2009年高考理科数学试题及答案-全国卷1
09年全国高考数学试题——全国卷1(理科)含答案

09年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R = n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n k n n P k C P P k n -=-=,,, 一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[u (A B )中的元素共有 (A )3个 (B )4个 (C )5个 (D )6个(2)已知1iZ +=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i(3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于(A (B )2 (C (D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。
12019-理数2009-全国统一高考数学(理科)(新课标ⅰ2009年全国统一高考数学理科全国卷ⅰ含解析版)

A.
B.
C.
D.
【考点】LO:空间中直线与直线之间的位置关系.菁优网版权所有 【分析】首先找到异面直线 AB 与 CC1 所成的角(如∠A1AB);而欲求其余弦值可
考虑余弦定理,则只要表示出 A1B 的长度即可;不妨设三棱柱 ABC﹣A1B1C1 的侧棱与底面边长为 1,利用勾股定理即可求之. 【解答】解:设 BC 的中点为 D,连接 A1D、AD、A1B,易知θ=∠A1AB 即为异面 直线 AB 与 CC1 所成的角; 并设三棱柱 ABC﹣A1B1C1 的侧棱与底面边长为 1,则|AD|= , |A1D|= ,
梦想不会辜负每一个努力的人
2009 年全国统一高考数学试卷(理科)(全国卷Ⅰ)
一、选择题(共 12 小题,每小题 5 分,满分 60 分)
1.(5 分)设集合 A={4,5,7,9},B={3,4,7,8,9},全集 U=A∪B,则集
合∁U(A∩B)中的元素共有( )
A.3 个
B.4 个
C.5 个
D.6 个
21.(12 分)如图,已知抛物线 E:y2=x 与圆 M:(x﹣4)2+y2=r2(r>0)相交于 A、B、C、D 四个点.
(Ⅰ)求 r 的取值范围; (Ⅱ)当四边形 ABCD 的面积最大时,求对角线 AC、BD 的交点 P 的坐标.
22.(12 分)设函数 f(x)=x3+3bx2+3cx 有两个极值点 x1、x2,且 x1∈[﹣1,0], x2∈[1,2].
两类型. 【解答】解:分两类(1)甲组中选出一名女生有 C51•C31•C62=225 种选法; (2)乙组中选出一名女生有 C52•C61•C21=120 种选法.故共有 345 种选法. 故选:D. 【点评】分类加法计数原理和分类乘法计数原理,最关键做到不重不漏,先分类,
2009年高考全国卷I数学(理科)试题及参考答案(估分)-中大网校

2009年高考全国卷I数学(理科)试题及参考答案(估分)总分:150分及格:90分考试时间:120分一、选择题:本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)=()A. -2+4iB. -2-4iC. 2+4iD. 2-4i(2)<SPAN style="FONT-FAMIL Y: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'"><FONT size=3>设集合</FONT></SPAN><SPANlang=EN-US><FONT face="Times New Roman" size=3>A=</FONT></SPAN><SPAN style="FONT-FAMIL Y: 宋体; mso-ascii-font-family: 'Times New Roman'; mso-hansi-font-family: 'Times New Roman'"><FONT size=3>则</FONT></SPAN><SPAN lang=EN-US><FONT face="Times New Roman"size=3>A</FONT><FONT face="Times New Roman" size=3>B=()</FONT></SPAN>(3)(4)(5)已知正四棱柱中,,E为中点,则异面直线BE与所成角的余弦值为()A.B.C.D.(6)已知向量,,,则()A.B.C. 5D. 25(7)设则()A.B.C.D.(8)若将函数的图像向右平移个单位长度后,与函数的图像重合,则的最小值为()。
2009年普通高等学校招生全国统一考试全国卷I数学理科

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第错误!未找到引用源。
卷(选择题)和第错误!未找到引用源。
卷(非选择题)两部分.第错误!未找到引用源。
卷1至2页,第错误!未找到引用源。
卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)k k n kn nP k C P P k n -=-=,,, 一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[u (AB )中的元素共有(A )3个 (B )4个 (C )5个 (D )6个 (2)已知1iZ+=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i (3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈 (4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于(A (B )2 (C )(D(5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。
