据可得路按下面的要求填空,完成本题的解答也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.青山村种的水稻2007年平均每公顷产8000kg,2009年平均每公顷产9680kg,求该村水稻每公顷产量的年平均增长率.解题方案:设该村水稻每公顷产量的年平均增长率为x.(1)用含x的代数式表示:①2008年种的水稻平均每公顷的产量为8000(1+x);②2009年种的水稻平均每公顷的产量为8000(1+x)2;(2)根据题意,列出相应方程8000(1+x)2=9680;(3)解这个方程,得x1=0.1,x2=﹣2.1;(4)检验:x1=0.1,x2=﹣2.1都是原方程的根,但x2=﹣2.1不符合题意,所以只取x=0.1;彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2x,则每个竖彩条的宽为3x.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD.结合以上分析完成填空:如图②:用含x的代数式表示:AB=(20﹣6x)cm;AD=(30﹣4x)cm;矩形ABCD的面积为(24x2﹣260x+600)cm2;列出方程并完成本题解答.,)=2x=,,答:每个横、竖彩条的宽度分别为cm的工业企业2008年完成工业总产值440亿元,如果要在2010年达到743.6亿元,那么2008年到2010年的工业总产值年平均增长率是多少?《常德工业走廊建设发展规划纲要(草案)》确定2012年走廊内2005年底全市汽车拥有量为72983辆.请解答如下问题:(1)2005年底至2007年底我市汽车拥有量的年平均增长率?(结果精确到0.1%)(2)为保护城市环境,要求我市到2009年底汽车拥有量不超过158000辆,据估计从2007年底起,此后每年报废的汽车数量是上年底汽车拥有量的4%,那么每年新增汽车数量最多不超过多少辆?(假定40元.为了迎接“六•一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.5 一元二次方程应用专项训练题
一、数字问题
1、有两个连续整数,它们的平方和为25,求这两个数。

2、有一个两位数,它的个位上的数字与十位上的数字之和是6,如果把它的个位数字与十位数字调换位置,所得的两位数乘以原来的两位数所得的积等于1008,求调换位置后得到的两位数。

二、销售利润问题
3、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售2件,如果商场平均每天要盈利1200元,每件衬衫应降价多少元?
4、某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克。

为了促销,该经营户决定降价销售。

经调查发现,这种小西瓜每降价0.1元/千克,每天可多售出40千克。

另外,每天的房租等固定成本共24元。

该经营户要想每天盈利200元,则应将每千克的小型西瓜的售价降低多少元?
5、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
6、某商店以2400元购进某种盒装茶叶,第一个月每盒按进价增加20%作为售价,售出50盒,第二个月每盒以低于进价5元作为售价,售完余下的茶叶.在整个买卖过程中盈利350元,求每盒茶叶的进价.
三、平均变化率问题
7、某校2003年捐款1万元给希望工程,以后每年都捐款,计划到2005年共捐款4.75万
元,问该校捐款的平均年增长率是多少?
8、某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,求3月份到5月份的营业额的平均月增长率.
9、今年,我国政府为减轻农民负担,决定在5年内降低农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.
(1)求每年降低的百分率;
(2)若小红家有四人,明年小红家减少多少农业税?
四、形积问题
10、用一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的边长为Xcm的小正方形,然后做成底面积为1500cm2的无盖的长方形盒子,求X的值。

11、如下左图要在长32m,宽20m的长方形绿地上修建宽度相同的道路,
六块绿地面积共570m2,问道路宽应为多宽?
12、如下右图在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,
余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少?
五、围篱笆问题
13、借助一面长6米的墙,用一根13米长的铁丝围成一个面积为20平方米的长方形,求长方形的两边?
14、如上右图所示,利用22米长的墙为一边,用篱笆围成一个长方形养鸡场,中间用篱笆分割出两个小长方形,总共用去篱笆36米,为了使这个长方形ABCD的面积为96平方米,问AB和BC边各应是多少?
六、相互问题(传播、循环)
15、(1)参加一次聚会的每两人都握了一次手,所有人共握手66次,有多少人参加聚会?
(2)要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排28场比赛,应邀请多少个球队参加比赛?
(3) 初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人?
16、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?(答案:10人。


17、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?
七、动点几何问题
18、如图,在△ABC中,∠B=90o。

点P从点A开始沿边AB向点B以1cm/s的速度移动,与此同时,点Q从点B开始沿边BC向点C以2cm/s的速度移动。

如果P、Q分别从A,B 同时出发,(1)经过几秒,△PBQ的面积等于8cm2?(2)点P、Q在移动过程中,是
否存在某一时刻,使得△PBQ的面积等于△ABC的面积的一半,若存在,求出运动的时间;若不存在,说明理由。

19、如图,已知A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q以2cm/s 的速度向D移动.
问:(1)P,Q两点从出发开始几秒时,四边形PBCQ的面积是33cm2?
(2)P,Q两点从出发开始到几秒时,点P点Q间的距离是10cm?
八、列分式方程问题
20、一个车间加工300个零件,加工完80个以后,改进了操作方法,每天能多加工15个,一共用了6天完成了任务,求改进操作方法后每天加工的零件的个数。

21、某商场运进120台空调准备销售,由于开展了促销活动,每天比原计划多售出4台,结果提前5天完成销售任务,原计划每天销售多少台?。

相关文档
最新文档