分形几何学(课堂PPT)

合集下载

《分形几何学实践》课件

《分形几何学实践》课件
分形几何学实践
汇报人:
目录
添加目录标题
分形几何学概述
分形几何学的基 本概念
分形几何学的常 见类型
分形几何学在实 践中的应用
分形几何学的未 来发展
添加章节标题
分形几何学概述
分形几何学是 一种研究不规 则、复杂形状
的数学方法
分形几何学中 的形状具有自 相似性,即局 部与整体相似
分形几何学中 的形状具有尺 度不变性,即 无论放大或缩 小,形状保持
应用领域:分形几何在生物、医学、工程等领域的应用研究
理论研究:分形几何的理论基础、性质和定理的研究
计算方法:分形几何的计算方法和算法的研究
交叉学科:分形几何与其他学科的交叉研究,如分形几何与混沌理论、分形几何与量 子力学等
数学:分形几何学与数学中的拓扑 学、微分几何等学科有密切联系, 可以应用于解决数学问题。
生物学:描述生 物形态和生长过
程ቤተ መጻሕፍቲ ባይዱ
物理学:描述物 理现象和过程
计算机科学:用 于图像处理、动
画制作等领域
数学:用于研究 几何学、拓扑学
等领域
艺术:用于创作 分形艺术作品
建筑学:用于设 计建筑和城市规

分形几何学的基本 概念
定义:在任意 尺度下,具有 相同或相似的
形状或结构
特点:自相似 性是分形几何 学的核心概念
之一
应用:在自然 界、数学、物 理学等领域都
有广泛应用
例子:雪花、 海岸线、山脉 等自然现象都 具有自相似性
定义:通过重复应用同一种操 作或规则,生成复杂结构的方 法
特点:自相似性、精细结构、 无限复杂性
应用:分形几何学、计算机图 形学、图像处理等领域
例子:曼德布罗特集合、谢尔 宾斯基三角形等

初中数学分形课件

初中数学分形课件

混沌一开, 乾坤乃定。 历经无数分叉路, 柳暗花明见新村。 教育立国, 科技兴邦, 两个强劲吸引子, 交织出一幅美丽分形。 万众协同, 应变持恒。 依凭超循环作用, 借助蝴蝶效应, 向着同宿点, 奋起马蹄奔前程。
(付新楚(1961- )《混沌寄情》)
现科学之美, 探复杂之谜, 映射突变, 分形遇与混沌帝。 马蹄迭代驱寂寞, 落霞覆涟漪, 斑图指进临境, 连络廿一世纪。 (刘华杰)
谢 谢 欣 赏 !
分形的应用领域
数学中的动力系统等;
物理中的布朗运动,流体力学中的湍流等; 化学中酶的构造等;
生物中细胞的生长等;
地质学中的地质构造等;
天文学中土星光环的模拟等;
其它:计算机,经济学,社会学,艺术等
—连接在一起的三段Koch曲线构成一个雪花曲线
随机Koch曲线 ——对海岸线的模拟
分形树叶
分形树叶(续1)分形树Fra bibliotek(续2)分形树叶(续3)
花草树木(L 系统)的一个例子
一些分形图片:

Z n1 Z c
2 n

z 和 c 都是复数)
蝴蝶函数: 花函数:
洛伦兹吸引子
函数图形(天鹅)是帮加莱截面映射
图形(稻草)是描述植物生长的PL规则图案
/
与分形有关的诗
幻境风云起,人间纷扰多。 醉弄光影躯,轻舞自婀娜。 (宋爽)
分念成形窥色相,共灵显迹化虚无。 出有入无成妙道,分形露体共真源。 (摘自《慧命经· 化身图释词》)
第一步
Sierpinsk垫片的生成过程 —第2步
Sierpinsk垫片的生成过程 —第3步
Sierpinsk垫片的生成过程 —第4步
Koch曲线

