材料物理化学
常见材料的物理化学性能研究方法

常见材料的物理化学性能研究方法材料科学作为一门独立的学科,研究材料的结构、性质、性能和应用,是支撑现代科技和产业发展的重要基础学科之一。
而材料的物理化学性能是研究材料的重要方面之一,它包括了很多方面,如力学性能、热学性能、光学性能、电学性能等。
为了深入了解材料的物理化学性能,需要运用一些相应的实验和分析方法。
本文将介绍常见的材料的物理化学性能研究方法。
一、力学性能测试力学性能是指材料在外力作用下的表现(变形和破坏)能力,包括硬度、强度、韧性、延展性等。
常见的力学性能测试方法有压缩实验、拉伸实验、弯曲实验等。
1. 压缩实验压缩实验是用方向垂直于试样的外力使之发生塑性变形,从而确定试样的抗压强度。
压缩实验通常使用万能试验机,能够控制压缩速度、载荷等参数。
通过压缩实验可以得出试样的力-位移曲线和应力-应变曲线等数据。
2. 拉伸实验拉伸实验是将试样置于两夹持头之间,以一定速率拉伸试样,使之产生塑性变形并伸长,达到抗拉强度的测试目的。
拉伸实验通常使用万能试验机,能够测量拉伸力和伸长量,从而得出应力-应变曲线和塑性区应变等数据。
3. 弯曲实验弯曲实验是通过对试样进行三点或四点弯曲的方式来测量其弯曲应变和应力。
在实验中,需要确定弯曲曲率半径、弯曲角度和外加载荷等参数。
通过弯曲实验可以得出试样的弯曲应力-应变曲线和变形硬度等数据。
二、热学性能测试热学性能是指材料在热作用下的反应能力和表现能力,包括热膨胀、热导率、比热容等。
常见的热学性能测试方法有热膨胀实验、热导率实验、比热容实验等。
1. 热膨胀实验热膨胀实验是测量材料在温度变化时的膨胀量变化。
可通过光杠杆、电子传感器、位移传感器等仪器进行测量。
通过热膨胀实验可以得到试样的温度膨胀系数和热膨胀曲线等数据。
2. 热导率实验热导率实验是测量材料在热传导过程中传递热量的能力。
可通过热流法、转动式法、相互引导法等方法进行测量。
通过热导率实验可以得出试样的热导率和热传导曲线等数据。
材料物理化学

材料物理化学材料物理化学是研究材料的结构、性质和变化规律的一门学科,它涉及了物理学和化学两个领域的知识。
在材料科学领域中,物理化学的研究对于材料的设计、制备和性能优化具有重要意义。
本文将从材料物理化学的基本概念、研究方法和应用领域等方面进行介绍。
材料物理化学的基本概念。
材料物理化学是研究材料表面、界面及内部结构的物理化学过程的学科。
它主要包括材料的结构与性能、材料的相变规律、材料的表面与界面现象等内容。
材料的结构与性能研究了材料的晶体结构、缺陷结构、晶体生长机理等与材料性能之间的关系;材料的相变规律研究了材料在不同条件下的相变行为和相变动力学规律;材料的表面与界面现象研究了材料的表面活性、表面能、界面扩散等现象对材料性能的影响。
材料物理化学的研究方法。
材料物理化学的研究方法主要包括实验研究和理论计算两种。
实验研究是通过对材料进行各种物理化学性质的测试和分析,来揭示材料的结构与性能之间的关系。
常用的实验手段包括X射线衍射、电子显微镜、原子力显微镜等。
理论计算则是通过建立材料的物理化学模型,利用量子力学、分子动力学等方法,计算材料的结构、能量、振动等性质。
这两种方法相辅相成,共同推动了材料物理化学的发展。
材料物理化学的应用领域。
材料物理化学的研究成果在许多领域都有着重要的应用价值。
在材料制备方面,材料物理化学的研究可以指导材料的合成方法和工艺参数的选择,提高材料的制备效率和性能。
在材料性能优化方面,材料物理化学的研究可以帮助人们理解材料的性能来源,为材料的性能改进提供科学依据。
在材料应用领域,材料物理化学的研究可以拓展材料的应用范围,提高材料的使用寿命和稳定性。
总结。
材料物理化学作为一个重要的交叉学科,对于材料科学的发展和应用具有重要意义。
通过对材料的结构、性能和变化规律的研究,可以为材料的设计、制备和应用提供科学依据,推动材料领域的发展。
希望本文的介绍能够帮助读者更好地了解材料物理化学这一学科,并对材料科学有更深入的认识。
材料物理与化学专业课程

材料物理与化学专业的课程主要包括物理化学类、材料科学类和工程类等。
1. 物理化学类:热力学统计物理、量子力学、固体物理、晶体物理学基础等。
2. 材料科学类:材料概论、材料科学基础、材料工程基础、材料力学性能等。
3. 材料工程类:工程制图、流体流动基础、热量传递、传质过程及其控制、材料及其产品设计等。
4. 实验类:物理实验、化学实验、计算机基本操作实验、电子电工实验、材料科学基础实验等。
此外,还有一些专业课程,如高分子合成化学、高分子凝聚态物理、有机化合物结构分析与鉴定、高等有机化学、材料界面科学、固体化学导论、功能材料学、等离子体化学与技术、生物医用材料、薄膜技术、含能材料燃烧与催化、树脂基复合材料等。
以上信息仅供参考,具体课程安排可以查询学校官网。
材料学与材料物理化学

