2019高考数学真题汇编 椭圆 双曲线 抛物线
2019年高考数学试题分项版—解析几何(解析版)

2019年高考数学试题分项版——解析几何(解析版)一、选择题1.(2019·全国Ⅰ文,10)双曲线C:-=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为()A.2sin 40°B.2cos 40° C. D.答案 D解析由题意可得-=tan 130°,所以e=====.2.(2019·全国Ⅰ文,12)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1答案 B解析由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sin θ==.在等腰三角形ABF1中,cos 2θ==,因为cos 2θ=1-2sin2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1,故选B.3.(2019·全国Ⅱ文,9)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p等于()A.2 B.3 C.4 D.8答案 D解析由题意知,抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.4.(2019·全国Ⅱ文,12)设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为() A. B.C.2 D.答案 A解析如图,由题意知,以OF为直径的圆的方程为2+y2=①,将x2+y2=a2记为②式,①-②得x=,则以OF为直径的圆与圆x2+y2=a2的相交弦所在直线的方程为x =,所以|PQ|=2.由|PQ|=|OF|,得2=c,整理得c4-4a2c2+4a4=0,即e4-4e2+4=0,解得e =,故选A.5.(2019·全国Ⅲ文,10)已知F是双曲线C:-=1的一个焦点,点P在C上,O为坐标原点.若|OP|=|OF|,则△OPF的面积为()A. B. C. D.答案 B解析由F是双曲线-=1的一个焦点,知|OF|=3,所以|OP|=|OF|=3.不妨设点P在第一象限,P(x0,y0),x0>0,y0>0,则解得所以P,所以S△OPF=|OF|·y0=×3×=.6.(2019·北京文,5已知双曲线-y2=1(a>0)的离心率是,则a等于()A.B.4 C.2 D.答案 D解析由双曲线方程-y2=1,得b2=1,∴c2=a2+1.∴5=e2===1+.结合a>0,解得a=.7.(2019·天津文,6)已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A. B.C.2 D.答案 D解析由题意,可得F(1,0),直线l的方程为x=-1,双曲线的渐近线方程为y=±x.将x=-1代入y=±x,得y=±,所以点A,B的纵坐标的绝对值均为.由|AB|=4|OF|可得=4,即b=2a,b2=4a2,故双曲线的离心率e===.8.(2019·浙江,2)渐近线方程为x±y=0的双曲线的离心率是()A.B.1C.D.2答案 C解析因为双曲线的渐近线方程为x±y=0,所以无论双曲线的焦点在x轴上还是在y轴上,都满足a=b,所以c=a,所以双曲线的离心率e==.9.(2019·全国Ⅰ理,10)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1答案 B解析由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sin θ==.在等腰三角形ABF1中,cos 2θ==,因为cos 2θ=1-2sin2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1,故选B.10.(2019·全国Ⅱ理,8)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p 等于()A.2 B.3 C.4 D.8答案 D解析由题意知,抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.11.(2019·全国Ⅱ理,11)设F 为双曲线C :-=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A. B. C .2 D. 答案 A 解析 如图,由题意知,以OF 为直径的圆的方程为2+y 2=①,将x 2+y 2=a 2记为②式,①-②得x = ,则以OF 为直径的圆与圆x 2+y 2=a 2的相交弦所在直线的方程为x =,所以|PQ |=2.由|PQ |=|OF |,得2=c ,整理得c 4-4a 2c 2+4a 4=0,即e 4-4e 2+4=0,解得e= ,故选A.12.(2019·全国Ⅲ理,10)双曲线C :-=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若|PO |=|PF |,则△PFO 的面积为( ) A.B.C .2D .3答案 A解析 不妨设点P 在第一象限,根据题意可知c 2=6, 所以|OF |= .又tan ∠POF ==,所以等腰△POF 的高h = ×=,所以S △PFO =× ×=. 13.(2019·北京理,4)已知椭圆22221(0)x y a b a b +=>>的离心率为12,则( )A .222a b =B .2234a b =C .2a b =D .34a b =【思路分析】由椭圆离心率及隐含条件222a b c =+得答案.【解析】:由题意,12c a =,得2214c a =,则22214a b a -=,22244a b a ∴-=,即2234a b =.故选:B .【归纳与总结】本题考查椭圆的简单性质,熟记隐含条件是关键,是基础题.14.(2019·北京理,8)数学中有许多形状优美、寓意美好的曲线,曲线22:1||C x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )A .①B .②C .①②D .①②③【思路分析】将x 换成x -方程不变,所以图形关于y 轴对称,根据对称性讨论y 轴右边的图形可得.【解析】:将x 换成x -方程不变,所以图形关于y 轴对称, 当0x =时,代入得21y =,1y ∴=±,即曲线经过(0,1),(0,1)-;当0x >时,方程变为2210y xy x -+-=,所以△224(1)0x x =--…,解得(0x ∈, 所以x 只能取整数1,当1x =时,20y y -=,解得0y =或1y =,即曲线经过(1,0),(1,1), 根据对称性可得曲线还经过(1,0)-,(1,1)-, 故曲线一共经过6个整点,故①正确.当0x >时,由221x y xy +=+得222212x y x y xy ++-=…,(当x y =时取等),222x y ∴+…,∴C 上y ,根据对称性可得:曲线C在x 轴上图形面积大于矩形面积122=⨯=,x 轴下方的面积大于等腰直角三角形的面积12112=⨯⨯=,因此曲线C 所围成的“心形”区域的面积大于213+=,故③错误. 故选:C .【归纳与总结】本题考查了命题的真假判断与应用,属中档题.15.(2019·天津理,5)已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线-=1(a >0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A. B.C.2 D.答案 D解析由题意,可得F(1,0),直线l的方程为x=-1,双曲线的渐近线方程为y=±x.将x =-1代入y=±x,得y=±,所以点A,B的纵坐标的绝对值均为.由|AB|=4|OF|可得=4,即b=2a,b2=4a2,故双曲线的离心率e===.二、填空题1.(2019·全国Ⅲ文,15)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.答案(3,)解析不妨令F1,F2分别为椭圆C的左、右焦点,根据题意可知c==4.因为△MF1F2为等腰三角形,所以易知|F1M|=2c=8,所以|F2M|=2a-8=4.设M(x,y),则得所以M的坐标为(3,).2.(2019·北京文,11)设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为________.答案(x-1)2+y2=4解析∵抛物线y2=4x的焦点F的坐标为(1,0),准线l为直线x=-1,∴圆的圆心坐标为(1,0).又∵圆与l相切,∴圆心到l的距离为圆的半径,∴r=2.∴圆的方程为(x-1)2+y2=4.3.(2019·浙江,12)已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C 相切于点A(-2,-1),则m=________,r=________.答案-2解析 方法一 设过点A (-2,-1)且与直线2x -y +3=0垂直的直线方程为l :x +2y +t =0,所以-2-2+t =0,所以t =4,所以l :x +2y +4=0,令x =0,得m =-2,则r = = .方法二 因为直线2x -y +3=0与以点(0,m )为圆心的圆相切,且切点为A (-2,-1),所以×2=-1,所以m =-2,r = = .4.(2019·浙江,15)已知椭圆+=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心 ,|OF |为半径的圆上,则直线PF 的斜率是________. 答案解析 依题意,设点P (m ,n )(n >0),由题意知F (-2,0),|OF |=2,所以线段FP 的中点M在圆x 2+y 2=4上,所以2+2=4,又点P (m ,n )在椭圆 +=1上,所以+=1,所以4m 2-36m -63=0,所以m =-或m =(舍去),当m =-时,n =,所以k PF == .5.(2019·江苏,7)在平面直角坐标系xOy 中,若双曲线x 2-=1(b >0)经过点(3,4),则该双曲线的渐近线方程是_________________. 答案 y =± x解析 因为双曲线x 2-=1(b >0)经过点(3,4),所以9-=1,得b = ,所以该双曲线的渐近线方程是y =±bx =± x .6.(2019·江苏,10)在平面直角坐标系xOy 中,P 是曲线y =x +(x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________. 答案 4解析 设P,x >0,则点P 到直线x +y =0的距离d ==≥=4,当且仅当2x =,即x = 时取等号,故点P 到直线x +y =0的距离的最小值是4.7.(2019·全国Ⅰ理,16)已知双曲线C :-=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若 = , · =0,则C 的离心率为________. 