中职数学1.1集合的-概念
中职数学基础模块第1章《集合》知识点小结

(3)
(2)运算性质: ① A B B A ② (A B) C A (B C) ③ A A A ④ A A ⑤ 若A B,则A B A,反之也成立.
知识清单 ——————————————————————————
2.并集(“取全部”)
(1)定义:给定两个集合A,B,把它们所有的元素合并在一起构成的集合叫作A 与B的并集,记作 A B ,读作“A并B”,即 A B {x x A或xB}
知识清单
知识清单
一.集合的概念
1.集合的概念:一般地,把一些能够确定 的对象看成一个整体,我们就说,这个整 体是由这些对象的全体构成的集合(简称 集).通常用大写英文字母A,B,C...表示;
2.元素:构成集合的每个对象都叫做集合 的元素,一般用小字字母a,b,c...表示;
知识清单
3.集合中元素的性质: (1)确定性:集合中的元素必须是确定的; (2)互异性:集合中的元素互不相同; (3)无序性:集合中元素之间不考虑顺序关系.
(3)空 集:不含任何元素的集合 记作
知识清单
6.实数的分类:
ቤተ መጻሕፍቲ ባይዱ
整数
正整0 数自然数
实数
有理数
负整数
分数
正分数 负分数
无理数(无限不循环小数)
知识清单
7.常用数集的记法:
集合名 称
记法
实数 集
R
有理数 集
Q
整数 集
知识清单
2.性质描述法 用集合所含元素的共同特征表示集合的方法
(把集合中元素的公共特征描述出来,按一定格式 写在括号里)
形式: A {x I | P(x)}其中竖线前的x叫集合的
中职数学基础模块上册课件

1.2.2 集合相等
一般地,如果两个集合的元素完全相同,那么就说这两个 集合相等.集合A等于集合B,记作 ,读作“A等于B”.
由集合相等的定义可知,x | x2 3x 2 0 1,2 .
显然,若集合A B ,则A B 且B A .
例3 判断集合A x |1 x 4 ,x N与 B x | x2 5x 6 0
解 (1)由条件 p :x 1成立,能够推出结论 q :| x| 1 成 立,因此p是q的充分条件;而由结论q :| x| 1 成立,不能推出 条件 p :x 1成立,因此p不是q的必要条件.
(5) b是集合a ,b ,c 的元素,因此b a ,b ,c .
(6)正整数都是有理数,因此N Q.
(7)0不是集合1,2 的元素,因此0 1,2.
例2 写出集合A 2 ,4 ,6的所有子集和真子集.
解 集合A的所有子集为
,2,4 ,6,2,4,2,6,4,6,2,4,6. 在上述子集中,除了集合A自身2 ,4 ,6 外,其余的都是
如果集合A是全集U的一个子集,则由U中不属于A的所有 元素组成的集合称为A在全集U中的补集,记作 U A ,读作“A在 U中的补集”.
集合A在全集U中的补集 可用描述法表示为
U A x | x U 且 x A
也可用图1-6中的着色部分来 表示.
图1-6
如果全集U为实数集R,可以将 U A 中的U省略,简记 为 A ,读作“A的补集”.
(2)由于小于10的正奇数包括1,3,5,7,9五个数, 它们是确定的对象,因此可以构成一个集合.
(3)方程 x2 9 0 的解为3和-3 ,它们是确定的对象, 因此可以构成一个集合.
(4)解不等式x 7 0 ,可得 x 7,它们是确定的对象, 因此可以构成一个集合.由方程的所有解组成的集合称为这 个方程的解集;由不等式的所有解组成的集合称为这个不等 式的解集.显然,方程的解集和不等式的解集都是数集.
中职数学1.1.1集合的概念

第一章 集合
1.1集合及其运算
知识点
集合
1. 正整数1, 2, 3, ; 2. 中国古典四大名著; 3. 郓城县高级技工学校2022级计
算机应用专业的全体学生; 4. 我校体育队的全体队员; 5. 到XX线段两端距离相等的点.
1.集合的概念:
一般地,指定的某些对象的全体 称为集合,简称“集”.
有限集:含有有限个元素的集合称 为有限集。 无限集:含有无限个元素的集合称 为无限集。
6.空集:
特别的,我们把不含任何元素 的集合称为空集,记作
练习2:⑴ 0 (填∈或)
⑵ { 0 } ≠ (填=或≠)
7.重要的数集:
➢ N:自然数集、非负整数集 (含0)
➢ N+:正整数集(不含0) ➢ Z:整数集 ➢ Q:有理数集 ➢ R:实数集
组成集合的每个个体都叫做这个 集合的元素.
