武汉理工-材料物理学课件(2)

合集下载

复合材料及其聚合物基体概论课件

复合材料及其聚合物基体概论课件
1.3.4 电性能 树脂分子由共价键组成,是一种优良的绝缘材料。 影响树脂电绝缘性能的因素有两个: 一是大分子链的极性;二是已固化树脂中杂质的存在。 1 )树脂大分子链中极性基团越多,极性越强,则电绝缘性越差; 2)已固化树脂中的杂质越少,则电性能越好。
复合材料及其聚合物基体概论课件
复合材料及其聚合物基体概论课件
3、树脂的断裂伸长率与结构的关系 1)大分子链的柔顺性:由C-C键组成的脂肪链是柔性链的代表,具有柔性链结构的树脂,伸长率较大;具有刚性链结构(苯环、萘环、联苯环等)的树脂,具有相当大的刚性,伸长率较小。 2)大分子链间的交联密度:交联密度越大,树脂的伸长率越小,呈现脆性。
复合材料及其聚合物基体概论课件
问题1 基体材料在复合材料中所起的作用是什么?
复合材料及其聚合物基体概论课件
基体材料在复合材料中的作用
1、粘结作用 基体材料作为连续相,把单根纤维粘成一个整体,使纤维共同承载。 2、均衡载荷、传递载荷 在复合材料受力时,力通过基体传给纤维。 3、保护纤维 在复合材料的生产与应用中,基体可以防止纤维受到磨损、遭受浸蚀。
复合材料及其聚合物基体概论课件
复合材料的分类
1、按基体材料类型分为 聚合物基复合材料(PMC) 金属基复合材料(MMC) 无机非金属基复合材料,包括陶瓷基复合材料 和水泥基复合材料(CMC)等 2、按增强材料类型分为 玻璃纤维增强复合材料;碳纤维增强复合材料 芳纶(Kevlar)纤维增强复合材料 UHMW-PE纤维增强复合材料等 3、按用途分为 结构复合材料、功能复合材料、 结构功能一体化复合材料
2)按用途分类: 纤维、橡胶、塑料(树脂)、涂料、粘结剂 3)按聚集态分类: 玻璃态、高弹态、粘流态
温度
变形

武汉理工大学材料科学基础PPT

武汉理工大学材料科学基础PPT

2、均态核化
1)临界晶核半径r*与相变活化能ΔGr* △Gr=△GV’+△GS=V△GV+AγLS 恒温、恒压下,从过冷液体中形成半径为r的球形新相,且 忽略应变能的变化
dGr 12 2 8r rls r GV 0 dr 3
4 3 2 Gr r GV 4r LS 3
相变过程的浓度条件: 相变过程的推动力:
应为过冷度,过饱和浓度,过饱和蒸汽压,即系统温度、浓 对溶液,用浓度c代替压力P 度和压力与相平衡时温度、浓度和压力之差值。
ΔG=RTlnc0/c
若是电解质溶液还要考虑电离度α,即一个摩尔能离解出 α个离子
c0 c c G RT ln RT ln(1 ) RT c c c
ΔGr=ΔGV ’(-)+ΔGS(+)
存在两种情况: (1)当热起伏较小时,形成的颗粒太小,新生相的颗粒 度愈小其饱和蒸汽压和溶解度都大,会蒸发或溶解而消失 于母相,而不能稳定存在。 将这种尺寸较小而不能稳定长大成新相的区域称为核胚。 (2)当热起伏较大时,界面对体积的比例就减少,当热 起伏达到一定大小时,系统自由能变化由正值变为负值, 这种可以稳定成长的新相称为晶核。
I n ns g
* r
单位体积液体中的临界核胚的数目:
Gr* * nr n exp( ) RT
2.相变过程的压力条件:
从热力学知道,在恒温可逆不作有用功时:
ΔG =VdP
对理想气体而言
RT G VdP dP RT ln P2 / P 1 P
当过饱和蒸汽压力为P的气相凝聚成液相或固相(其 平衡蒸汽压力为P0)时,有
ΔG=RTln P0/P
要使相变能自发进行,必须ΔG <0,即P>P0,也即要 使凝聚相变自发进行,系统的饱和蒸汽压应大于平衡蒸汽 压P0。这种过饱和蒸汽压差为凝聚相变过程的推动力。