答案 2解析 因为F 1B →·F 2B →=0,所以F 1B ⊥F 2B ,如图.因为=,所以点A为F1B的中点,又点O为F1F2的中点,所以OA∥BF2,所以F1B⊥OA,所以|OF1|=|OB|,所以∠BF1O=∠F1BO,所以∠BOF2=2∠BF1O.因为直线OA,OB为双曲线C的两条渐近线,所以tan∠BOF2=,tan∠BF1O=.因为tan∠BOF2=tan(2∠BF1O),所以=,所以b2=3a2,所以c2-a2=3a2,即2a=c,所以双曲线的离心率e==2.8.(2019·全国Ⅲ理,15)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.答案(3,)解析不妨令F1,F2分别为椭圆C的左、右焦点,根据题意可知c==4.因为△MF1F2为等腰三角形,所以易知|F1M|=2c=8,所以|F2M|=2a-8=4.设M(x,y),则=,=,,,得所以M的坐标为(3,).三、解答题1.(2019·全国Ⅰ文,21)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|-|MP|为定值?并说明理由.解(1)因为⊙M过点A,B,所以圆心M在AB的垂直平分线上.由已知A在直线x+y=0上,且A,B关于坐标原点O对称,所以M在直线y=x上,故可设M(a,a).因为⊙M与直线x+2=0相切,所以⊙M的半径为r=|a+2|.由已知得|AO|=2.又MO⊥AO,故可得2a2+4=(a+2)2,解得a=0或a=4.故⊙M的半径r=2或r=6.(2)存在定点P(1,0),使得|MA|-|MP|为定值.理由如下:设M(x,y),由已知得⊙M的半径为r=|x+2|,|AO|=2.由于MO⊥AO,故可得x2+y2+4=(x+2)2,化简得M的轨迹方程为y2=4x.因为曲线C:y2=4x是以点P(1,0)为焦点,以直线x=-1为准线的抛物线,所以|MP|=x+1.因为|MA|-|MP|=r-|MP|=x+2-(x+1)=1,所以存在满足条件的定点P.2.(2019·全国Ⅱ文,20)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.解(1)连接PF1.由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故C的离心率为e==-1.(2)由题意可知,若满足条件的点P(x,y)存在,则|y|·2c=16,·=-1,即c|y|=16,①x2+y2=c2,②又+=1.③由②③及a2=b2+c2得y2=.又由①知y2=,故b=4.由②③及a2=b2+c2得x2=(c2-b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4.当b=4,a≥4时,存在满足条件的点P.所以b=4,a的取值范围为[4,+∞).3.(2019·全国Ⅲ文,21)已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.(1)证明设D,A(x1,y1),则=2y1.由于y′=x,所以切线DA的斜率为x1,故=x1,整理得2tx1-2y1+1=0.设B(x2,y2),同理可得2tx2-2y2+1=0.所以直线AB的方程为2tx-2y+1=0.所以直线AB过定点.(2)解由(1)得直线AB的方程为y=tx+.由可得x2-2tx-1=0,于是x1+x2=2t,y1+y2=t(x1+x2)+1=2t2+1.设M为线段AB的中点,则M.由于⊥,而=(t,t2-2),与向量(1,t)平行,所以t+(t2-2)t=0.解得t=0或t=±1.当t=0时,||=2,所求圆的方程为x2+2=4;当t=±1时,||=,所求圆的方程为x2+2=2.4.(2019·北京文,19)已知椭圆C:+=1的右焦点为(1,0),且经过点A(0,1).(1)求椭圆C的方程;(2)设O为原点,直线l:y=kx+t(t≠±1)与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N.若|OM|·|ON|=2,求证:直线l经过定点.(1)解由题意,得b2=1,c=1,所以a2=b2+c2=2.所以椭圆C的方程为+y2=1.(2)证明设P(x1,y1),Q(x2,y2),则直线AP的方程为y=x+1.令y=0,得点M的横坐标x M=-.又y1=kx1+t,从而|OM|=|x M|=.同理,|ON|=.由得(1+2k2)x2+4ktx+2t2-2=0,则x1+x2=-,x1x2=.所以|OM|·|ON|=·===2.又|OM|·|ON|=2,所以2=2.解得t=0,所以直线l经过定点(0,0).5.(2019·天津文,19)设椭圆+=1(a>b>0)的左焦点为F,左顶点为A,上顶点为B.已知|OA|=2|OB|(O为原点).(1)求椭圆的离心率;(2)设经过点F且斜率为的直线l与椭圆在x轴上方的交点为P,圆C同时与x轴和直线l 相切,圆心C在直线x=4上,且OC∥AP.求椭圆的方程.解(1)设椭圆的半焦距为c,由已知有a=2b,又由a2=b2+c2,消去b得a2=2+c2,解得=.所以椭圆的离心率为.(2)由(1)知,a=2c,b=c,故椭圆方程为+=1.由题意,F(-c,0),则直线l的方程为y=(x+c).点P的坐标满足消去y并化简,得到7x2+6cx-13c2=0,解得x1=c,x2=-.代入到l的方程,解得y1=c,y2=-c.因为点P在x轴上方,所以P.由圆心C在直线x=4上,可设C(4,t).因为OC∥AP,且由(1)知A(-2c,0),故=,解得t=2.因为圆C与x轴相切,所以圆C的半径为2.又由圆C与l相切,得=2,可得c=2.所以,椭圆的方程为+=1.6.(2019·浙江,21)如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点.过点F的直线交抛物线于A,B两点,点C在抛物线上,使得△ABC的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记△AFG,△CQG的面积分别为S1,S2.(1)求p的值及抛物线的准线方程;(2)求的最小值及此时点G的坐标.解(1)由题意得=1,即p=2.所以,抛物线的准线方程为x=-1.(2)设A(x A,y A),B(x B,y B),C(x C,y C),重心G(x G,y G).令y A=2t,t≠0,则x A=t2.由于直线AB过点F,故直线AB的方程为x=y+1,代入y2=4x,得y2-y-4=0,故2ty B=-4,即y B=-,所以B.又由于x G=(x A+x B+x C),y G=(y A+y B+y C)及重心G在x轴上,故2t-+y C=0.即C,G.所以,直线AC的方程为y-2t=2t(x-t2),得Q(t2-1,0).由于Q在焦点F的右侧,故t2>2.从而====2-.令m=t2-2,则m>0,=2-=2-≥2-=1+.当且仅当m=时,取得最小值1+,此时G(2,0).7.(2019·江苏,17)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(-1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:(x-1)2+y2=4a2交于点A,与椭圆C交于点D.连接AF1并延长交圆F2于点B,连接BF2交椭圆C于点E,连接DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.解(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,则c=1.又因为DF1=,AF2⊥x轴,所以DF2===.因此2a=DF1+DF2=4,所以a=2.由b2=a2-c2,得b2=3.所以椭圆C的标准方程为+=1.(2)方法一由(1)知,椭圆C:+=1,a=2.因为AF2⊥x轴,所以点A的横坐标为1.将x=1代入圆F2方程(x-1)2+y2=16,解得y=±4.因为点A在x轴上方,所以A(1,4).又F1(-1,0),所以直线AF1:y=2x+2.由得5x2+6x-11=0,解得x=1或x=-.将x=-代入y=2x+2,得y=-.因此B.又F2(1,0),所以直线BF2:y=(x-1).由得7x2-6x-13=0,解得x=-1或x=.又因为E是线段BF2与椭圆的交点,所以x=-1.将x=-1代入y=(x-1),得y=-.因此E.方法二由(1)知,椭圆C:+=1.如图,连接EF1.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而∠BF1E=∠B.因为F2A=F2B,所以∠A=∠B.所以∠A=∠BF1E,从而EF1∥F2A.因为AF2⊥x轴,所以EF1⊥x轴.因为F1(-1,0),由得y=±.又因为E是线段BF2与椭圆的交点,所以y=-.因此E.8.(2019·江苏,18)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P,Q两点间的距离.解方法一(1)过A作AE⊥BD,垂足为E.由已知条件得,四边形ACDE为矩形,DE=BE=AC=6,AE=CD=8.因为PB⊥AB,所以cos∠PBD=sin∠ABE===.所以PB===15.因此道路PB的长为15(百米).(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.②若Q在D处,连接AD,由(1)知AD==10,从而cos∠BAD==>0,所以∠BAD为锐角.所以线段AD上存在点到点O的距离小于圆O的半径.因此Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P的位置.当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设P1为l上一点,且P1B⊥AB,由(1)知,P1B=15,此时P1D=P1B sin∠P1BD=P1B cos∠EBA =15×=9;当∠OBP>90°时,在△PP1B中,PB>P1B=15.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,CQ===3.此时,线段QA上所有点到点O的距离均不小于圆O 的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=3时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+3.因此,d最小时,P,Q两点间的距离为17+3(百米).方法二(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立如图所示的平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,-3.因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(-4,-3),直线AB的斜率为.