(1)某护理班参加了“抗击新冠肺炎, 我们在一起”的志愿服务活动的学生全 体组成一个集合,其中每个学生都是这 个集合的一个元素;
(2)正数的全体 组成一个集合,其 中每个正数都是这 个集合的一个元素;
(3)平行四边形的全体组成一个集合, 其中每个平行四边形都是这个集合的一 个元素;
C. ②③⑥⑦
D. ②③⑤⑥⑦⑧
例1.下列指定ห้องสมุดไป่ตู้对象,能构成一个集合
的是
( B)
①很小的数 ②不超过 30的非负实数
③直角坐标平面的横坐标与纵坐标相等的点
④的近似值 ⑤高一年级优秀的学生
⑥所有无理数 ⑦大于2的整数
⑧正三角形全体
A. ②③④⑥⑦⑧ B. ②③⑥⑦⑧
C. ②③⑥⑦
D. ②③⑤⑥⑦⑧
中职数学1.1集合的_概念

集合的概念:一般地,把一些能够确定的对象看成 一个整体,我们就说,这个整体是由这些对象的全 体构成的集合(简称为集). 元素:构成集合的每个对象都叫做集合的元素. 例如:(1) 某职业学校学生的全体; (2) 正数全体; (3) 平行四边形全体; (4) 数轴上所有点的坐标的全体.
确定性:给定的集合,它的元素必须是确定
补充:实数的分类
非负整数 ( N) 负整数 正整数 (N+ ) 0
实数 (R) 无理数
有理数 (Q)
整 数 ( Z) 分 数
例2
用符号“”或“”填空:
(1)1___N , 0___N , 0.3___N ; , -4___N
(2)1___Z ; , 0___Z , -4___Z , 0.3___Z
的,也就是说给定一个集合,那么任何一个元素在 不在这个集合中就确定了
互异性:一个给定的集合中的元素是互不相 同的,即集合中的元素不能相同。 无序性:集合中的元素是无先后顺序的,即
集合里的任何两个元素可以交换位置
集合与元素的表示方法: 一个集合,通常用大写英文字母 A,B,C,„ 表示, 它的元素通常用小写英文字母 a,b,c,„ 表示. 元素与集合的关系: (1)如果 a 是集合A的元素,就说 a 属于 A,
(1)某技校所有数学老师构成的集合。 (有限集) (2)由a、b、c、d构成的集合。 (有限集) (3)由所有的矩形构成的集合。 (无限集) (4)平面内与定点o距离5cm的所有点构成的集合 (无限集)
常用数集及其记法 非负整数集 (自然数集) N
集合 记号
正整数集 整数集 有理数集 实数集 N* 或 N+ Z Q R
集合的分类 (1)有限集:含有有限个元素的集合叫做有限集. (2)无限集:含有无限个元素的集合叫做无限集. 练习1 判断下列语句是否正确.
中职数学 集合的概念

1.1集合及其表示1.1.1集合的概念【学习目标】1.掌握元素与集合的概念,能在具体问题中判断是否可以组成集合.2.通过实例和阅读自学记忆常见的数集,培养自主探究意识和自学能力.【知识脉络】【基础过关】一、集合1.某些确定的对象就成为一个集合,简称.集合中的每一个对象叫做这个集合的 .2.集合中的元素属性具有:(1) 确定性 (2) (3) .【答案】1.确定的对象集元素 2. (1) 确定性(2)互异性(3)无序性.二、元素与集合的关系a A∉∈a A【答案】【分析】本题主要考查集合中元素的性质.根据元素与集合的关系和元素的性质进行求解即可.对于此类题,要注意集合中元素互异性的验证.【解答】解:因为3A ∈,所以23a -=或 3.a =当23a -=,即5a =时,满足题意;当3a =时,不满足集合元素的互异性,故舍去.综上可得a 的值为5.【综合提升】1. 下列各项中不能组成集合的是()A . 所有的正三角形B . 数学课本中的所有习题C . 所有的数学难题D . 所有无理数2. 下列各组对象能构成集合的是()A .B . 所有的正方形C . 著名的数学家D . 1,2,3,3,4,4,4,43. 