武汉理工大学考研材料科学基础重点 第5章-表面结构与性质

武汉理工大学考研材料科学基础重点 第5章-表面结构与性质

第四章固体的表面与界面固体的接触界面可一般可分为表面、界面和相界面:1)表面:表面是指固体与真空的界面。

2)界面:相邻两个结晶空间的交界面称为“界面”。

3)相界面:相邻相之间的交界面称为相界面。

有三类: S/S;S/V; S/L。

产生表面现象的根本原因在于材料表面质点排列不同于材料内部,材料表面处于高能量状态⏹ 4.1 固体的表面及其结构♦ 4.1.1固体的表面1.理想表面2.清洁表面(1)台阶表面(2)弛豫表面(3)重构表面3.吸附表面4. 固体的表面自由能和表面张力5. 表面偏析6. 表面力场固体表面的结构和性质在很多方面都与体内完全不同。

所以,一般将固体表面称为晶体三维周期结构和真空之间的过渡区域。

这种表面实际上是理想表面,此外还有清洁表面、吸附表面等。

1、理想表面没有杂质的单晶,作为零级近似可将清洁表面理想为一个理想表面。

这是一种理论上的结构完整的二维点阵平面。

它忽略了晶体内部周期性势场在晶体表面中断的影响,忽略了表面原子的热运动、热扩散和热缺陷等,忽略了外界对表面的物理化学作用等。

这种理想表面作为半无限的晶体,体内的原子的位置及其结构的周期性,与原来无限的晶体完全一样。

2、清洁表面清洁表面是指不存在任何吸附、催化反应、杂质扩散等物理化学效应的表面。

这种清洁表面的化学组成与体内相同,但周期结构可以不同于体内。

根据表面原子的排列,清洁表面又可分为台阶表面、弛豫表面、重构表面等。

(1)台阶表面台阶表面不是一个平面,它是由有规则的或不规则的台阶的表面所组成(2)弛豫表面 –在垂直于表面的方向上原子间距不同于该方向上晶格内部原子间距的表面由于固体体相的三维周期性在固体表面处突然中断,表面上原子的配位情况发生变化,相应地表面原子附近的电荷分布将有所改变,表面原子所处的力场与体相内原子也不相同。

为使体系能量尽可能降低,表面上的原子常常会产生相对于正常位置的上、下位移,结果表面相中原子层的间距偏离体相内原子层的间距,产生压缩或膨胀。

武汉理工材料物理性能复习资料

武汉理工材料物理性能复习资料

第一章一、基本概念1.塑性形变及其形式:塑性形变是指一种在外力移去后不能恢复的形变。

晶体中的塑性形变有两种基本方式:滑移和孪晶。

2.蠕变:当对粘弹性体施加恒定压力σ0时,其应变随时间而增加,这种现象叫做蠕变。

弛豫:当对粘弹性体施加恒定应变ε0时,其应力将随时间而减小,这种现象叫弛豫。

3.粘弹性:一些非晶体,有时甚至多晶体在比较小的应力时可以同时表现出弹性和粘性,称为粘弹性,所有聚合物差不多都表现出这种粘弹性。

4.滞弹性:对于理想的弹性固体,作用应力会立即引起弹性应变,一旦应力消除,应变也随之消除,但对于实际固体这种弹性应变的产生与消除需要有限时间,无机固体和金属这种与时间有关的弹性称为滞弹性。