09年全国高考理科数学试题及答案

2009年全国高考理科数学试题及答案2009年普通高等学校招生全国统一考试数学第Ⅰ卷本试卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A,B互斥,那么球的表面积公式S?4πR 其中R表示球的半径2P(A?B)?P(A)?P(B) 如果事件A,B相互独立,那么球的体积公式V?43πR 3P(AB)?P(A)P(B) 一、选择题:其中R表示球的半径21. 设集合S?x|x?5,T?x|x?4x?21?0,则S????T? A.?x|?7?x??5?B.?x|3?x?5? C.?x|?5?x?3?D.?x|?7?x?5? ?a?log2x(当x?2时)?2.已知函数f(x)??x2?4在点x?2处连续,则常数a的值是(当x?2时)??x?2A.2B.3C.4D.5(1?2i)23.复数的值是3?4iA.-1B.1C.-iD.i 4.已知函数f(x)?sin(x??2)(x?R),下面结论错误的是.. A.函数f(x)的最小正周期为2? B.函数f(x)在区间?0,???上是增函数??2?1 C.函数f(x)的图像关于直线x?0对称D.函数f(x)是奇函数 5.如图,已知六棱锥P?ABCDEF的底面是正六边形,PA?平面ABC,PA?2AB,则下列结论正确的是 A. PB?AD B. 平面PAB?平面PBC C. 直线BC∥平面PAE D. 直线PD与平面ABC所称的角为45 6.已知a,b,c,d为实数,且c?d。
则“a?b”是“a?c?b?d”的 A. 充分而不必要条件 B. 必要而不充分条件C.充要条件 D. 既不充分也不必要条件?x2y2?2?1(b?0)的左右焦点分别为F1,F2,其一条渐近线方程为y?x,7. 已知双曲线2b点P(3,y0)在该双曲线上,则PF1?PF2= A. -12 B. -2C. 0D. 4 8. 如图,在半径为3的球面上有A,B,C三点,?ABC?90,BA?BC,?球心O到平面ABC的距离是32,则B、C两点的球面距离是2A.?4? B.?C.? 3329. 已知直线l1:4x?3y?6?0和直线l2:x??1,抛物线y?4x 上一动点P到直线l1和直线l2的距离之和的最小值是 C. 1137D. 51610. 某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨。
2009高考数学全国卷及答案理

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第错误!未找到引用源。
卷(选择题)和第错误!未找到引用源。
卷(非选择题)两部分.第错误!未找到引用源。
卷1至2页,第错误!未找到引用源。
卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R = n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB ,则集合[()u A B I 中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个解:{3,4,5,7,8,9}A B =,{4,7,9}(){3,5,8}U A B C A B =∴=故选A 。
也可用摩根律:()()()U U U C A B C A C B =(2)已知1iZ +=2+i,则复数z=(B ) (A )-1+3i (B)1-3i (C)3+i (D)3-i 解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。
(3) 不等式11X X +-<1的解集为( D )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈解:验x=-1即可。
2009-2011年高考数学(理)试题及答案(全国卷1)

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么球的表面积公式 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[u (AB )中的元素共有(A )3个(B )4个(C )5个(D )6个 (2)已知1iZ+=2+I,则复数z= (A )-1+3i(B)1-3i(C)3+I(D)3-i (3)不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉(B){}01x x 〈〈(C ){}10x x -〈〈(D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于(A B )2(C )(D(5)甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。