给出下列关系:①13R ∈Q ;③3Z -∉;④N ,其中正确的个数为() A . 1 B . 2 C . 3 D . 44. “notebooks ”中的字母构成一个集合,该集合中的元素个数是()A. 5B. 6C. 7D. 85. 下列元素与集合的关系判断正确的是()(1)0∈N ;(2)1-∈Z ;(3)π∈Q ;.RA .(1)(2)B .(1)(3)C .(1)(4)D .(2)(4)二、填空题 6. 下列对象中,能够组成集合的有__________.①比较小的数;②不大于10的非负偶数;③所有三角形;④直角坐标平面内横坐标为零的点;⑤高个子男生;⑥某班17岁以下的学生.7. 用数学符号表示下列常见数集整数集_______ 自然数集________ 正整数集_______ 有理数集________实数集_______8. 用符号“∈”或“∉”填空:0________N 3-________N 0.5________ZZ13________Q π________R 9. 已知集合{,1}A m m =-,若1A ∈,则实数m 的值为__________.10. 仅由英语字母b ,e ,e 组成的集合中含有________个元素.三、解答题11. 数集A 中的元素由2,2x x x +组成,求x 的取值范围.12. 设集合A 是由方程220x x a +-=的解构成的,若A 是空集,求实数a 的取值范围.【素养提升】13. 已知集合A 是由0,m ,232m m -+三个元素组成的集合,且2A ∈,求实数m 的值.答案1. C2. B3. B4. C5. A6.②③④⑥7. Z N N *Q R 8. ∈ ∉ ∉ ∉ ∈ ∈ 9. 1或2 10. 2 11.解:由集合的互异性,得22x x x +≠解得0x ≠且1x ≠.12.解:∵集合A 是由方程220x x a +-=得解构成的,因为A 是空集,所以220x x a +-=无解,所以44()0a =--<,解得1a <-,所以实数a 的取值范围是(,1).-∞-13.解:由2A ∈可知,若2m =,则2320m m -+=,这与2320m m -+≠相矛盾; 若2322m m -+=,则0m =或3m =,当0m =时,与0m ≠相矛盾,当3m =时,集合A 中的三个元素互异,符合题意.故m 的值为3.。
中职数学1.1.1《集合的概念》教学设计教案

想 类。
太原市教研科研中心研制
课时教学流程
教师行为
学生行为
*首次课导语
倾听
1.自我介绍; 2.介绍中职阶段学习数学的重要性,学习内容、学习方法
以及学习本科目的课堂要求和作业要求.
随机请学生做自我介 绍。
3.准备:轻松愉快的心情、热情饱满的精神、全力以赴的态
度、踏实努力的行动、科学认真的方法及真诚交流的习惯。
母 a,b,c, …表示集合的元素.
3.元素与集合的关系 (1) 如果 a 是集合 A 的元素,就说 a 属于 A,记作
aA,读作“a 属于 A”. (2)如果 a 不是集合 A 的元素,就说 a 不属于 A,记作 a
A.读作“a 不属于 A”. 教师强调:“”的开口方向,不能把 aA 颠倒过来写.
激发学习兴趣体验数学与生活的联系学习数学的意义增强有意注意增强理解能力举一反三发散思维带着问题边阅读边思考加深记忆提升归纳小结抽象的能力目标检测课时教学设计尾页试用补充设计补充设计11集合11集合1
课 时 教 学 设 计 首 页(试用)
授课时间:
年月 日
课题
1.1.1 集合的概念
课型 新授
第几 课时
学生体会“确定性”的 含义
学生回答 同学们举出一些集合的 例子,并说出所举例子
第1页共6页
太原市教研科研中心研制
课时教学流程
(5)方程 x2 1 0 的所有解;(6)不等式 x-2>0 的所有解
中的元素.
你能举出类似的几个例子吗?