二、基本理论1.金属材料和无机非金属材料的塑性变形机理:○1产生滑移机会的多少取决于晶体中的滑移系统数量。

○2对于金属,金属键没有方向性,滑移系统多,所以易于滑移而产生塑性形变。

对于无机非材料,离子键和共价键有明显的方向性,同号离子相遇,斥力极大,只有个别滑移系统才能满足几何条件与静电作用条件。

晶体结构越复杂,满足这种条件就越困难,所以不易产生滑移。

○3滑移反映出来的宏观上的塑性形变是位错运动的结果,无机材料不易形成位错,位错运动也很困难,也就难以产生塑性形变,材料易脆断。

金属与非金属晶体滑移难易的对比金属非金属由一种离子组成组成复杂金属键物方向性共价键或离子键有方向性结果简单结构复杂滑移系统多滑移系统少2.无机材料高温蠕变的三个理论○1高温蠕变的位错运动理论:无机材料中晶相的位错在低温下受到障碍难以发生运动,在高温下原子热运动加剧,可以使位错从障碍中解放出来,引起蠕变。

当温度增加时,位错运动加快,除位错运动产生滑移外,位错攀移也能产生宏观上的形变。

热运动有助于使位错从障碍中解放出来,并使位错运动加速。

当受阻碍较小时,容易运动的位错解放出来完成蠕变后,蠕变速率就会降低,这就解释了蠕变减速阶段的特点。

如果继续增加温度或延长时间,受阻碍较大的位错也能进一步解放出来,引起最后的加速蠕变阶段。

物理学科简介ppt课件

物理学科简介ppt课件
2
理论物理
理论物理:理论物理是在实验现象的基础上, 以理论的方法和模型研究基本粒子、原子核、 原子、分子、等离子体和凝聚态物质运动的基 本规律,解决学科本身和高科技探索中提出的 基本理论问题。研究范围包括粒子物理理论、 原子核理论、凝聚态理论、统计物理、光子学 理论、原子分子理论、等离子体理论、量子场 论与量子力学、引力理论、数学物理、理论生 物物理、非线性物理、计算物理等。
14
南京大学
物理学院现有“物理学”国家一级重点学科, 覆盖理论物理、凝聚态物理、声学、光学、原 子分子物理、粒子物理核物理、生物物理与软 物质、原子与分子团簇物理、应用电子学与技 术物理等,其中“理论物理学”、“凝聚态物 理”、“声学”为国家二级重点学科。拥有固 体微结构物理国家重点实验室、近代声学教育 部重点实验室、江苏省高技术研究重点实验室 (纳米技术)、以及十余个跨学科研究所与研 究中心,跨学科的南京微结构国家实验室正在 筹建中。
20
报考需要注意事项
1、根据自己的实际情况来选择学校和方 向。 2、抓紧时间备考。 3、公共科目:英语 政治 方向科目:量子力学 普物 (高数 数理 方法 光学等 )
21
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
22
物理学科简介
物理学是一级学科,是研究物质及 其相互作用和基本规律的科学,是 自然科学各学科的重要基础。
1
一级学科下属8个二级学科
070201 理论物理 070202 粒子物理与原子核物理 070203 原子与分子物理 0702070207 光学 070208 无线电学
比较好的学校
南京大学 山东大学 武汉大学 兰州大学 中国科学技术大学 大连理工大学 复旦大学 上海交通大学 湖南大学 北京大学 郑州大学 重庆大学 吉林大学 北京科技大学 华中科技大学 浙江大学 上海大学 南京航空航天大学 清华大学 四川大学 北京师范大学 北京航空航天大学 中山大学

武汉理工大学材料科学基础课后习题答案

武汉理工大学材料科学基础课后习题答案

第一章答案2、解:(1)h:k:l=1/2:1/3:1/6=3:2:1,∴该晶面的米勒指数为(321);(2)(321)5、解:MgO为NaCl型,O2-做密堆积,Mg2+填充空隙。

r O2- =0.140nm,r Mg2+=0.072nm,z=4,晶胞中质点体积:(4/3×πr O2-3+4/3×πr Mg2+ 3)×4,a=2(r++r-),晶胞体积=a3,堆积系数=晶胞中MgO体积/晶胞体积=68.5%,密度=晶胞中MgO质量/晶胞体积=3.49g/cm3。