若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有 (A )150种(B )180种(C )300种(D)345种 (6)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -∙-的最小值为(A )2-(B 2(C )1-(D)1(7)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(A )B )C )(D)34(8)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么π的最小值为(A )6π(B )4π(C )3π(D)2π(9)已知直线y=x+1与曲线y ln()x a =+相切,则α的值为 (A)1(B)2(C)-1(D)-2(10)已知二面角α-l-β为600,动点P 、Q 分别在面α、β内,P 到β,Q 到α的距离为P 、Q 两点之间距离的最小值为(B)2(C)(11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则 (A)()f x 是偶函数(B)()f x 是奇函数 (C)()(2)f x f x =+(D)(3)f x +是奇函数(12)已知椭圆C:2212x y +=的又焦点为F ,右准线为L ,点A L ∈,线段AF 交C 与点B 。
河南省_2009年_高考全国卷1数学真题(理科数学)(附答案)_历年历届试题(详解)

2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ) 本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意: 1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目. 2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.......... 3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式: 如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B ∙=∙球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u A B I中的元素共有()(A )3个 (B )4个 (C )5个 (D )6个(2)已知1iZ+=2+i,则复数z=() (A )-1+3i (B)1-3i (C)3+i (D)3-i (3) 不等式11X X +-<1的解集为( )(A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于()(A (B )2 (C (D(5) 甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年普通高等学校招生全国统一考试(全国1卷)理科数学(必修+选修Ⅱ)一、选择题(1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[u (AB )中的元素共有(A )3个 (B )4个 (C )5个 (D )6个 (2)已知1iZ+=2+I,则复数z= (A )-1+3i (B)1-3i (C)3+I (D)3-i (3) 不等式11X X +-<1的解集为 (A ){x }{}011x x x 〈〈〉 (B){}01x x 〈〈(C ){}10x x -〈〈 (D){}0x x 〈(4)设双曲线22221x y a b-=(a >0,b >0)的渐近线与抛物线y=x 2+1相切,则该双曲线的离心率等于(A (B )2 (C (D (5) 甲组有5名同学,3名女同学;乙组有6名男同学、2名女同学。
若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有 (A )150种 (B )180种 (C )300种 (D)345种 (6)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -∙-的最小值为(A )2-(B 2 (C )1- (D)1(7)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为(A )4(B )4(C )4(D) 34(8)如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么π的最小值为 (A )6π (B )4π (C )3π (D) 2π(9) 已知直线y=x+1与曲线y ln()x a =+相切,则α的值为(10)已知二面角α-l-β为600,动点P 、Q 分别在面α、β内,P 到βQ 到α的距离为则P 、Q 两点之间距离的最小值为(11)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则 (A) ()f x 是偶函数 (B) ()f x 是奇函数 (C) ()(2)f x f x =+ (D) (3)f x +是奇函数(12)已知椭圆C: 2212x y +=的又焦点为F ,右准线为L ,点A L ∈,线段AF 交C 与点B 。
若3FA FB =,则AF =二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (注意:在试题卷上作答无效.........) (13) 10()x y -的展开式中,73x y 的系数与37x y 的系数之和等于 . (14)设等差数列{}n a 的前n 项和为n s .若9s =72,则249a a a ++= .(15)直三棱柱ABC -111A B C 各顶点都在同一球面上.若12,AB AC AA ===∠BAC =120,则此球的表面积等于 . (16)若42ππ<X <,则函数3tan 2tan y x x =的最大值为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在∆ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且si n c o s 3c o s s i n A C A C=,求b. 18.(本小题满分12分)如图,四棱锥S —ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,DC=SD=2.点M 在侧棱SC 上,∠ABM=600.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S —AM —B 的大小。