因为PB⊥AB,所以直线PB的斜率为-,直线PB的方程为y=-x-.所以P(-13,9),PB==15.所以道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(-4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连接AD,由(1)知D(-4,9),又A(4,3),所以线段AD:y=-x+6(-4≤x≤4).在线段AD上取点M,因为OM=<=5,所以线段AD上存在点到点O的距离小于圆O的半径.因此Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P的位置.当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设P1为l上一点,且P1B⊥AB,由(1)知,P1B=15,此时P1(-13,9);当∠OBP>90°时,在△PP1B中,PB>P1B=15.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,设Q(a,9),由AQ==15(a>4),得a=4+3,所以Q(4+3,9).此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当P(-13,9),Q(4+3,9)时,d最小,此时P,Q两点间的距离PQ=4+3-(-13)=17+3.因此,d最小时,P,Q两点间的距离为17+3(百米).9.(2019·全国Ⅰ理,19)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.解设直线l:y=x+t,A(x1,y1),B(x2,y2).(1)由题设得F,故|AF|+|BF|=x1+x2+,由题设可得x1+x2=.由可得9x2+12(t-1)x+4t2=0,令Δ>0,得t<,则x1+x2=-.从而-=,得t=-.所以l的方程为y=x-.(2)由=3可得y1=-3y2,由可得y2-2y+2t=0,所以y1+y2=2,从而-3y2+y2=2,故y2=-1,y1=3,代入C的方程得x1=3,x2=,即A(3,3),B,故|AB|=.10.(2019·全国Ⅱ理,21)已知点A(-2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为-.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连接QE 并延长交C于点G.(ⅰ)证明:△PQG是直角三角形;(ⅱ)求△PQG面积的最大值.(1)解由题设得·=-,化简得+=1(|x|≠2),所以C为中心在坐标原点,焦点在x轴上的椭圆,不含左右顶点.(2)(ⅰ)证明设直线PQ的斜率为k,则其方程为y=kx(k>0).由得x=±.记u=,则P(u,uk),Q(-u,-uk),E(u,0).于是直线QG的斜率为,方程为y=(x-u).由得(2+k2)x2-2uk2x+k2u2-8=0.①设G(x G,y G),则-u和x G是方程①的解,故x G=,由此得y G=.从而直线PG的斜率为=-,因为k PQ·k PG=-1.所以PQ⊥PG,即△PQG是直角三角形.(ⅱ)解由(ⅰ)得|PQ|=2u,|PG|=,所以△PQG的面积S=|PQ||PG|==.设t=k+,则由k>0得t≥2,当且仅当k=1时取等号.因为S=在[2,+∞)上单调递减,所以当t=2,即k=1时,S取得最大值,最大值为. 因此,△PQG面积的最大值为.11.(2019·全国Ⅲ理,21)已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.(1)证明 设D,A (x 1,y 1),则=2y 1.由y ′=x ,所以切线DA 的斜率为x 1,故=x 1.整理得2tx 1-2y 1+1=0.设B (x 2,y 2),同理可得2tx 2-2y 2+1=0. 故直线AB 的方程为2tx -2y +1=0. 所以直线AB 过定点.(2)解 由(1)得直线AB 的方程为y =tx +. 由可得x 2-2tx -1=0,Δ=4t 2+4>0, 于是x 1+x 2=2t ,x 1x 2=-1,y 1+y 2 =t (x 1+x 2)+1=2t 2+1, |AB |= |x 1-x 2|= =2(t 2+1). 设d 1,d 2分别为点D ,E 到直线AB 的距离, 则d 1= ,d 2=,因此,四边形ADBE 的面积S =|AB |(d 1+d 2) =(t 2+3) .设M 为线段AB 的中点,则M. 由于⊥ ,而 =(t ,t 2-2),与坐标为(1,t )的向量平行,所以t +(t 2-2)t =0. 解得t =0或t =±1.当t =0时,S =3;当t =±1时,S =4 . 因此,四边形ADBE 的面积为3或4 .12.(2019·北京理,18)(14分)已知抛物线2:2C x py =-经过点(2,1)-. (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线1y =-分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【思路分析】(Ⅰ)代入点(2,1)-,解方程可得p ,求得抛物线的方程和准线方程;(Ⅱ)抛物线24x y =-的焦点为(0,1)F -,设直线方程为1y kx =-,联立抛物线方程,运用韦达定理,以及直线的斜率和方程,求得A ,B 的坐标,可得AB 为直径的圆方程,可令0x =,解方程,即可得到所求定点.【解析】:(Ⅰ)抛物线2:2C x py =-经过点(2,1)-.可得42p =,即2p =, 可得抛物线C 的方程为24x y =-,准线方程为1y =; (Ⅱ)证明:抛物线24x y =-的焦点为(0,1)F -,设直线方程为1y kx =-,联立抛物线方程,可得2440x kx +-=, 设1(M x ,1)y ,2(N x ,2)y , 可得124x x k +=-,124x x =-, 直线OM 的方程为11y y x x =,即14xy x =-, 直线ON 的方程为22y y x x =,即24xy x =-, 可得14(A x ,1)-,24(B x ,1)-, 可得AB 的中点的横坐标为121142()224kk x x -+==-, 即有AB 为直径的圆心为(2,1)k -,半径为212||1441616||222AB k x x +=-==, 可得圆的方程为222(2)(1)4(1)x k y k -++=+, 化为224(1)4x kx y -++=, 由0x =,可得1y =或3-.则以AB 为直径的圆经过y 轴上的两个定点(0,1),(0,3)-.【归纳与总结】本题考查抛物线的定义和方程、性质,以及圆方程的求法,考查直线和抛物线方程联立,运用韦达定理,考查化简整理的运算能力,属于中档题.13.(2019·天津理,18)设椭圆+=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.解(1)设椭圆的半焦距为c,依题意,2b=4,=,又a2=b2+c2,可得a=,b=2,c =1.所以椭圆的方程为+=1.(2)由题意,设P(x P,y P)(x P≠0),M(x M,0),直线PB的斜率为k(k≠0),又B(0,2),则直线PB 的方程为y=kx+2,与椭圆方程联立得整理得(4+5k2)x2+20kx=0,可得x P=-,代入y=kx+2得y P=.所以直线OP的斜率为=.在y=kx+2中,令y=0,得x M=-.由题意得N(0,-1),所以直线MN的斜率为-.由OP⊥MN,得·=-1,化简得k2=,从解得k=±.所以直线PB的斜率为或-.。
【2019高考文科真题】分类汇编:9.5考点2 椭圆的几何性质

高考真题(2019•全国II 卷(文))若抛物线y 2=2px (p >0)的焦点是椭圆的一个焦点,则p =A .2B .3C .4D .8【解析】因为抛物线的焦点是椭圆的一个焦点,所以,解得,故选D . 【答案】D(2019•全国III 卷(文))设为椭圆的两个焦点,为上一点且在第一象限.若为等腰三角形,则的坐标为___________.【解析】由已知可得,.∴.设点的坐标为,则, 又,解得, ,解得(舍去), 的坐标为.【答案】2231x y pp+=22(0)y px p =>(,0)2p 2231x y p p +=23()2p p p -=8p =12F F ,22:+13620x y C =M C 12MF F △M 2222236,20,16,4a b c a b c ==∴=-=∴=11228MF F F c ∴===24MF =M ()()0000,0,0x y x y >>121200142MF F S F F y y =⋅⋅=△1201442MF F S y =⨯=∴=△0y=22013620x ∴+=03x =03x =-M (((2019•全国II 卷(文))已知是椭圆的两个焦点,P 为C 上一点,O 为坐标原点.(1)若为等边三角形,求C 的离心率;(2)如果存在点P ,使得,且的面积等于16,求b 的值和a 的取值范围. 【答案标记】【解析】(1)连结,由为等边三角形可知:在中,,,,于是, 故椭圆C 的离心率为; (2)由题意可知,满足条件的点存在,当且仅当,,, 即 ①②③ 由②③以及得,又由①知,故;由②③得,所以,从而,故;当,时,存在满足条件的点. 故,a 的取值范围为.【答案】(1);(2),a 的取值范围为.(2019•天津卷(文))设椭圆的左焦点为,左顶点为,上顶点为B .已知(为原点).12,F F 2222:1(0)x y C a b a b+=>>2POF 12PF PF ⊥12F PF △1PF 2POF 12F PF △1290F PF ∠=2PF c =1PF =122a PF PF c=+=1c e a ===(,)P x y 12162y c ⋅=1y y x c x c ⋅=-+-22221x y a b+=16c y =222x y c +=22221x y a b+=222a b c =+422b y c =22216y c=4b =22222()a x c b c=-22c b ≥2222232a b c b =+≥=a ≥4b =a ≥P 4b =)+∞1e =4b =)+∞22221(0)x y a b a b+=>>F A |2||OA OB =O(Ⅰ)求椭圆的离心率; (Ⅱ)设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且,求椭圆的方程. 【答案标记】【解析】(I )解:设椭圆的半焦距为, 又由,消去得,解得,所以,椭圆的离心率为. (II )解:由(I )知,,故椭圆方程为,由题意,,则直线的方程为, 点的坐标满足,消去并化简,得到,解得, 代入到的方程,解得, 因为点在轴的上方,所以, 由圆心在直线上,可设,因为,且由(I )知,故,解得, 因为圆与轴相切,所以圆的半径为2,F 34l x P C x l C 4x =OC AP ∥c 2b =222a b c =+b 222)2a a c =+12c a =122,a c b ==2222143x y c c+=(,0)F c -l 3()4y x c =+P 22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩y 2276130x cx c +-=1213,7cx c x ==-l 1239,214y c y c ==-P x 3(,)2P c c 4x =(4,)C t OC AP ∥(2,0)A c -3242ct c c=+2t =C x又由圆与,解得, 所以椭圆的方程为:.【答案】(I );(II ).C l 2=2c =2211612x y +=122211612x y +=。