6、解:体心:原子数2,配位数8,堆积密度55.5%;面心:原子数4,配位数6,堆积密度74.04%;六方:原子数6,配位数6,堆积密度74.04%。

7、解:u=z1z2e2N0A/r0×(1-1/n)/4πε0,e=1.602×10-19,ε0=8.854×10-12,N0=6.022×1023,NaCl:z1=1,z2=1,A=1.748,n Na+=7,n Cl-=9,n=8,r0=2.81910-10m,u NaCl=752KJ/mol;MgO:z1=2,z2=2,A=1.748,n O2-=7,n Mg2+=,n=7,r0=2.1010m,u MgO=392KJ/mol;∵u MgO> u NaCl,∴MgO的熔点高。

9、解:设球半径为a,则球的体积为4/3πa3,求的z=4,则球的总体积(晶胞)4×4/3πa3,立方体晶胞体积:(2a)3=16a3,空间利用率=球所占体积/空间体积=74.1%,空隙率=1-74.1%=25.9%。

10、解:ρ=m/V晶=1.74g/cm3,V=1.37×10-22。

11、解:Si4+ 4;K+ 12;Al3+ 6;Mg2+ 6。

12、略。

13、解:MgS中a=5.20?,阴离子相互接触,a=2r-,∴rS2-=1.84?;CaS中a=5.67?,阴-阳离子相互接触,a=2(r++r-),∴rCa 2+=0.95?;CaO中a=4.80?,a=2(r++r-),∴r O2-=1.40?;MgO中a=4.20?,a=2(r++r-),∴r Mg2+=0.70?。

武汉理工材料科学基础

武汉理工材料科学基础

第二章晶体结构2.1 结晶学基础1、概念:晶体:晶体是内部质点在三维空间成周期性重复排列的固体,即晶体是具有格子构造的固体。

晶胞:晶胞是从晶体结构中取出来的反映晶体周期性和对称性的最小重复单元。

晶胞参数:胞的形状和大小可以用6个参数来表示,此即晶格特征参数,简称晶胞参数。

七大晶系:布拉菲依据晶胞参数之间关系的不同,把所有晶体划归为7类,即7个晶系。

晶面指数:结晶学中经常用(hkl)来表示一组平行晶面,称为晶面指数。

数字hkl是晶面在三个坐标轴(晶轴)上截距的倒数的互质整数比。

晶面族:晶体结构中原子排列状况相同但不平行的两组以上的晶面,构成一个晶面族。

晶向指数:用[uvw]来表示。

其中u、v、w三个数字是晶向矢量在参考坐标系X、Y、Z轴上的矢量分量经等比例化简而得出。

晶向族:晶体中原子排列周期相同的所有晶向为一个晶向族,用〈uvw〉表示。

2、晶面指数和晶向指数的计算2.2 结合力与结合能按照结合力性质不同分为物理键和化学键化学键包括离子键、共价键、金属键物理键包括范德华键、氢键晶体中离子键共价键比例估算(公式2.16)式中x A、x B分别为A、B元素的电负性值。

离子晶体晶格能:1摩尔离子晶体中的正负离子,由相互远离的气态结合成离子晶体时所释放出的能量。

2.3 堆积(记忆常识)1、最紧密堆积原理:晶体中各离子间的相互结合,可以看作是球体的堆积。

球体堆积的密度越大,系统的势能越低,晶体越稳定。

此即球体最紧密堆积原理。

适用范围:典型的离子晶体和金属晶体。

原因:该原理是建立在质点在电子云分布呈球形对称以及无方向性的基础上2、两种最紧密堆积方式:面心立方最紧密堆积ABCABC密排六方最紧密堆积ABABAB系统中:每个球周围有6个八面体空隙 8个四面体空隙N个等径球体做最紧密堆积时系统有2N个四面体空隙N个八面体空隙八面体空隙体积大于四面体空隙3、空间利用率:晶胞中原子体积与晶胞体积的比值(要学会计算)两种最紧密堆积方式的空间利用率为74.05﹪(等径球堆积时)4、影响晶体结构的因素内因:质点相对大小(决定性因素)配位数。