分形几何 ppt课件

分形几何 ppt课件
27
❖ f(z) = |z2|
分形几何
28
分形几何 ❖可以看到,这一操作让模的变化更剧烈了,
等高线变得更加密集了。外面浩瀚的蓝色空 间,就对应着那些模已经相当大了的复数。
29
分形几何
❖如果对上图中的每个点再加上某个数,比如 0.3 , 那么整个图会怎样变化呢?
❖对于模相同的复数来说,给实数部分加上 0.3 , 这对实数部分本来就较大的数影响会更大一些。 因此,上图将会变得更扁,整个图形会在水平方 向上拉伸。这也就是 f(z) = |z2 + 0.3| 的等高线地 形图。见下图(为便于观察,对图像进行了旋 转)。
36
分形几何
❖ 我们照这个思路(加0.2然 后平方)迭代12次后,可 得到右图图形。可以看见 整个图形已经具有了分形 图形的复杂程度(图形的 “黑边”其实是密集的等 高线)。
37
分形几何
❖ 上图中,大部分区域内的数都变得越来越大,直 达无穷。而原点附近这个四叶草形区域内的数, 至少目前还不算太大。
8
分形几何
9
分形几何 ❖康托三分集中有无穷多个点,所有的点处于
非均匀分布状态。此点集具有自相似性,其 局部与整体是相似的,所以是一个分形系统。
10
分形几何
4. Mandelbrot集合 曼德博集合可以用复二次多项式来定义: fc(z)=z2+C; 其中 c 是一个复数参数。
➢ 从 z = 0 开始对 fc(z) 进行迭代:
① 将线段分成三等份(AC,CD,DB); ② 以CD为底,向外(内外随意)画一个等边三角
形DMC ; ③ 将线段CD移去; ④ 分别对AC,CM,MD,DB重复1~3。
5
分形几何
6

《分形几何学》课件

《分形几何学》课件

分形风险管理:评 估和管理金融市场 的风险
分形投资策略:基 于分形理论的投资 策略,如分形交易 策略、分形投资组 合管理等
分形在物理学中的应用
分形几何学的未来 展望
分形几何学的发展趋势
应用领域:分形几何学在计算机图形学、图像处理、生物医学等领域的应用将越来越广泛
理论研究:分形几何学的理论研究将更加深入,包括分形维数的计算、分形几何的拓扑性质等
添加标题
添加标题
添加标题
添加标题
特点:具有自相似性,即无论放大 或缩小,其形状保持不变
性质:具有无限长度,但面积却为 零,是一种典型的分形图形
分形几何学的应用 实例
分形在图像压缩中的应用
分形压缩算法:基于分形几何学的图像压缩算法 压缩效果:提高压缩比,降低图像质量损失 应用场景:适用于图像传输、存储和显示等领域 技术挑战:如何平衡压缩比和图像质量损失,提高压缩算法的效率和稳定性
发展:1977年,数学家哈肯提出分形几何学的基本理论
应用:分形几何学在物理学、生物学、经济学等领域得到广泛应用 现状:分形几何学已成为现代数学的一个重要分支,对科学研究和实际应 用具有重要意义
分形几何学的应用领域
分形几何学的基本 概念
自相似性
定义:在任意 尺度下,具有 相同或相似的
结构或模式
特点:自相似 性是分形几何 学的核心概念
科赫曲线的生成过程: 将一条线段分为三等份, 去掉中间一段,然后将 剩下的两段分别替换为 两个新的科赫曲线
科赫曲线的应用:在计 算机图形学、动画制作 等领域有广泛应用
科赫曲线的性质:具有 自相似性、无限长度和 面积、分形维数等性质
皮亚诺曲线
定义:由意大利数学家皮亚诺提出 的一种分形图形