(19)(本小题满分12分)甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。
已知前2局中,甲、乙各胜1局。
(1)求甲获得这次比赛胜利的概率;(2)设ε 表示从第3局开始到比赛结束所进行的局数,求ε 的分布列及数学期望。
(20)(本小题满分12分)在数列{}na 中, 1111112n nn a a a n ⎛⎫ ⎪⎝⎭’+’+==++. ()I 设n n ab n =,求数列}{n b 的通项公式; ()II 求数列{}n a 的前n 项和n s .21.(本小题满分12分)如图,已知抛物线2:E y x =与圆222:(4)M x y r -+=(r >0)相交于A B C D 、、、四个点。
(I )求r 的取值范围:(II)当四边形ABCD 的面积最大时,求对角线A B C D 、、、的交点p 的坐标。
22.(本小题满分12分)设函数32()33f x x bx cx =++有两个极值点[][]12211,2.x x x ∈-∈,,0,且(Ⅰ)求b 、c 满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b ,c )和区域; (Ⅱ)证明:1102-2≤f(x )≤-2009年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)参考答案一、选择题(1)解:{3,4,5,7,8,9}AB =,{4,7,9}(){3,5,8}U A BC A B =∴=故选A 。
(2)解:(1)(2)13,13z i i i z i =+⋅+=+∴=- 故选B 。
(3) 解:验x=-1即可。
(4) 解:设切点00(,)P x y ,则切线的斜率为0'0|2x x yx ==.由题意有002y x x =又2001y x =+ 解得: 201,2,b x e a =∴===(5) 解: 分两类(1) 甲组中选出一名女生有112536225C C C ⋅⋅=种选法(2) 乙组中选出一名女生有211562120C C C ⋅⋅=种选法.故共有345种选法.选D(6)解:,,a b c 是单位向量()()2()a c b c a b a b c c∴-∙-=∙-+∙+1||||12cos ,12a b c a b c =-+∙=-<+>≥- D.(7)解:设BC 的中点为D ,连结1A D ,AD ,易知1A AB θ=∠即为异面直线AB 与1CC 所成的角,由三角余弦定理,易知113co c s 4os cos AD AD A AD DAB A A AB θ=∠∠⋅=⋅=.故选D(8)解:函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称 4232k ππφπ∴⋅+=+13()6k k Z πφπ∴=-∈由此易得min ||6πφ=.故选A (9) 解:设切点00(,)P x y ,则0000ln 1,()y x a y x =+=+,又0'01|1x x y x a===+00010,12x a y x a ∴+=∴==-∴=.故答案选B (10)解:如图分别作,,,QA A AC l C PB B αβ⊥⊥⊥于于于PD l D ⊥于,连,60,CQ BD ACQ PBD ∠=∠=︒则AQ BP =2AC PD ∴==又PQ AQ ==当且仅当0AP =,即A P 点与点重合时取最小值。
故答案选C 。
(11)解:(1)f x +与(1)f x -都是奇函数,(1)(1),(1)(1)f x f x f x f x ∴-+=-+--=--,∴函数()f x 关于点(1,0),及点(1,0)-对称,函数()f x 是周期2[1(1)]4T =--=的周期函数.(14)(14)f x f x ∴--+=--+,(3)(3)f x f x -+=-+,即(3)f x +是奇函数。
故选D 12.解:过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =,故2||3BM =.又由椭圆的第二定义,得2||3BF ==||AF =故选A 二、填空题:13.解: 373101010()2240C C C -+-=-=-14.解:{}n a 是等差数列,由972S =,得599,S a ∴=58a =∴2492945645()()324a a a a a a a a a a ++=++=++==.15.解:在ABC ∆中2AB AC ==,120BAC ∠=︒,可得BC =由正弦定理,可得ABC ∆外接圆半径r=2,设此圆圆心为O ',球心为O ,在RTOBO '∆中,易得球半径R =2420R ππ=.16.解:令tan ,x t =142x t ππ<<∴>,4432224222tan 2222tan 2tan 81111111tan 1()244x t y x x x t t t t ∴=====≤=------- 三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。