【大学课件】复合材料PPT

【大学课件】复合材料PPT

.
28
③ 基体金属与增强物的相容性
金属基复合材料需要在高温下成型,制备 过程中,处于高温热力学非平衡状态下的纤维与 金属之间很容易发生化学反应,在界面形成反应 层。界面反应层大多是脆性的,当反应层达到一 定厚度后,材料受力时将会因界面层的断裂伸长 小而产生裂纹,并向周围纤维扩展,容易引起纤 维断裂,导致复合材料整体破坏。
• 仿照骨骼的组织特点,人们制造了类似结构的风力发电机和 直升飞机的旋翼,外层是刚度、强度高的碳纤维复合材料, 中层是玻璃纤维增强复合材料、内层是硬泡沫塑料。
.
20
9.3 复合材料的基体材料
复合材料的原材料: • 基体材料
– 金属材料 – 陶瓷材料 – 聚合物材料
• 增强材料
– 纤维 – 晶须 – 颗粒
则、增韧机制和界面作用; • 了解复合材料的成型工艺。
.
3
参考书目
• 王荣国 主编,复合材料概论,哈尔滨工业大学 出版社,1999
• 闻荻江主编,复合材料原理,武汉理工大学出 版社,1998
• 鲁云,先进复合材料,机械工业出版社,2004 • ASM International, Engineered materials
– 基体主要是镍基、铁基耐热合金和金属间化合物。较成熟 的是镍基、铁基高温合金,金属间化合物基复合材料尚处 于研究阶段。
.
31
9.3.1.3 功能用金属基复合材料的基体
• 要求材料和器件具有优良的综合物理性能,如同时具 有高力学性能、高导热、低热膨胀、高导电率、高抗 电弧烧蚀性、高摩擦系数和耐磨性等。
Chapter 9 Composites
复合材料
.
1
本章内容
1. 复合材料概述 2. 复合材料分类 3. 复合材料的基体 4. 复合材料的增强相 5. 复合材料的复合原理 6. 复合材料的成型工艺
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一,v 应当比总的电子平均速度大得多;
第二,因为金属熔点以下费米分布随温度变化
很小,即 v 实际上不取决于温度。
可见,电导率 (或电阻率 )与温度的关系
决定于 l 的改变。这是因为所有其他量皆与温 度无关。
h
6
量子力学可以证明,当电子波在绝对零度下通 过一个完整的晶体点阵时,将不受到散射而无
阻碍地传播,这时电阻率 =0,而 和
h
28
多晶形金属变体存在不同的温度关系和电 阻温度系数,使得有可能创造出工作在一 定温度区间,以一个金属为基且具有预期 电学性能的合金。
h
29
5.3.2.3.铁磁金属的电阻— 温度关系反常
在磁性材料中发生的铁磁到顺磁和反铁磁 到顺磁的转变属于二级相变。电阻和温度 的线性关系对于铁磁体是不适用的。
h
10
理想金属的电阻对应着两种散射机制(声子散射 和电子散射),可以看成为基本电阻。这个电阻 在绝对零度时降为零。
第三种机制(电子在杂质和缺陷上的散射)在 有缺陷的晶体中可以观察到,是绝对零度下 金属残余电阻的实质,这个电阻表示了金属 的纯度和完整性。
h
11
马基申定则
马基申(Mathhissen)和沃格特(Vogt)早期根 据对金属固溶体中溶质原子的浓度较小,以致 可以略去它们之间的相互影响,把固溶体的电 阻看成由金属的基本电阻 (T) 和残余电阻 残 组成。这实际上表明,在一级近似下不同散射 机制对电阻的贡献可以加法求和。这—导电规 律称为马基申定则。
h
26
多晶形金属不同的结构变体导致了对于 同一金属存在不同的物理性能,其中包 括电阻与温度的关系。
由于不同结构变体的电阻温度系数变化 显著,在 (T) 曲线上多晶形转变可以 显示出来。无论在低温变体区还是在高 温变体区,随着温度的提高,多晶形金 属的电阻都要增加。