材料学与材料物理化学材料学是研究材料的性能、结构和制备方法的学科,而材料物理化学则是研究材料的物理和化学性质及其相互关系的学科。
两者在研究材料领域中起着重要的作用。
材料学涵盖了广泛的领域,包括金属、陶瓷、聚合物、复合材料等。
它的研究对象是材料的结构、性能和制备方法。
结构是指材料的原子、分子或晶体排列方式,性能则是指材料的物理、化学和力学性质。
制备方法则包括材料的合成、加工、改性等工艺过程。
通过对材料的结构与性能的研究,可以设计和制备具有特定功能的材料,满足不同领域的需求。
材料物理化学是材料学的重要分支,它研究的是材料的物理和化学性质,以及这些性质与材料结构之间的关系。
物理性质包括电学、磁学、光学等,化学性质则涉及化学反应、氧化还原等。
通过研究材料的物理和化学性质,可以深入了解材料的行为和性能,为材料的设计和应用提供理论指导。
材料学与材料物理化学的研究方法包括实验和理论两种。
实验方法通过对材料进行制备、表征和测试,获取材料的结构和性能数据。
常用的实验技术包括扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)等。
理论方法则通过建立数学模型和计算方法,预测和解释材料的性质和行为。
常用的理论方法包括密度泛函理论(DFT)、分子动力学模拟(MD)等。
材料学与材料物理化学的研究在许多领域都有应用。
在能源领域,研究人员可以通过改变材料的结构和性能,设计和开发高效的太阳能电池、锂离子电池等。
在电子领域,研究人员可以利用材料的物理和化学性质,开发出新型的半导体材料和器件。
在医学领域,研究人员可以利用材料的特殊性质,设计和制备用于生物医学应用的材料,如人工关节、生物传感器等。
材料学与材料物理化学的研究还涉及到环境保护和可持续发展。
研究人员可以通过材料的设计和制备,开发出环境友好的材料和技术,减少资源消耗和环境污染。
例如,研究人员可以利用可再生资源制备可降解的聚合物材料,替代传统的塑料制品。
材料学与材料物理化学是研究材料的性能、结构和制备方法的学科,它们在材料领域中起着重要的作用。
材料物理与化学材料物理基础知识梳理

材料物理与化学材料物理基础知识梳理材料物理与化学:材料物理基础知识梳理材料物理与化学领域是研究物质结构、性质和相互关系的一门学科。
本文将对材料物理基础知识进行梳理,帮助读者更好地理解材料科学和工程。
一、材料的分类与性质材料可以根据其组成、结构和性质进行分类。
常见的分类包括金属材料、无机非金属材料和有机材料。
金属材料具有良好的导电性和导热性,常用于电子器件和结构材料。
无机非金属材料如陶瓷、玻璃等具有高硬度、高熔点和良好的耐腐蚀性。
有机材料如塑料、纤维等具有轻质、柔韧和可加工性。
材料的性质包括力学性能、热学性能、电学性能等,对应不同应用需求。
二、晶体结构与材料性质晶体结构是材料物理研究的重要内容,它决定了材料的性质。
晶体由周期性排列的原子、离子或分子组成,晶体结构可以通过X射线衍射等方法进行表征。
晶体的结构包括晶格、晶胞和晶面等要素。
晶体的结晶度、晶体缺陷和晶界结构等对材料的性能有重要影响。
三、材料的物理性能材料的物理性能指物质在物理条件下所表现出的性质。
其中力学性能是最基本的性能之一,包括强度、韧性、刚度和硬度等。
热学性能涉及材料的导热性、热膨胀性和热稳定性等。
电学性能与材料的导电性、绝缘性和磁性相关。
光学性能则关乎材料对光的反射、吸收和透射等特性。
四、材料的组织结构与性能材料的组织结构对其性能具有重要影响。
组织结构可以通过显微镜等分析方法观察和分析。
材料的晶体大小、晶体形态以及晶粒的排列等对材料的性能有关键作用。
晶体的取向和位错密度也决定了材料的力学性能。
此外,材料的相变、相分离和物相稳定性等现象也与材料的组织结构密切相关。
五、材料的表面与界面性能材料的表面特性对材料的性能和应用有重要影响。
表面粗糙度、表面能和界面能等直接影响材料的润湿性、附着性和摩擦性等性质。
此外,材料与环境间的相互作用也会改变材料的表面性质和附着力。
六、材料的热处理与性能调控热处理是调控材料性能的重要手段之一。
通过改变材料的加热温度、保温时间和冷却速度等参数,可以调控材料的组织、相变和性能。
材料物理化学