17(本小题满分10分) 解法一:在ABC ∆中sin cos 3cos sin ,A C A C =则由正弦定理及余弦定理有:2222223,22a b c b c a a c ab bc+-+-∙=∙化简并整理得:2222()a c b -=.又由已知222a c b -=24b b ∴=.解法二:由余弦定理得:2222cos a c b bc A -=-.又 222a c b -=,0b ≠。
所以 2cos 2b c A =+…………………………………① 又 sin cos 3cos sin A C A C =,sin cos cos sin 4cos sin A C A C A C ∴+=sin()4cos sin A C A C +=,即sin 4cos sin B A C =由正弦定理得sin sin bB C c=, 故 4cos b c A =………………………② 由①,②解得4b =。
18. 解法一:(I )作ME ∥CD 交SD 于点E ,则ME ∥AB ,ME ⊥平面SAD ,连接AE ,则四边形ABME 为直角梯形 作MF AB ⊥,垂足为F ,则AFME 为矩形设ME x =,则SE x =,AE =2MF AE FB x ===-由tan 60,)MF FB x =∙=-。
解得1x =,即1ME =,从而12ME DC =,所以M 为侧棱SC 的中点(Ⅱ)2MB ==,又60,2ABM AB ∠==,所以ABM ∆为等边三角形,又由(Ⅰ)知M 为SC 中点2SM SA AM =,故222,90SA SM AM SMA =+∠=取AM 中点G ,连结BG ,取SA 中点H ,连结GH ,则,BG AM GH AM ⊥⊥,由此知BGH ∠为二面角S AM B --的平面角连接BH ,在BGH ∆中,1,2222BG AM GH SM BH ======所以222cos 23BG GH BH BGH BG GH +-∠==-∙∙二面角S AM B --的大小为arccos( 解法二:以D 为坐标原点,射线DA 为x 轴正半轴,建立如图所示的直角坐标系D-xyz设A ,则(0,2,0),(0,0,2)B C S (Ⅰ)设(0)SM MC λλ=〉,则2222(0,,),,)1111M MB λλλλλ-=++++ 又(0,2,0),,60AB MB AB =- 故||||cos60MB AB MB AB ∙=∙即41λ=+解得1λ=,即SM MC = 所以M 为侧棱SC 的中点(II )由(0,1,1),M A ,得AM 的中点11,)22G又31(,),(0,1,1),(222GB MS AM =-=-= 0,0GB AM MS AM ∙=∙=所以,GB AM MS AM ⊥⊥因此,GB MS 等于二面角S AM B --的平面角cos ,||||GB MS GB MS GB MS ∙==∙所以二面角S AM B --的大小为arccos(19.解:记i A 表示事件:第i 局甲获胜,i=3,4,5j B 表示事件:第j 局乙获胜,j=3,4(Ⅰ)记B 表示事件:甲获得这次比赛的胜利因前两局中,甲、乙各胜一局,故甲获得这次比赛的胜利当且仅当在后面的比赛中,甲先胜2局,从而34345345B A A B A A A B A =∙+∙∙+∙∙由于各局比赛结果相互独立,故34345345()()()()P B P A A P B A A P A B A =∙+∙∙+∙∙=34345345()()()()()()()()P A P A P B P A P A P A P B P A ++ =0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6 =0.648(II )ξ的可能取值为2,3 由于各局比赛结果相互独立,所以3434(2)()P P A A B B ξ==∙+∙=3434()()P A A P B B ∙+∙ =3434()()()()P A P A P B P B ∙+∙ =0.6×0.6+0.4×0.4 =0.52(3)1(2)P P ξξ==-==1.0.52=0.48ξ的分布列为2(2)3(3)E P P ξξξ=⨯=+⨯==2×0.52+3×0.48 =2.4820. 解:(I )由已知得111b a ==,且1112n n na a n n +=++ 即 112n n nb b +=+ 从而 2112b b =+32212b b =+……111(2)2n n n b b n --=+≥ 于是 121111......222n n b b -=++++=112(2)2n n --≥又 11b = 故所求的通项公式1122n n b -=- (II )由(I )知111(2)222n n n n a n n --=-=-, ∴n S =11(2)2nk k k k -=-∑111(2)2n nk k k kk -===-∑∑而1(2)(1)nk k n n ==+∑,又112nk k k-=∑是一个典型的错位相减法模型, 易得1112422nk n k k n --=+=-∑ ∴n S =(1)n n +1242n n -++- 21.(I )将抛物线2:E y x =与圆222:(4)(0)M x y r r -+=>的方程联立,消去2y ,整理得227160x x r -+-=.............(*)抛物线2:E y x =与圆222:(4)(0)M x y r r -+=>相交于A 、B 、C 、D 四个点的充要条件是:方程(*)有两个不相等的正根即可.由此得2212212(7)4(16)070160r x x x x r ⎧∆=--->⎪+=>⎨⎪=->⎩解得 21516r <<又 0r >所以 (4)2r ∈ 考生利用数形结合及函数和方程的思想来处理也可以.(II )考纲中明确提出不考查求两个圆锥曲线的交点的坐标。