分形理论ppt课件

分形理论ppt课件
X
分形理论在图象压缩中的应用
为什么分形理论能用于图象压缩
图象压缩:指在没有明显失真的前提下,将图象的
位图信息转变成另外一种能将数据量缩减的表达形 式。 首先,尽管图象中数据量很大,但数据之间不是完 全独立的,图象中存在着各种各样的相关性或冗余 信息。即一部分数据可以由另一部分数据完全推算 出来。 其次,大部分图象视频信号的最终接收者都是人眼, 人眼对图象中的不同部分的敏感程度是不同的。
(3)通常分形集的“分形维数”比它的拓扑维数要大;-- -说明了分形的复杂性
(4)许多情况下,分形集是非常简单的,或者是递归的。- --说明了分形的生成机制 ---自相似性是分形的灵魂 它使得分形的任何一个片段都包含了整个分形的信息
X
分形理论简介
五、分形的应用范围
分形观念的引入并非仅是一个描述手法上的改变,
(2)部分与整体以某种形式相似的形,称为分形
X
分形理论简介
四、分形的特点
(1)分形的最基本特征是所谓的“自相似性”。如图1
(2)该集有精细结构,即在任意小的比例尺度内包含整体。 如图2
(3)通常分形集的“分形维数”比它的拓扑维数要大;-- -说明了分形的复杂性
(4)许多情况下,分形集是非常简单的,或者是递归的。- --说明了分形的生成机制 ---自相似性是分形的灵魂 它使得分形的任何一个片段都包含了整个分形的信息
分形理论
X
X
分形理论简介
一、什么是分形? 1、问题的引入 --英国的海岸线有多长
2、欧氏几何的局限性 --欧氏几何主要是基于中小尺度上的点、线、面 之间的关系
3、分形----自然几何
X
分形理论简介
二、分形的发展
萌芽:1919年以前

高考数学选修课课件:数学史选讲 分形概述 (共55张PPT)

高考数学选修课课件:数学史选讲 分形概述 (共55张PPT)
数学史选讲-分形概述
分形(fractal)
分形几何理论诞生于20世纪70年代中期, 创始人是美国数学家---曼德布罗特 (B.B.Mandelbrot),他1982年出 版的 《大自然的分形几何学》 (The Fractal Geometry of Nature)是这一学科经典之作。
分形(fractal)是20多年来科学前沿领域提出的 一个非常重要的概念,
科赫曲线F的自相似维数为
ln 2 dimF ln 3
波兰著名数学家谢尔宾斯基在1915-1916 年期间构造了几个典型的例子, 这些怪物
常称作“谢氏地毯”、“谢氏三角”、“谢 氏海绵” 。如今,讲分形都要提到。它们 不但有趣,而且有助于形象地理解分形。
图3 谢尔宾斯基三角形
分形
将分形看作具有如下性质的集合: 1.F具有精细结构,即在任意小的比例尺度内包含
分形理论已经对方法论和自然观产生强烈影响,从 分形的观点看世界,我们发现,这个世界是以分形 的方式存在和演化着的世界。
分形的特性
英国数学家Falconer在《分形几何的数学基 础及应用》一书中认为:
分形的定义应该以生物学家给出“生命”定 义的类似方法给出,即不寻求分形的确切简 明的定义,而是寻求分形的特性,将分形看 作具有某些性质的集合。
分形几何的历史(续)
发展期:二十世纪八十年代至今. 1. Hutchinson, 1981, 分形与自相似. 给出了自相似集合的数学理论基础. 2. Mandelbrot, 1982, 《自然界的分形几何》. 3. Barnsley, 1988, 《Fractal everywhere》. 4. Falconer, 1990, 《分形几何——数学基础 及其应用》.

分形理论PPT课件

分形理论PPT课件
分形理论非线性科学三大理论前沿乊一前言一非线性复杂系统一什么是分形fractal二自相似性三标度丌变性二非欧氏几何学分形几何学三分形理论的应用结束语自然界大部分丌是有序的平衡的稳定的呾确定性的而是处亍无序的丌稳定的非平衡的呾随机的状态乊中它存在着无数的非线性过程如流体中的湍流就是其中一个例子
分形理论
球等简单形状加以组合,就能很好地与其构造近似。
二、非欧氏几何学(分形几何学)
欧几里德几何学(简称欧氏几何学),是一门具有
2000多年历史的数学分支,它是以规整几何图形为研
究图象。所谓规整几何图形就是我们熟悉的点、直线与
线段;平面与平面上的正方形、矩形、梯形、菱形、各
种三角形以及正多边形等。空间中的正方体、长方体、
人类在认识世界和改造世界的活动中离不开几何学。 在历史上,科学技术的发展与几何学的进步始终是密切 相关的。在生产实践和科学研究中,人们用以描述客观 世界的几何学是欧几里德几何学,以及解析几何、射影 几何、微分几何等,它们能有效地描述三维世界的许多 现象,如各种工业产品的现状,建筑的外形和结构等。 但是,自然界大多数的图形都是十分复杂而且不规则的。 例如:海岸线、山形、河川、岩石、树木、森林、云团、 闪电、海浪等等,例如图1.1、图1.2和图1.3所示。用欧 几里德几何学是无能为力的。
精品ppt
6
图1.1 布达拉宫中藏族壁画中的云的形状
图1.2 日本传统精绘品画ppt中对海浪的描述
7
图1.3 山脉的复杂形态
另外,在科学研究中,对许多非规则性对象建模分 析,如星系分布、渗流、金融市场的价格浮动等复杂对 象,都需要 一种新的几何学来描述。
所以, 一般地可把“分形”看作大小碎片聚集的状态, 是没有特征长度的图形和构造以及现象的总称。描述分 形的几何,称为分形几何精,品又ppt称为描述大自然的几何。 8