2019年高考数学试题分项版—解析几何(原卷版)

2019年高考数学试题分项版——解析几何(原卷版)一、选择题1.(2019·全国Ⅰ文,10)双曲线C:-=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为()A.2sin 40°B.2cos 40° C. D.2.(2019·全国Ⅰ文,12)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=13.(2019·全国Ⅱ文,9)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p等于()A.2 B.3 C.4 D.84.(2019·全国Ⅱ文,12)设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为() A. B.C.2 D.5.(2019·全国Ⅲ文,10)已知F是双曲线C:-=1的一个焦点,点P在C上,O为坐标原点.若|OP|=|OF|,则△OPF的面积为()A. B. C. D.6.(2019·北京文,5已知双曲线-y2=1(a>0)的离心率是,则a等于()A.B.4 C.2 D.7.(2019·天津文,6)已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A. B.C.2 D.8.(2019·浙江,2)渐近线方程为x±y=0的双曲线的离心率是()A.B.1C.D.29.(2019·全国Ⅰ理,10)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=110.(2019·全国Ⅱ理,8)若抛物线y 2=2px (p >0)的焦点是椭圆+ =1的一个焦点,则p 等于( )A .2B .3C .4D .811.(2019·全国Ⅱ理,11)设F 为双曲线C :-=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A. B. C .2 D.12.(2019·全国Ⅲ理,10)双曲线C :-=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若|PO |=|PF |,则△PFO 的面积为( ) A.B.C .2D .313.(2019·北京理,4)已知椭圆22221(0)x y a b a b +=>>的离心率为12,则( )A .222a b =B .2234a b =C .2a b =D .34a b =14.(2019·北京理,8)数学中有许多形状优美、寓意美好的曲线,曲线22:1||C x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( )A .①B .②C .①②D .①②③15.(2019·天津理,5)已知抛物线y 2=4x 的焦点为F ,准线为l .若l 与双曲线-=1(a >0,b >0)的两条渐近线分别交于点A 和点B ,且|AB |=4|OF |(O 为原点),则双曲线的离心率为( )A. B. C .2 D. 二、填空题1.(2019·全国Ⅲ文,15)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.2.(2019·北京文,11)设抛物线y2=4x的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为________.3.(2019·浙江,12)已知圆C的圆心坐标是(0,m),半径长是r.若直线2x-y+3=0与圆C 相切于点A(-2,-1),则m=________,r=________.4.(2019·浙江,15)已知椭圆+=1的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是________.5.(2019·江苏,7)在平面直角坐标系xOy中,若双曲线x2-=1(b>0)经过点(3,4),则该双曲线的渐近线方程是_________________.6.(2019·江苏,10)在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是________.7.(2019·全国Ⅰ理,16)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若=,·=0,则C的离心率为________.8.(2019·全国Ⅲ理,15)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.三、解答题1.(2019·全国Ⅰ文,21)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|-|MP|为定值?并说明理由.2.(2019·全国Ⅱ文,20)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.3.(2019·全国Ⅲ文,21)已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.4.(2019·北京文,19)已知椭圆C:+=1的右焦点为(1,0),且经过点A(0,1).(1)求椭圆C的方程;(2)设O为原点,直线l:y=kx+t(t≠±1)与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N.若|OM|·|ON|=2,求证:直线l经过定点.5.(2019·天津文,19)设椭圆+=1(a>b>0)的左焦点为F,左顶点为A,上顶点为B.已知|OA|=2|OB|(O为原点).(1)求椭圆的离心率;(2)设经过点F且斜率为的直线l与椭圆在x轴上方的交点为P,圆C同时与x轴和直线l 相切,圆心C在直线x=4上,且OC∥AP.求椭圆的方程.6.(2019·浙江,21)如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点.过点F的直线交抛物线于A,B两点,点C在抛物线上,使得△ABC的重心G在x轴上,直线AC交x轴于点Q,且Q在点F的右侧.记△AFG,△CQG的面积分别为S1,S2.(1)求p的值及抛物线的准线方程;(2)求的最小值及此时点G的坐标.7.(2019·江苏,17)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(-1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:(x-1)2+y2=4a2交于点A,与椭圆C交于点D.连接AF1并延长交圆F2于点B,连接BF2交椭圆C于点E,连接DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.8.(2019·江苏,18)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P,Q两点间的距离.9.(2019·全国Ⅰ理,19)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.10.(2019·全国Ⅱ理,21)已知点A(-2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为-.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连接QE 并延长交C于点G.(ⅰ)证明:△PQG是直角三角形;(ⅱ)求△PQG面积的最大值.11.(2019·全国Ⅲ理,21)已知曲线C :y =,D 为直线y =-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点;(2)若以E为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.12.(2019·北京理,18)(14分)已知抛物线2:2C x py =-经过点(2,1)-. (Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线1y =-分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.13.(2019·天津理,18)设椭圆+=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.。
高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)