h
27
图5-4多晶形金属电阻与温度的关系
应为无穷大。只有在晶体点阵的完整性遭到破 坏的地方电子波才受到散射,因而产生电阻。 由温度引起点阵离子的振动、点缺陷和位错的 存在都会使理想晶体的周期性遭到破坏,从而 产生各自的附加电阻。
h
7
如果用电阻率 表示晶体点阵完整性破坏
的程度,可写成
2mv • 1
n有效e2 l
令 1/l , 称为散射系数,则变为
h
15
5.3.2温度对金属电阻的影响
温度是强烈影响材料许多物理性能的外部因素。 由于加热时发生点阵振动特征和振幅的变化, 出现相变、回复、空位退火、再结晶以及合金 相成分和组织的变化,这些现象往往对电阻的 变化显示出重要的影响。从另一方面考虑.测 量电阻与温度的关系乃是研究这此现象和过程 的一个敏感方法。
第5章 导电物理
5.1概述
2个学时
5.2材料的导电性能 5.3金属电导
2个学时 4个学时
5.4半导体物理
10个学时
5.5 超导物理
h
4个学时
1
5.3金属电导I
5.3.1金属导电机制与马基申定则 5.3.2温度对金属电阻的影响
h
2
5.3.1金属导电机制与马基申定则
根据量子力学的观点,电子在晶体中运动时可 作为一个波来描述.当这种波遇到离子时被后 者的静电影响所调制,畸变为频率较高的振动。 这表明电子经过离子时被加速到的高能态。换 言之,电子在离子附近只需要花费比较短的时 间,所以不会受到离子很大的影响.而只是把 电子波函数有规则地调整了。
h
30
图5.3-5 Ni和Pd的 / D 与温度的关系
h
31
当温度降到低于 Ni 时,铁磁体(Ni)的电阻比 顺磁体(Pd)的下降要激烈.同样可以看到在居 里点以前Ni的电阻温度系数不断增大,过了居 里点以后则急剧减小。其他铁磁材料也有类似 情况。
这种在居里点附近电阻对温度一次导数经过极 大值的现象被用来获得电阻温度系数很高的合
h
21
实验表明,对于普通的非过渡族金属,德拜温
度一般不超过500k。当 成线性关系,即
T
2 3
D
时,电阻和温度
T0(1T) 式中 为电阻温度系数,表示成
T 0 0T
显然,只是 0 ~T C 温区的平均电阻温度系数。
若使温度间隔趋于零,得到在温度T时的真电阻温
度系数
T
1 • d 0 dT
h
h
25
过渡族金属 (T) 的反常往往是由两类载体的
不同电阻与温度关系决定的。这已经在Ti, Zr,Hf,Ta,Pt和其他过渡族金属中得到证实。 钛和锆电阻与温度的线性关系只保持到350 oC ,在进一步加热到多晶形转变温度之前由 于空穴导电的存在,线性关系被破坏。这是 由于在过渡族金属中s壳层基本被填满,这当 中电流的载体是空穴,而在d壳层却是电子。
22
在低温下决定于“电子—电子“散射的电阻。 这是由于在这些温度下决定于声子散射的电 阻大大减弱的缘故。这时电阻与温度的平方 成正比
电电T2
h
23
普通金属电阻与温度的典型关系
图5.3-3非过渡族金h 属电阻与温度的关系24
5.3.2.2.过渡族金属 和多晶型转变
过渡族金属中电阻与温度间有复杂的关系。 根据Mott的意见,这是存在几种有效值不同 的载体所引起的。由于传导电于有可能从s壳 层向d壳层过渡.这就对电阻带来了明显的影 响。此外在 TD 时,s态电子对具有很大 有效值的d态电子上的散射变得很可观。总之, 过渡族金属的电阻可以认为是由一系列具有 不同温度关系的成分叠加而成。
h
17
5.3.2.1.一般规律
图5.3-2 杂质和晶体缺陷对金属低
温比电阻的影响h
18
在绝对零度下化学上纯净又无缺陷的金属,其 电阻等于零。随着温度的升高,金属电阻也在 增加。无缺陷理想晶体的电阻是温度的单值函 数,如图5.3-2中曲线1所示。