姿多彩的分形几何学及其应用”ppt文件

姿多彩的分形几何学及其应用”ppt文件

K
K
n 0
n
就称为科赫曲线。
2012年7月
12
K0
K3
K1
K4
K2 图2 科赫曲线前五步的构造
2012年7月 13
K5
实例三 科赫雪片
若将 K0 换成单位长度的等边三角形,对每边按 照上述方法构造科赫曲线,便得到讨人喜欢的科赫雪 片,如图 3 所示。
图 3
科赫雪片 前三步的构造
2012年7月 14
2012年7月 15
经济学上的一个实际背景
1960 年 , 曼德尔布罗特在对棉花价格数据随 60 年时间变化的曲线进行分析时,通过在数学上对 这批数据进行计算机处理,发现了惊人的结果:价 格的每一次特定的变化是随机的,但长期的变化又 是与时间尺度无关的,反映在价格的日变化曲线与 月变化曲线在变化规律上完全类似;甚至在经历两 次世界大战和一次经济大萧条的60年动荡岁月中, 价格的这种变化规律保持不变。大量无序的数据里 竟然存在着一种出乎意料的有序!
4 l ( K ) lim l ( K n ) lim , n n 3
n
而面积为 0 。
2012年7月 22
科赫雪片 E 的面积
m (E)
2
3 4
3(
3
1 9