高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)第五节椭圆一、必记3个知识点1.椭圆的定义(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时,P在短轴端点处;当x=±a时,|OP|有最大值a,这时,P在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c.二、必明3个易误点1.椭圆的定义中易忽视2a>|F1F2|这一条件,当2a=|F1F2|其轨迹为线段F1F2,当2a<|F1F2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x2a2+y2b2=1(a>b>0).3.注意椭圆的范围,在设椭圆x2a2+y2b2=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.三、技法1.求椭圆标准方程的2种常用方法(1)直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.(2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解.(3)通过取特殊值或特殊位置,求出离心率.提醒:在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.3.求解最值、取值范围问题的技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如,-a≤x≤a,-b≤y≤b,0<e<1,在求椭圆的相关量的范围时,要注意应用这些不等关系.(3)最值问题,将所求列出表达式,构造基本不等式或利用函数单调性求解.4.判断直线与椭圆位置关系的四个步骤第一步:确定直线与椭圆的方程.第二步:联立直线方程与椭圆方程.第三步:消元得出关于x(或y)的一元二次方程.第四步:当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.5.直线被椭圆截得的弦长公式设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2])=(y1+y2)2-4y1y2])(k为直线斜率).参考答案①F1,F2②|F1F2|③x轴,y轴④坐标原点⑤(-a,0)⑥(a,0)⑦(0,-b)⑧(0,b)⑨(0,-a)⑩(0,a)⑪(-b,0)⑫(b,0)⑬2a⑭2b⑮2c⑯(0,1)⑰c2=a2-b2第六节双曲线一、必记3个知识点1.双曲线的定义(1)平面内与两个定点F1、F2(|F1F2|=2c>0)的距离①________________为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的②________,两焦点间的距离叫做③________.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(ⅰ)当④________________时,M点的轨迹是双曲线;(ⅱ)当⑤________________时,M点的轨迹是两条射线;(ⅲ)当⑥________________时,M点不存在.2.双曲线的标准方程和几何性质⑧________x ∈对称轴:⑪________对称中心:⑫________顶点坐标:A 1⑮______,A 2⑯________⑱____________c =⑳________|=21________;线段________;a 叫做双曲线的虚半轴长>b >0)(1)双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直.(2)渐近线的斜率与双曲线的焦点位置的关系:当焦点在x 轴上时,渐近线斜率为±ba,当焦点在y 轴上时,渐近线斜率为±ab.(3)渐近线与离心率.x2a2-y2b2=1(a >0,b >0)的一条渐近线的斜率为ba=e2-1.(4)若P 为双曲线上一点,F 为其对应焦点,则|PF |≥c -a .二、必明4个易误点1.双曲线的定义中易忽视2a <|F 1F 2|这一条件.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a >|F 1F 2|则轨迹不存在.2.双曲线的标准方程中对a ,b 的要求只是a >0,b >0,易误认为与椭圆标准方程中a ,b 的要求相同.若a >b >0,则双曲线的离心率e ∈(1,2);若a =b >0,则双曲线的离心率e =2;若0<a <b ,则双曲线的离心率e >2.3.注意区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c2=a2+b2.4.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x轴上,渐近线斜率为±ba,当焦点在y轴上,渐近线斜率为±ab.三、技法1.双曲线定义的应用(1)判定满足某条件的平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程;(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF1|-|PF2||=2a,运用平方的方法,建立|PF1|与|PF2|的关系.[注意]在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.2.求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a,b,c的方程并求出a,b,c的值.与双曲线x2a2-y2b2=1有相同渐近线时,可设所求双曲线方程为:x2a2-y2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a的值,由定点位置确定c的值.3.求双曲线离心率或其范围的方法(1)求a,b,c的值,由c2a2=a2+b2a2=1+b2a2直接求e.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.4.求双曲线的渐近线方程的方法求双曲线x2a2-y2b2=1(a>0,b>0)的渐近线的方法是令x2a2-y2b2=0,即得两渐近线方程为:xa±yb=0.参考答案①之差的绝对值②焦点③焦距④2a<|F1F2|⑤2a=|F1F2|⑥2a>|F1F2|⑦x≥a或x≤-a⑧y≥a或y≤-a⑨x轴,y轴⑩坐标原点⑪x轴,y轴⑫坐标原点⑬(-a,0)⑭(a,0)⑮(0,-a)⑯(0,a)⑰y=±ba x⑱y=±ab x⑲ca⑳a2+b2212a222b23a2+b2第七节抛物线一、必记2个知识点1.抛物线定义、标准方程及几何性质x轴⑤________y轴⑥________O(0,0)O(0,0)O(0,0)O(0,0)F⑦________⑧________⑨________设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2.(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角).(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点且垂直于对称轴的弦,长等于2p.二、必明2个易误点1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p易忽视,只有p>0,才能证明其几何意义是焦点F到准线l 的距离,否则无几何意义.三、技法1.应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+p2或|PF|=|y|+p2.2.求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.3.确定及应用抛物线性质的技巧(1)利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化为标准方程.(2)要结合图形分析,灵活运用平面几何的性质以图助解.4.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.参考答案①相等②y2=-2px(p>0)③x2=-2py(p>0)④x2=2py(p>0)⑤x轴⑥y轴⑦F(-p2,0)⑧F(0,-p2)⑨F(0,p2)⑩e=1⑪x=-p2⑫y=-p2⑬-y0+p2⑭y0+p2⑮y≤0⑯y≥0。
2019年高考数学理试题分类汇编:圆锥曲线(含答案)

2019年高考数学理试题分类汇编:圆锥曲线(含答案)2019年高考数学理试题分类汇编——圆锥曲线一、选择题1.(2019年四川高考)设O为坐标原点,P是以F为焦点的抛物线y=2px(p>0)上任意一点,M是线段PF上的点,且PM=2MF,则直线OM的斜率的最大值为2/3.(答案:C)2.(2019年天津高考)已知双曲线x^2/4 - y^2/9 = 1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形ABCD的面积为2b,则双曲线的方程为x^2/4 - y^2/9 = 1.(答案:D)3.(2019年全国I高考)已知方程x^2/n^2 - y^2/m^2 = 1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(-1,3)。
(答案:A)4.(2019年全国I高考)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点。
已知|AB|=42,|DE|=25,则C的焦点到准线的距离为4.(答案:B)5.(2019年全国II高考)圆(x-1)^2 + (y-4)^2 = 13的圆心到直线ax+y-1=0的距离为1,则a=-2/3.(答案:A)6.(2019年全国II高考)已知F1,F2是双曲线E:x^2/4 -y^2/2 = 1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=1/3,则E的离心率为2/3.(答案:A)7.(2019年全国III高考)已知O为坐标原点,F是椭圆C:x^2/a^2 + y^2/b^2 = 1(a>b>0)的左焦点,A、B分别为C的左、右顶点。
P为C上一点,且PF⊥x轴。
过点A的直线l与线段PF交于点M,与y轴交于点E。
若直线BM经过OE的中点,则C的离心率为1/3.(答案:A)8.(2019年浙江高考)已知椭圆 + y^2/(m^2-1) = 1(m>1)与双曲线- y^2/(n^2-1) = 1(n>0)的焦点重合,e1,e2分别为m,n,则e1+e2=3.(答案:C)解析】Ⅰ)由题意可知,椭圆C的离心率为$\frac{\sqrt{3}}{2}$,根据离心率的定义可得:$\frac{c}{a}=\frac{\sqrt{3}}{2}$,其中$c$为椭圆的焦距之一,即$2c$为椭圆的长轴长度,$a$为椭圆的半长轴长度,$b$为椭圆的半短轴长度,则有:$$\frac{2c}{2a}=\frac{\sqrt{3}}{2}$$ 即:$$\frac{c}{a}=\frac{\sqrt{3}}{4}$$ 又因为焦点$F$在椭圆的一个顶点上,所以该顶点的坐标为$(a,0)$,即$2c=2a$,代入上式可得:$$\frac{b}{a}=\frac{1}{2}$$ 又因为椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,代入$\frac{b}{a}=\frac{1}{2}$可得:$$\frac{x^2}{a^2}+\frac{4y^2}{a^2}=1$$ 即:$$x^2+4y^2=a^2$$ (Ⅱ)(i)设椭圆C的另一个顶点为$V$,则$OV$为椭圆的长轴,$OF$为椭圆的短轴,且$OV=2a$,$OF=\sqrt{3}a$。
高考数学热点练习:椭圆、双曲线、抛物线

2|F2B|,|AB|=|BF1|,则 C 的方程为( )
A.x2+y2=1 2
B.x2+y2=1 32
C.x2+y2=1 43
D.x2+y2=1 54
【训练 1】 (1)已知双曲线ax22-by22=1(a>0,b>0)的离心率为 2,过右焦点且垂直于 x 轴的直线与双曲线交于 A,
B 两点.设 A,B 到双曲线的同一条渐近线的距离分别为 d1 和 d2,且 d1+d2=6,则双曲线的方程为( )
Hale Waihona Puke (2)过 B1 作直线 l 交椭圆于 P,Q 两点,使得 PB2⊥QB2,求直线 l 的
方程.