如果在晶体中存在少量杂质和结构缺陷,那未 电阻与温度的关系曲线将要变化,如图5.3-2 中曲线2和3所示。在低温下微观机制对电阻的 贡献主要由 残 表示。缺陷的数量和类型决定 了与缺陷有关的电阻。
h
16
5.3.2温度对金属电阻的影响
在很宽的温度范围内研究电阻与温度的关系可 以显示电子散射的不同机制,不同散射形式占 优势的温度区域,金属电阻实际上等于残余电 阻的温度。
研究电阻与温度的关系向样可以显示超导现象 和引起铁磁性反常等的特殊性能。以下先讨论 “简单金属”电阻随温度变化的一般规律,随 后讨论几种反常的情形。
2mv n有效e2
式中 v 应理解为在费米面附近实际参加导电电
子的平均速度。
h
8
若电子波的散射系数 与绝对温度成正比,则金
属电阻率也与温度成正比,这是因为导电电子的 数目和速度都与温度无关的缘故。
2mv n有效e2
h
9
马基申定则
上面所讨论的都是不合杂质又无缺陷的纯金 属理想晶体。实际上金属与合金中不但含有 杂质和合金元素,而且还存在晶体缺陷。传 导电子的散射发生在电子—声子、电子—杂 质原子以及与其他晶体点阵静态缺陷碰撞的 时候。在铁磁体和反铁磁体中还要发生磁振 子的附加碰撞。
金。创造 20 1030 C 1的合金是许多仪器制
造中提出的一个迫切课题。
h
32
图5.3-6温度对具有磁性转变金属比电阻和电
阻温度系数的影响 (a)一般情况;(b)金属镍
h
33
h
3
图5.3-1波长相同的电子受点阵离子 静电场的调制
h
4
电导率
jn2e 或n2el
E 2m
2mv
l
为电子的平均自由程
v 为电子无规运动的总平均速度.
l /v 两次碰撞的时间间隔
n
单位体积电子数
h
5
量子电子论的模型表明,只有位于最高能级 为数不多的电子能够为外加场所加速从而具有 附加速度(或能量)。由此可见:
麻烦,实际上往往采用相对电阻 / 30k0 4.2k 的大
小评定金属的电学纯度。许多完整的金属单晶得 到的相对电阻高达2xl04。
h
14
在超低温下电子平均自由程长度 l 同样可以作为
金属纯度直观的物理特性。晶体越纯、越完善, 自由程长度越长、相对电阻值也越大。反之,金 属中杂质越多,在连续散射之间电于自由程长度 越短,相对电阻也越小。目前可以得到很纯的金 属,在它们当中4.2K时的电了平均自由程长度可 达几个mm。例如,相对电阻为7000,000的超 纯钨,其电子自由程长达12.5mm.
h
19
在低温下“电子—电子“散射对电阻的贡献可能 是显著的,但除了最低的温度以外,在所有温度 下大多数金属的电阻都决定于“电子—声子”散 射。必须指出,点阵的热振动在不同温区存在差 异。
根据德拜理论,原子热振动的特征在ห้องสมุดไป่ตู้个温度D 区
域存在本质的差别,划分这两T 个区 D 域和 的T 温度 D 称
为德拜温度或特征温度。在
h
12
i 残(T)
i
式中 (T) 为与温度有关的金属基本电阻, 即溶剂金属(纯金属)的电阻;
残 为决定于化学缺陷和物理缺陷而与温度 无关的残余电阻。化学缺陷为偶然存在的杂 质原子以及人工加人的合金元素原子。物理 缺陷系空位、间隙原子、位错以及它们的复 合体。
h
13
从马基申定则可以看出,在高温时金属的电阻基 本上决定于 (T) ,而在低温时则决定于残余电 阻 残 ,既然残余电阻是电子在杂质和缺陷上的 散射引起的,那末 残 的大小可以用来评定金属 的电学纯度。与化学纯度不同,电学纯度考虑了 点阵物理缺陷的影响。考虑到残余电阻测量上的

电阻与温度有不同的函数关系,因此,当研制具
有一定电阻值和电阻温度系数值的材料时知道金
相关文档
最新文档