4
4 9
2

4 9
2 3
)
3 4
[1
(9) 4
n 1

n
]
3 4

康托三分集是指由所有 C n的公共点构成的集,即
C
C
n 0
n

10
C 实际上是集序列 Cn 当 n 趋于无穷时的极限。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
法国数学家曼德尔勃罗特这位计算机和数学兼通的人物,对分 形几何产生了重大的推动作用。他在1975、1977和1982年 先后用法文和英文出版了三本书,特别是《分形——形、机遇 和维数Fractals:Form,Chance and Dimension》以及 《自然界中的分形几何学“The Fractal Geometry of Nature》,开创了新的数学分支——分形几何学。
1973年,曼德尔勃罗特(B.B.Mandelbrot)在法兰西学院讲 课时,首次提出了分维和分形几何的设想。分形(Fractal)一词, 是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,
分形几何学是一门以非规则几何形态为研究对象的几何学。 Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名 字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相 似的结构(见图1)。
维数和测量有着密切的关系,下面我们举例说明一下分维的概 念。
当我们画一根直线,如果我们用 0维的点来量它,其结果为无 穷大,因为直线中包含无穷多个点;如果我们用一块平面来量它, 其结果是 0,因为直线中不包含平面。那么,用怎样的尺度来量 它才会得到有限值哪?看来只有用与其同维数的小线段来量它才 会得到有限值,而这里直线的维数为 1。
分形几何具有五个基本特征或性质: ⑴形态的不规则性; ⑵结构的精细性 ⑶局部与整体的自相似性 ⑷维数的非整数性 ⑸生成的迭代性。
.
7
分形理论认为维数可以是分数,这类维数是物理学家在研 究混沌吸引子等理论时引入的重要概念。为了定量地描述客 观事物的“非规则”程度,1919年,数学家从测度的角度引 入了维数概念,将维数从整数扩大到分数,从而突破了一般 拓扑集维数为整数的界限。
基于传统欧几里得几何学的各门自然科学总是把 研究对象想象成一个个规则的形体,而我们生活的 世界竟如此不规则和支离破碎,与欧几里得几何图 形相比,拥有完全不同层次的复杂性。分形几何则 提供了一种描述这种不规则复杂现象中的秩序和结 构的新方法。
.
4
普通几何学研究的对象,一般都具有整数的维数。比如,零维的点、一维
.
9
分形几何与传统几何相比有什么特点:
⑴从整体上看,分形几何图形是处处不规则的。 例如,海岸线和山川形状,从远距离观察,其形状 是极不规则的。
⑵在不同尺度上,图形的规则性又是相同的。 上述的海岸线和山川形状,从近距离观察,其局部 形状又和整体形态相似,它们从整体到局部,都是 自相似的。当然,也有一些分形几何图形,它们并 不完全是自相似的。其中一些是用来描述一般随机 现象的,还有一些是用来描述混沌和非线性系统的。
分形几何学的基本思想是:客观事物具有自相似的层 次结构,局部与整体在形态、功能、信息、时间、空间等方 面具有统计意义上的相似性,称为自相似性。例如,一块磁 铁中的每一部分都像整体一样具有南北两极,不断分割下去, 每一部分都具有和整体磁铁相同的磁场。这种自相似的层次 结构,适当的放大或缩小几何尺寸,整个结构不变。
第6讲 分形几何学
.
1
一、什么是分形几何学 二、谁创立了分形几何学? 三、分形几何的产生 四、分形艺术 五、分形几何学的应用 六、数学、分形与龙
.
2
双鱼
双鱼
螃蟹
蜘蛛
.
蜘蛛 眼3 睛
我们人类生活的世界是一个极其复杂的世界,例如, 喧闹的都市生活、变幻莫测的股市变化、复杂的生 命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等, 都表现了客观世界特别丰富的现象。
又如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上 没什么大的区别,大树与树枝这种关系在几何形状上称之为自相 似关系;一片树叶,仔细观察一下叶脉,它们也具备这种性质; 动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛 的全部生长信息;还有高山的表面,无论怎样放大其局部,它都 如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何 揭示了世界的本质,分形几何是. 真正描述大自然的几何学。6
.
10
分形几何图形
自然界中有许多分形的例子,如雪花、植物的枝条分叉、海岸线 等。在数学中,历史上也构造了许多分形模型,如Koch曲线、 weierstrass函数等。它们共同的特点是①处处连续但处处不可 微,即曲线处处是不光滑的,总有无穷的细节在里面;②具有自 相似性或统计自相似性,即在不同的标度下,它们的形状是相似 的,不可区分的;③刻划它们的维数不是整数,而是分数。这是 因为,这类曲线都有无穷的细节,所以用1维的直线来测量它, 其值为无穷大,然而它们又没有填满一个有限的平面,所以其维 数又不能等于2,因此,要想得到一个有限的长度,它的测量维 数必定在1和2之间。
的线、二维的面、三维的立体、乃至四维的时空。但是现实生活中象弯弯曲曲的 海岸线这些对象就不能用传统欧几里德几何学的整数维描述或者说测量了。要描 述这一大类复杂无规的几何对象,就引入了分形理论,把维数视为分数维数。这 是几何学的新突破,引起了数学家和自然科学者的极大关注。
.
5
一、什么是分形几何学
通俗一点说就是研究无限复杂但具有一定意义下的自相 似图形和结构的几何学。
.是一条无限长的线折叠而 成,用小直线段量,其结果是无穷大,而用平面量,其结果是 0(此曲线中不包含平面),那么只有找一个与“寇赫岛”曲 线维数相同的尺子量它才会得到有限值,而这个维数显然大于 1、小于 2,那么只能是小数了,所以存在分维。经过计算 “寇赫岛”曲线的维数是1.2618……。
.
11
Koch 曲线的 维数是
1.2618
4级Koch曲线 3级Koch曲线
Koch雪花
.
12
二、谁创立了分形几何学?
分形的创立也是基于一个巧合,颇似当年哥伦布发现美洲新 大陆的意外收获。分形的创立者曼得勃罗特原先是为了解决电 话电路的噪声等实际问题,结果却发现了几何学的一个新领域。 海岸线具有自相似性,曼得勃罗特就是在研究海岸线时创立了 分形几何学。几何对象的一个局部放大后与其整体相似。部分 的某种形式与整体相似的形状就叫做分形。
相关文档
最新文档