【训练 3】 在直角坐标系 xOy 中,直线 l:y=t(t≠0)交 y 轴于点 M,交抛物线 C:y2=2px(p>0)于点 P,M 关于点 P 的对称点为 N,连接 ON 并延长交 C 于点 H. (1)求|OH|;
(1)(2019·河南八市联考)设双曲线
C:x2-y2=1 8m
的左、右焦点分别为
F1,F2,过
F1
的直线与双曲
线 C 交于 M,N 两点,其中 M 在左支上,N 在右支上.若∠F2MN=∠F2NM,则|MN|=( )
A.8
B.4
C.8 2
D.4 2
(2)(2019·全国Ⅰ卷)已知椭圆 C 的焦点为 F1(-1,0),F2(1,0),过 F2 的直线与 C 交于 A,B 两点.若|AF2|=
第 2 讲 椭圆、双曲线、抛物线
真题感悟
1.(2019·全国Ⅱ卷)若抛物线 y2=2px(p>0)的焦点是椭圆 x2 +y2=1 的一个焦点,则 p=( ) 3p p
A.2 B.3 C.4
高考数学真题之椭圆

椭圆2019年1.(2019全国1文12)已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=2.(2019全国II 文9)若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .83.(2019北京文19)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.4.(2019江苏16)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a-+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.5.(2019浙江15)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.6.(2019全国II 文20)已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.7.(2019天津文19)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,顶点为B .3|2||OA OB =(O 为原点).(Ⅰ)求椭圆的离心率; (Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且OC AP ∥,求椭圆的方程.8.(2019全国III 文15)设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.9.(2019北京文19)已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.2010-2019年一、选择题1.(2018全国卷Ⅰ)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12CD 2.(2018全国卷Ⅱ)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 13.(2018上海)设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为A .B .C .D .4.(2017浙江)椭圆22194x y +=的离心率是A .B C .23D .59 5.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A B C .3 D .136.(2017新课标Ⅰ)设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足AMB ∠ =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞7.(2016年全国I 卷)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为 A .13 B .12 C .23 D .348.(2016年全国III 卷)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为A .13B .12C .23D .349.(2015新课标1)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :28y x =的焦点重合,A B 、是C 的准线与E 的两个交点,则AB =A .3B .6C .9D .1210.(2015广东)已知椭圆222125x y m+=(0m >)的左焦点为()14,0F -,则m = A .2 B .3 C .4 D .911.(2015福建)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是A .B .3(0,]4C .D .3[,1)412.(2014福建)设Q P ,分别为()2622=-+y x 和椭圆11022=+y x 上的点,则Q P ,两点间的最大距离是A .25B .246+C .27+D .2613.(2013新课标1)已知椭圆22221(0)x y a b a b+=>>的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为 A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=114.(2013广东)已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 15.(2012新课标)设1F 、2F 是椭圆E :)0(12222>>=+b a by a x 的左、右焦点,P 为直线23a x =上一点,12PF F ∆ 是底角为o30的等腰三角形,则E 的离心率为 A 、21 B 、32 C 、43 D 、54二、填空题16.(2018浙江)已知点(0,1)P ,椭圆224x y m +=(1m >)上两点A ,B 满足2AP PB =,则当m =___时,点B 横坐标的绝对值最大.17.(2015浙江)椭圆22221x y a b +=(0a b >>)的右焦点(),0F c 关于直线by x c=的对称点Q 在椭圆上,则椭圆的离心率是 .18.(2014江西)过点(1,1)M 作斜率为12-的直线与椭圆C :22221(0)x y a b a b +=>>相交于,A B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于 .19.(2014辽宁)已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .20.(2014江西)设椭圆()01:2222>>=+b a by a x C 的左右焦点为21F F ,,作2F 作x 轴的垂线与C 交于B A ,两点,B F 1与y 轴相交于点D ,若B F AD 1⊥,则椭圆C 的离心率等于________.21.(2014安徽)设21,F F 分别是椭圆)10(1:222<<=+b by x E 的左、右焦点,过点1F 的直线交椭圆E 于B A ,两点,若x AF BF AF ⊥=211,3轴,则椭圆E 的方程为____.22.(2013福建)椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c =+与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于 .23.(2012江西)椭圆22221(0)x y a b a b+=>>的左、右顶点分别是,A B ,左、右焦点分别是12,F F .若1121||,||,||AF F F F B 成等比数列,则此椭圆的离心率为_________.24.(2011浙江)设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =;则点A 的坐标是 .三、解答题25.(2018江苏)如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程. 26.(2018全国卷Ⅲ)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.27.(2018北京)已知椭圆2222:1(0)x y M a b a b+=>>的离心率为3,焦距为.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B . (1)求椭圆M 的方程;(2)若1k =,求||AB 的最大值;(3)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .28.(2018天津)设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3||AB = (1)求椭圆的方程;(2)设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △的面积是BPQ △面积的2倍,求k 的值.29.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .30.(2017天津)已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E的坐标为(0,)c ,EFA △的面积为22b .(Ⅰ)求椭圆的离心率;(Ⅱ)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.31.(2017山东)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0)a b >>的离心率为2,椭圆C 截直线1y =所得线段的长度为 (Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :(0)y kx m m =+≠交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,N 的半径为||NO . 设D 为AB 的中点,DE ,DF 与N 分别相切于点E ,F ,求EDF ∠的最小值.x32.(2017北京)已知椭圆C 的两个顶点分别为(2,0)A -,(2,0)B ,焦点在x 轴上,离心. (Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:BDE ∆与BDN ∆的面积之比为4:5.33.(2017江苏)如图,在平面直角坐标系xOy 中,椭圆E :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线1l ,2l 的交点Q 在椭圆E 上,求点P 的坐标.34.(2016年北京)已知椭圆C :22221x y a b+=过(2,0)A ,(0,1)B 两点.(Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x轴交于点N ,求证:四边形ABNM 的面积为定值.35.(2016年全国II 卷)已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当AM AN =时,求AMN ∆的面积; (Ⅱ)当AM AN =时,证明:32k <<.36.(2016年山东)已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,焦距为2.(Ⅰ)求椭圆C 的方程;(Ⅱ)过动点M (0,m )(m >0)的直线交x 轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B .(i)设直线PM 、QM 的斜率分别为k 、k',证明k k'为定值; (ii)求直线AB 的斜率的最小值.37.(2016年天津)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.38.(2015新课标2)已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,点在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点,A B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.39.(2015天津)已知椭圆22221(0)x y a b a b+=>>的上顶点为B ,左焦点为F ,离心率为5. (Ⅰ)求直线BF 的斜率;(Ⅱ)设直线BF 与椭圆交于点P (P 异于点B ),故点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与y 轴交于点M ,||=||PM MQ λ. (i )求λ的值;(ii )若||sin =9PM BQP ∠,求椭圆的方程.40.(2015陕西)如图,椭圆E :22221x y a b+=(a >b >0)经过点(0,1)A -,且离心率为22.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点,P Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.41.(2015重庆)如图,椭圆22221x y a b+=(a >b >0)的左、右焦点分别为1F ,2F ,且过2F 的直线交椭圆于,P Q 两点,且PQ ⊥1PF .(Ⅰ)若122PF =+|,222PF =-|,求椭圆的标准方程; (Ⅱ)若|1PQ PF λ=,且3443λ≤≤,试确定椭圆离心率e 的取值范围.42. (2014新课标1) 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>3F 是椭圆E 的右焦点,直线AF 23,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.43.