集合举例:
由方程的所有解组成的集合叫做这个方程的解集. 由不等式的所有解组成的集合叫做这个不等式的解集. 由数组成的集合叫做数集.方程的解集与不等式的解集都
中职数学基础模块1.1.1集合的概念教学设计教案人教版

课时教学流程课4. 集合的分类.(1) 有限集:含有有限个兀素的集合叫做有限集.(2) 无限集:含有无限个元素的集合叫做无限集.5. 常用数集及其记法.(1) 自然数集:非负整数全体构成的集合,记作N;(2) 正整数集:非负整数集内排除0 的集合,记作N +或N* ;(3) 整数集:整数全体构成的集合,记作Z;(4) 有理数集:有理数全体构成的集合,记作Q;(5) 实数集:实数全体构成的集合,记作R.教师强调集合兀素的确疋性.师:高一(1)班高个子同学的全体能否构成集合?生:不能构成集合.这是由于没有规定多高才算是高个子,因而"高个子同学”不能确定.教师强调:相同的对象归入同一个集合时只能算作集合的一个元素.请学生试举有限集和无限集的例子.师:说出自然数集与非负整数集的关系.生:自然数集与非负整数集是相同的.师:也就是说,自然数集包括数0.师:出示例题,引导学生讨论、思考.生:讨论,回答,明确说出理由.生:模仿练习;讨论并口答. 师:点拨、解答学生疑难.通过具体例子,师生的问答,巩固集合概念及其元素特例1判断下列语句能否构成一个集合,并说明理由.(1) 小于10的自然数的全体;(2) 某校高一(2)班所有性格开朗的男生;(3) 英文的26个大写字母;(4) 非常接近1的实数.练习1判断下列语句是否正确:(1) 由2, 2, 3, 3构成一个集合,此集合共有4个元素;(2) 所有三角形构成的集合是无限集;(3) 周长为20 cm的三角形构成的集合是有限集;(4) 如果a = Q, b乏Q,贝U a+ b乏Q.例2用符号“”或“”填空:(1) 1 —N , 0 —N , —4_N , 0.3 —N ;(2) 1 —Z, 0—Z , —4—Z , 0.3—Z ;课时教学流程师:出示例题,请学生填写. 生:口答各题结果.师:引导学生进行订正,并 说明错误原因.学生模仿练习; 老师订正、点拨.通过例题2和练习2,加深 对特殊数集的 理解以及练习2用符号“ ”或 “”填空:(1) - 3 N ;⑵ 3.14 Q ;11⑶3Z ; (4) - 2R ;(5) 2R ;⑹oZ .性.通过练习 进一步强化学 生对集合中元 素特性的理解.(4) 1 R , 0 R , - 4 R , 0.3 R .课时教学流程元素与集合关系的理解与表示,既突出重点又分解难点. 本节课学习了以下内容:1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.学生畅谈本节课的收获,老师引导梳理,总结本节课的知识占八、、♦梳理总结也可针对学生薄弱或易错处强调总结.课时教学设计尾页(试用)☆补充设计☆板书设计1. 集合的有关概念:集合、元素.2. 元素与集合的关系:属于、不属于.3. 集合中元素的特性.4. 集合的分类:有限集、无限集.5. 常用数集的定义及记法.作业设计教材P4,练习A组第1~3题教学后记。
中职数学基础模块上册(人教版)教案

中职数学基础模块上册(人教版)全套教案第一章:集合1.1 集合的概念【教学目标】1. 了解集合的概念,掌握集合的表示方法。
2. 能够运用集合的概念解决实际问题。
【教学内容】1. 集合的定义及表示方法。
2. 集合的性质。
3. 集合之间的基本关系。
【教学重点】1. 集合的概念及表示方法。
2. 集合的性质。
【教学难点】1. 集合的表示方法。
2. 集合之间的基本关系。
【教学过程】1. 引入新课:通过生活中的实例,引导学生理解集合的概念。
2. 讲解集合的定义及表示方法,如列举法、描述法等。
3. 讲解集合的性质,如无序性、确定性、互异性。
4. 讲解集合之间的基本关系,如子集、真子集、并集、交集等。
5. 课堂练习:让学生运用集合的概念解决实际问题。
1.2 集合之间的关系【教学目标】1. 掌握集合之间的基本关系,如子集、真子集、并集、交集等。
2. 能够运用集合之间的关系解决实际问题。
【教学内容】1. 集合之间的子集、真子集关系。
2. 集合之间的并集、交集关系。
3. 集合的补集概念。
【教学重点】1. 集合之间的基本关系。
2. 集合的补集概念。
【教学难点】1. 集合之间的基本关系。
2. 集合的补集概念。
【教学过程】1. 复习上节课的内容,引导学生理解集合之间的关系。
2. 讲解集合之间的子集、真子集关系。
3. 讲解集合之间的并集、交集关系。
4. 讲解集合的补集概念。
5. 课堂练习:让学生运用集合之间的关系解决实际问题。
第二章:函数与方程2.1 函数的概念【教学目标】1. 了解函数的概念,掌握函数的表示方法。
2. 能够运用函数的概念解决实际问题。
【教学内容】1. 函数的定义及表示方法。
2. 函数的性质。
【教学重点】1. 函数的概念及表示方法。
2. 函数的性质。
【教学难点】1. 函数的表示方法。
2. 函数的性质。
【教学过程】1. 引入新课:通过生活中的实例,引导学生理解函数的概念。
2. 讲解函数的定义及表示方法,如解析式、表格法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习2 用符号“”或“”填空:
(1)-3___N;
1 (3) 3 ___Z; (5) 2 ___R;
(2) 3.14___ Q; (4) - 1 ___R;
2 (6) 0 ___Z.