(2014浙江)如图,设椭圆(),01:2222>>=+b a by a x C 动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用k b a ,,表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为b a -.44.(2014新课标2)设1F ,2F 分别是椭圆C :()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求,a b .45.(2014安徽)设1F ,2F 分别是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,过点1F的直线交椭圆E 于,A B 两点,11||3||AF BF = (Ⅰ)若2||4,AB ABF =∆的周长为16,求2||AF ; (Ⅱ)若23cos 5AF B ∠=,求椭圆E 的离心率. 46.(2014山东)在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b ab+=>>,直线y x =被椭圆C . (I)求椭圆C 的方程;(Ⅱ)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD AB ⊥,直线BD 与x 轴、y 轴分别交于M ,N 两点.(ⅰ)设直线BD ,AM 的斜率分别为12,k k ,证明存在常数λ使得12k k λ=,并求出λ的值;(ⅱ)求OMN ∆面积的最大值.47.(2014湖南)如图5,O 为坐标原点,双曲线221112211:1(0,0)x y C a b a b -=>>和椭圆222222222:1(0)x y C a b a b +=>>均过点23(,1)3P ,且以1C 的两个顶点和2C 的两个焦点为顶点的四边形是面积为2的正方形. (I)求12,C C 的方程;(Ⅱ)是否存在直线l ,使得l 与1C 交于,A B 两点,与2C 只有一个公共点,且||||OA OB AB +=证明你的结论.48.(2014四川)已知椭圆C :22221x y a b+=(0a b >>)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线3x =-上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(i )证明:OT 平分线段PQ (其中O 为坐标原点); (ii )当||||TF PQ 最小时,求点T 的坐标. 49.(2013安徽)已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点23)P ,.(Ⅰ)求椭圆C 的方程;(Ⅱ)设0000(,)(0)Q x y x y ≠为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取点(0,22)A ,连接AE ,过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由.50.(2013湖北)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.51. (2013天津)设椭圆22221(0)x y a b a b+=>>的左焦点为F , 3, 过点F 且与x43(Ⅰ) 求椭圆的方程;(Ⅱ) 设A ,B 分别为椭圆的左、右顶点, 过点F 且斜率为k 的直线与椭圆交于C ,D两点.若··8AC DB AD CB +=, 求k 的值.52.(2013山东)椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12,F F ,离心率为32,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为l . (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF .设12F PF ∠的角平分线PM 交C 的长轴于点(),0M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过点P 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点.设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.53.(2012北京)已知椭圆C :22221(0)x y a b a b+=>>的一个顶点为(2,0)A ,离心率为2.直线(1y k x =-)与椭圆C 交于不同的两点M ,N . (Ⅰ)求椭圆C 的方程; (Ⅱ)当△AMNk 的值. 54.(2013安徽)如图,21,F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求a , b 的值.55.(2012广东)在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点到(0,2)Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.56.(2011陕西)设椭圆C : ()222210x y a b a b +=>>过点(0,4),离心率为35.(Ⅰ)求C 的方程; (Ⅱ)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标. 57.(2011山东)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE交椭圆C 于点G ,交直线3x =-于点(3,)D m -. (Ⅰ)求22m k +的最小值; (Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG 的外接圆方程;若不能,请说明理由.58.(2010新课标)设1F ,2F 分别是椭圆E :2x +22y b=1(0﹤b ﹤1)的左、右焦点,过1F的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列. (Ⅰ)求AB ;(Ⅱ)若直线l 的斜率为1,求b 的值.59.(2010辽宁)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB . (Ⅰ)求椭圆C 的离心率; (Ⅱ)如果||AB =154,求椭圆C 的方程.。
高考数学专题《双曲线》习题含答案解析

专题9.4 双曲线1.(2021·江苏高考真题)已知双曲线()222210,0x y a b a b-=>>的一条渐近线与直线230x y -+=平行,则该双曲线的离心率是( )ABC .2D【答案】D 【分析】写出渐近线,再利用斜率相等,进而得到离心率【详解】双曲线的渐近线为b y x a =±,易知by x a=与直线230x y -+=平行,所以=2b e a ⇒==故选:D.2.(2021·北京高考真题)若双曲线2222:1x y C a b-=离心率为2,过点,则该双曲线的程为()A .2221x y -=B .2213y x -=C .22531x y -=D .22126x y -=【答案】B 【分析】分析可得b =,再将点代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a == ,则2c a =,b =,则双曲线的方程为222213x y a a-=,将点的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故b ,因此,双曲线的方程为2213y x -=.故选:B3.(2021·山东高考真题)已知1F 是双曲线22221x y a b-=(0a >,0b >)的左焦点,点P 在双曲线上,直线1PF 与x 轴垂直,且1PF a =,那么双曲线的离心率是()练基础A B C .2D .3【答案】A 【分析】易得1F 的坐标为(),0c -,设P 点坐标为()0,c y -,求得20by a=,由1PF a =可得a b =,然后由a ,b ,c 的关系求得222c a =,最后求得离心率即可.【详解】1F 的坐标为(),0c -,设P 点坐标为()0,c y -,易得()22221c y a b--=,解得20b y a =,因为直线1PF 与x 轴垂直,且1PF a =,所以可得2b a a=,则22a b =,即a b =,所以22222c a b a =+=,离心率为e =故选:A .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D |AB .则双曲线的离心率为( )A B C .2D .3【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解.【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22bAB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.5.(2019·北京高考真题(文))已知双曲线2221x y a-=(a >0)a =( )AB .4C .2D .12【答案】D 【解析】∵双曲线的离心率ce a==,c = ,=,解得12a = ,故选D.6.(全国高考真题(文))双曲线2222:1(0,0)x y C a b a b -=>>的离心率为2,焦点到渐近线的,则C 的焦距等于( ).A.2B. C.4D.【答案】C 【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .7.(2017·天津高考真题(文))已知双曲线的左焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),则双曲线的方程为( )A. B. C. D.【答案】D 【解析】22221(0,0)x y a b a b -=>>F A OAF △O 221412x y -=221124x y -=2213x y -=2213y x -=由题意结合双曲线的渐近线方程可得:,解得:,双曲线方程为:.本题选择D选项.8.(2021·全国高考真题(理))已知双曲线22:1(0)xC y mm-=>的一条渐近线为my+=,则C的焦距为_________.【答案】4【分析】将渐近线方程化成斜截式,得出,a b的关系,再结合双曲线中22,a b对应关系,联立求解m,再由关系式求得c,即可求解.【详解】my+=化简得y=,即ba,同时平方得2223ba m=,又双曲线中22,1a m b==,故231m m=,解得3,0m m==(舍去),2223142c a b c=+=+=⇒=,故焦距24c=.故答案为:4.9.(2019·江苏高考真题)在平面直角坐标系xOy中,若双曲线2221(0)yx bb-=>经过点(3,4),则该双曲线的渐近线方程是_____.【答案】y=.【解析】由已知得222431b-=,解得b=或b=,因为0b>,所以b=.因为1a=,所以双曲线的渐近线方程为y=.10.(2020·全国高考真题(文))设双曲线C:22221x ya b-= (a>0,b>0)的一条渐近线为y= 2222tan60cc a bba⎧⎪=⎪=+⎨⎪⎪==⎩221,3a b==2213yx-=x ,则C 的离心率为_________.【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为y =,所以b a =c e a ===1.(2018·全国高考真题(理))设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若则的离心率为( )ABC .D【答案】B 【解析】由题可知在中,在中,故选B.2.(2020·云南文山·高三其他(理))已知双曲线2221(0)x y a a-=>上关于原点对称的两个点P ,Q ,右顶点为A ,线段AP 的中点为E ,直线QE 交x 轴于(1,0)M ,则双曲线的离心1F 2F 2222:1x y C a b-=O 2F C P 1PF =C222,PF b OF c==PO a∴=2Rt POF V 222cos P O PF b F OF c∠==12PF F △22221212212cos P O 2PF F F PF b F PF F F c+-∠==223bc a c=⇒=e ∴=练提升率为( )A B .C D 【答案】D 【解析】由已知得M 为APQ V 的重心,∴3||3a OM ==,又1b =,∴c ==,即c e a ==.故选:D.3.(2020·广东天河·华南师大附中高三月考(文))已知平行于x 轴的直线l 与双曲线C :()222210,0x y a b a b-=>>的两条渐近线分别交于P 、Q 两点,O 为坐标原点,若OPQ △为等边三角形,则双曲线C 的离心率为( )A .2B .C D 【答案】A 【解析】因为OPQ △为等边三角形,所以渐近线的倾斜角为3π,所以22,3,bb b a a=∴=∴=所以2222223,4,4,2c a a c a e e -=∴=∴=∴=.故选:A4.(2021·广东广州市·高三月考)已知1F ,2F 分别是双曲线C :2213xy -=的左、右焦点,点P 是其一条渐近线上一点,且以线段12F F 为直径的圆经过点P ,则点P 的横坐标为( )A .±1B .C .D .2±【答案】C 【分析】由题意可设00(,)P x ,根据圆的性质有120F P F P ⋅= ,利用向量垂直的坐标表示,列方程求0x 即可.【详解】由题设,渐近线为y =,可令00(,)P x x ,而1(2,0)F -,2(2,0)F ,∴100(2,)F P x x =+ ,200(2,)F P x =- ,又220120403x F P F P x ⋅=-+= ,∴0x =故选:C5.(2020·广西南宁三中其他(理))圆22:10160+-+=C x y y 上有且仅有两点到双曲线22221(0,0)x y a b a b -=>>的一条渐近线的距离为1,则该双曲线离心率的取值范围是( )A .B .55(,)32C .55(,42D .1)【答案】C 【解析】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:10160C x y y +-+=,圆心()0,5,半径3因为圆C 上有且仅有两点到0bx ay -=的距离为1,所以圆心()0,5到0bx ay -=的距离d 的范围为24d <<即24<<,而222+=a b c 所以524a c <<,即5542e <<故选C 项.6.【多选题】(2021·湖南高三)已知双曲线2222:1x y C a b-=(0a >,0b >)的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若a b =,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12PF F △的内切圆圆心的横坐标x a =D .若M 为直线2a x c=(c =0的一点,则当M 的纵坐标为2MAF V 外接圆的面积最小【答案】ABD 【分析】由a b =,得到222a c =,利用离心率的定义,可判定A 正确;由双曲线的几何性质和点到直线的距离公式,可判定B 正确;由双曲线的定义和内心的性质,可判定C 不正确;由正弦定理得到2MAF V 外接圆的半径为222sin AF R AMF =∠,得出2sin AMF ∠最大时,R 最小,只需2tan AMF ∠最大,设2,a M t c ⎛⎫⎪⎝⎭,得到22tan tan()AMF NMF NMA ∠=∠-∠,结合基本不等式,可判定D 正确.【详解】对于A 中,因为a b =,所以222a c =,故C 的离心率ce a==A 正确;对于B 中,因为()1,0F c -到渐近线0bx ay -=的距离为d b ==,所以B 正确;对于C 中,设内切圆与12PF F △的边1221,,FF F P FP 分别切于点1,,A B C ,设切点1A (,0)x ,当点P 在双曲线的右支上时,可得121212PF PF PC CF PB BF CF BF -=+--=-1112A F A F =-()()22c x c x x a =+--==,解得x a =,当点P 在双曲线的左支上时,可得x a =-,所以12PF F △的内切圆圆心的横坐标x a =±,所以C 不正确;对于D 中,由正弦定理,可知2MAF V 外接圆的半径为222sin AF R AMF =∠,所以当2sin AMF ∠最大时,R 最小,因为2a a c<,所以2AMF ∠为锐角,故2sin AMF ∠最大,只需2tan AMF ∠最大.由对称性,不妨设2,a M t c ⎛⎫ ⎪⎝⎭(0t >),设直线2a x c =与x 轴的交点为N ,在直角2NMF △中,可得222=tan a c NF c NM t NMF -∠=,在直角NMA △中,可得2=tan a a NA c NM tMA N -∠=,又由22222222tan tan tan tan()1tan tan 1NMF NMA AMF NMF NMA NMF NMAa a c a c ct t a a c a c c t t--∠-∠∠=∠-∠==+∠∠--⨯+-⋅22()c a ab c a t c t-=≤-+当且仅当()22ab c a t c t -=,即t =2tan AMF ∠取最大值,由双曲线的对称性可知,当t =2tan AMF ∠也取得最大值,所以D 正确.故选:ABD .7.【多选题】(2021·重庆巴蜀中学高三月考)已知点Q 是圆M :()2224x y ++=上一动点,点()2,0N ,若线段NQ 的垂直平分线交直线MQ 于点P ,则下列结论正确的是( )A .点P 的轨迹是椭圆B .点P 的轨迹是双曲线C .当点P 满足PM PN ⊥时,PMN V 的面积3PMN S =△D .当点P 满足PM MN ⊥时,PMN V 的面积6PMN S =V 【答案】BCD 【分析】根据PM PN -的结果先判断出点P 的轨迹是双曲线,由此判断AB 选项;然后根据双曲线的定义以及垂直对应的勾股定理分别求解出PM PN ⋅的值,即可求解出PMN S △,据此可判断CD 选项.【详解】依题意,2MQ =,4MN =,因线段NQ 的垂直平分线交直线MQ 于点P ,于是得PQ PN =,当点P 在线段MQ 的延长线上时,2PM PN PM PQ MQ -=-==,当点P 在线段QM 的延长线上时,2PN PM PQ PM MQ -=-==,从而得24PM PN MN -=<=,由双曲线的定义知,点M 的轨迹是双曲线,故A 错,B 对;选项C ,点P 的轨迹方程为2213y x -=,当PM PN ⊥时,2222616PM PN PM PN PM PN MN ⎧-=⎪⇒⋅=⎨+==⎪⎩,所以132PMN S PM PN ==△,故C 对;选项D ,当PM MN ⊥时,2222316PM PN PM PN PM MN ⎧-=-⎪⇒=⎨-==⎪⎩,所以162PMN S PM MN ==△,故D 对,故选:BCD.8.(2021·全国高二课时练习)双曲线()22122:10,0x y C a b a b-=>>的焦距为4,且其渐近线与圆()222:21C x y -+=相切,则双曲线1C 的标准方程为______.【答案】2213x y -=【分析】根据焦距,可求得c 值,根据渐近线与圆2C 相切,可得圆心到直线的距离等于半径1,根据a ,b ,c 的关系,即可求得a ,b 值,即可得答案.【详解】因为双曲线()22122:10,0x y C a b a b-=>>的焦距为4,所以2c =.由双曲线1C 的两条渐近线b y x a=±与圆()222:21C x y -+=相切,可得1=又224a b +=,所以1b =,a =所以双曲线1C 的标准方程为2213x y -=.故答案为:2213x y -=9.(2021·全国高二单元测试)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,离心率为e ,若双曲线上一点P 使2160PF F ∠=︒,则221F P F F ⋅的值为______.【答案】3【分析】在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.分别运用余弦定理可求得答案.【详解】解:由已知得2124F F c ==.在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.当12PF x =+时,由余弦定理,得()222124242x x x +=+-⨯⨯,解得32x =,所以221314322F P F F ⋅=⨯⨯= .当12PF x =-时,由余弦定理,得()222124242x x x -=+-⨯⨯,无解.故2213F P F F ⋅=.故答案为:3.10.(2021·全国高二课时练习)如图,以AB 为直径的圆有一内接梯形ABCD ,且//AB CD .若双曲线1C 以A ,B 为焦点,且过C ,D 两点,则当梯形的周长最大时,双曲线1C 的离心率为______.1【分析】连接AC ,设BAC θ∠=,将梯形的周长表示成关于θ的函数,求出当30θ=︒时,l 有最大值,即可得到答案;【详解】连接AC ,设BAC θ∠=,2AB R c R ==,,作CE AB ⊥于点E ,则||2sin BC R θ=,()2||||cos 902sin EB BC R θθ=︒-=,所以2||24sin CD R R θ=-,梯形的周长221||2||||24sin 24sin 4sin 52l AB BC CD R R R R R R θθθ⎛⎫=++=++-=--+ ⎪⎝⎭.当1sin 2θ=,即30θ=︒时,l 有最大值5R ,这时,||BC R =,||AC =,1(||||)2a AC BC =-=,1=c e a .1+1. (2021·全国高考真题(理))已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为( )ABCD【答案】A 【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案.【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==,所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos 60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即e =故选:A2.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y=|OP |=( )ABCD【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P还在函数y =练真题由()22103y x x y ⎧⎪⎨->==⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==.故选:D.3.(2019·全国高考真题(理))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( )ABC .2D【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c == ,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2c OA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=,故选A .4.(2019·全国高考真题(理))双曲线C :2242x y -=1的右焦点为F ,点P 在C的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )A B C .D .【答案】A 【解析】由2,,,a b c ====.,P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在y x =上,1122PFO P S OF y ∴=⋅==△,故选A .5. (2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【详解】由已知,3c ===,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===.6.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB = ,120F B F B ⋅=,则C 的离心率为____________.【答案】2.【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =g ,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==,所以该双曲线的离心率为2c e a ====.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019高考数学真题汇编 椭圆 双曲线 抛物线
一.选择题
2019全国Ⅱ卷理8若抛物线px y 22
=(p>0)是132
2=+p y p x 的一个焦点,则P_______ A. 2 B. 3 C. 4 D.8
2019全国Ⅱ卷理11设F 为双曲线C :122
22=-b
y a x (a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆222a y x =+交于P,Q 两点,若OF PQ =,则C 的离心率______
A. 2
B. 3
C. 2
D.5
2019全国Ⅲ卷理10双曲线C :1242
2=-y x 的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若PF PO =,则△PFO 的面积为______
A. 423
B. 22
3 C. 22 D.23
2019全国Ⅲ卷文10已知F 为双曲线C:1542
2=-y x 的一个焦点,P 点在C 上,O 为坐标原点,△OPF 的面积为______ A.23 B. 25 C. 27 D.2
9 2019全国Ⅰ卷理10已知椭圆C 的焦点1F (-1,0) ,2F (1,0),过1F 的直线与C 交于A,B 两点.若122,2BF AB B F AF ==则C 的方程为_________
A. 1222=+y x
B.12322=+y x
C. 13422=+y x
D.14
52
2=+y x 2019全国Ⅰ卷文10 双曲线122
22=+b
y a x (a>0,b>0)的一条渐近线的倾斜角为0130,则C 的离心率为___
A. 040sin 2
B. 040cos 2
C.
050sin 1 D.050cos 1 2019天津理5已知抛物线x y 42=的焦点为F ,准线为l ,若l 与双曲线122
22=+b
y a x (a>0,b>0)
的两条渐近线分别交于点A 和点B ,且OF AB 4=(O 为原点)则双曲线的离心率____ A. 2 B. 3 C. 4 D.5
2019北京理4已知椭圆)0,0(12222>>=+b a b y a x 的离心率为2
1则___ A. 222b a = B. 2243b a = C. b a 2= D.b a 432
= 2019北京文5已知双曲线1222
=-y a
x (a>0)的离心率是5,则a=____ A. 6 B. 4 C. 2 D.2
1 2019浙江理2渐近线方程为0=±y x 的双曲线的离心率是_______
B. 2
2 B. 1 C. 2 D.2
二.填空题 2019浙江理15已知椭圆15
92
2=+y x 的左焦点为F ,点P 在椭圆上且在x 轴上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率________
2019北京文11设抛物线x y 42
=的焦点为F ,准线为l ,则以F 为圆心,且与l 相切的圆的方程___________ 2019全国一卷理16已知双曲线左右焦点分别为1F ,2F 率过1F 的直线与C 的两条渐近线分别交于A ,B 两点.若0,211=∙=F F F 则C 的离心率___________.
2019全国Ⅲ卷文15设F 1,F 2为椭圆C :120
362
2=+y x 的两个焦点,M 为C 上一点且在第一象限,若△F MF 21
为等腰三角形,则M 的坐标为( ) ()22
2210,0x y C a b a b
-=>>:。