拓展练习题
1、下列所给出的关系正确的有几个?
(1) ∈R;(2) 3 Q;(3)0∈N+;(4)-4 N+
2、若χ∈R,则数集{ 1、χ、χ2 }中元素χ应满足什 么条件?
元素与集合的关系: (1)如果 a 是集合A的元素,就说 a 属于 A,
记作 aA,读作“a 属于 A”; (2)如果 a 不是集合 A 的元素,就说 a 不属于 A ,
记作 aA,读作“a 不属于 A”.
例1 判断下列语句能否构成一个集合,并说明理由. (1) 小于 10 的自然数的全体; (2) 某校高一 (2) 班所有性格开朗的男生; (3) 英文的 26 个字母; (4) 非常接近 1 的实数.
R
补充:实数的分类
有理数 实数 (Q) (R) 无理数
整数 (Z)
非负整数 (N)
负整数
分数
正整数 (N+ )
0
例2 用符号“”或“”填空: (1)1___N, 0___N, -4___N, 0.3___N; (2)1___Z, 0___Z, -4___Z, 0.3___Z; (3)1___Q, 0___Q, -4___Q, 0.3___Q; (4)1___R, 0___R, -4___R, 0.3___R.
(1)某技校所有数学老师构成的集合。 (有限集)
(2)由a、b、c、d构成的集合。 (有限集)
(3)由所有的矩形构成的集合。 (无限集)
(4)平面内与定点o距离5cm的所有点构成的集合 (无限集)
常用数集及其记法
非负整数集
集合
正整数集 整数集 有理数集 实数集
(自然数集)
记号
N
N* 或 N+ Z
Q
集合
集
集合
合
集合
1.1 集合的概念
导入:1.某动物园所有的动物
导入:2.某人左手五个手指
导入:3.某校计算机(1)班所有同学
问题
大润发超市食品区新购进一批货,包括:苹果、韭菜、 空心菜、梨、榴莲、芹菜、白菜、桔子、葡萄。如何将这 些食品摆放在指定的货架上。
显然:苹果、梨、榴莲、桔子、葡萄摆放在水果 架上; 韭菜、空心菜、芹菜、白菜摆放在蔬菜架 上。
学习指导用书 P 2 A 组,B组.
谢谢观赏!
集合的分类 (1)有限集:含有有限个元素的集合叫做有限集. (2)无限集:含有无限个元素的集合叫做无限集.
练习1 判断下列语句是否正确. (1)由2,2,3,3构成一个集合,此集合共有4个元素; (2)所有三角形构成的集合是无限集; (3)周长为20 cm 的三角形构成的集合是有限集.
练习:下列语句构成的集合是有限集还是无限集?
确定性:给定的集合,它的元素必须是确定
的,也就是说给定一个集合,那么任何一个元素在 不在这个集合中就确定了
互异性:一个给定的集合中的元素是互不相 同的,即集合中的元素不能相同。
无序性:集合中的元素是无先后顺序的,即
集合里的任何两个元素可以交换位置
集合与元素的表示方法:
一个集合,通常用大写英文字母 A,B,C,… 表示, 它的元素通常用小写英文字母 a,b,c,… 表示.
解决:苹果、梨、榴莲、桔子、葡萄组成了一个整体 (集合); 韭菜、空心菜、芹菜、白菜组成了一个整体
(集合)。
集合的概念:一般地,把一些能够确定的对象看成 一个整体,我们就说,这个整体是由这些对象的全 体构成的集合(简称为集).
元素:构成集合的每个对象都叫做集合的元素.
例如:(1) 某职业学校学生的全体; Nhomakorabea(2) 正数全体; (3) 平行四边形全体; (4) 数轴上所有点的坐标的全体.