材料物理化学材料物理化学是研究材料的结构、性质和变化规律的科学。
它涉及了材料的组成、结构、性能和应用等方面,是材料科学的重要分支之一。
在材料物理化学领域,我们可以深入了解材料的微观结构与宏观性能之间的关系,从而为材料的设计、制备和应用提供理论指导和技术支持。
首先,材料的物理化学性质是指材料在特定条件下的物理状态和化学反应特性。
材料的物理性质包括热学性质、光学性质、电学性质、磁学性质等,而化学性质则包括材料的化学稳定性、化学反应活性等。
通过对材料的物理化学性质进行研究,我们可以了解材料的基本特性,为材料的选取和设计提供依据。
其次,材料的结构与性能之间存在着密切的关联。
材料的结构包括原子、分子、晶格等微观结构和晶体形貌、晶界、位错等宏观结构。
不同的结构对材料的性能具有重要影响,比如晶体结构的稳定性决定了材料的热学性能,晶界的存在对材料的力学性能产生影响等。
因此,通过对材料结构与性能的研究,我们可以揭示材料性能形成的机制,为材料的改性和优化提供理论依据。
最后,材料物理化学的研究对材料的应用具有重要意义。
通过对材料的物理化学性质、结构与性能的研究,我们可以实现对材料性能的精确调控和优化,从而提高材料的工程应用性能。
比如,在材料的设计和制备过程中,可以根据材料的物理化学性质选择合适的原料和工艺条件,以实现对材料性能的精确控制。
此外,在材料的应用过程中,可以根据材料的结构与性能特点,选择合适的使用条件和环境,以延长材料的使用寿命和提高材料的性能稳定性。
综上所述,材料物理化学是一个重要的交叉学科领域,它不仅关注材料的基本性质和结构特征,还关注材料的应用性能和工程应用。
通过对材料物理化学的研究,我们可以深入了解材料的本质规律,为材料的设计、制备和应用提供理论指导和技术支持,促进材料科学的发展和应用。
材料物理 材料化学

材料物理材料化学
材料物理是研究物质性质和材料行为的学科领域。
它涉及对材料的物理性质、结构、组成以及其与外界的相互作用进行研究和理解。
材料物理的目标是揭示材料的基本物理原理,探索材料的性能与结构之间的关联,并开发出新型材料以满足特定需求。
材料物理研究的内容包括材料的电学、磁学、光学、热学、力学和输运等性质。
研究方法包括实验观测、理论模拟和计算模型等。
常见的研究对象包括金属、陶瓷、聚合物、半导体和复合材料等。
材料化学是研究材料的组成、结构和性能之间关系的学科领域。
它关注材料的化学合成、反应机制、结构表征和性能调控等方面。
材料化学的目标是设计、合成和优化具有特定功能和性能的新型材料。
材料化学研究的内容包括材料的合成方法、晶体结构分析、材料表面和界面性质、材料的电子结构和能带结构等。
研究方法包括合成化学、分析化学、物理化学和计算化学等。
常见的研究对象包括无机材料、有机材料、纳米材料和功能材料等。
材料物理和材料化学相辅相成,共同促进了材料科学与工程的发展。
材料物理提供了揭示材料行为和性能的物理原理,而材料化学则为合成和调控具有特定功能和性能的材料提供了基础。
两者的结合有助于实现材料的结构-性能优化和材料设计的发展。
材料物理与化学

材料物理与化学材料物理与化学是一门研究材料结构、性能和制备过程的学科,通过理论和实验研究,探索材料的物理和化学特性以及其在各个领域中的应用。
材料科学的发展促进了现代工业的进步和科技的发展,对人类社会做出了重要贡献。
1. 材料物理材料物理是研究材料的物理性质和性能的学科。
它主要关注材料的结构、形态、成分以及其在外界条件下的物理行为特性。
例如,材料的导电性、磁性、光学性质等都是材料物理学研究的内容。
材料物理学的发展不仅丰富了我们对材料的认识,还为材料的设计与应用提供了重要的理论依据。
2. 材料化学材料化学是研究材料的化学性质和性能的学科。
它主要关注材料的组成、结构以及其在化学反应中的行为特性。
例如,材料在不同环境下的稳定性、降解性等都是材料化学研究的内容。
材料化学学科的发展使得人们能够通过合成和改性材料来满足不同领域的需求,如电子、医药、能源等。
3. 材料物理与化学的交叉研究材料物理与化学的研究相辅相成,相互交叉。
材料物理学的发展需要材料化学提供各种合成方法,而材料化学的研究也需要材料物理学的支持来解释其中的原理。
通过材料物理与化学的交叉研究,我们可以更加深入地了解材料的性质和行为,为开发新材料以及改进现有材料的性能提供理论指导。
4. 材料物理与化学的应用材料物理与化学的研究成果在各个领域中都有着广泛的应用。
例如,材料物理与化学在电子器件制造中的应用可以改善和提高电子材料的导电性能和稳定性,从而促进电子产品的发展。
在能源领域,材料物理与化学的研究可以用于开发高效的太阳能材料、储能材料等,以解决全球能源紧缺问题。
总结:材料物理与化学作为一门交叉学科,研究材料的结构、性能和制备过程,对现代工业和科技的发展起到了重要的推动作用。
通过深入研究材料的物理和化学特性,可以不断改进材料的性能,满足不同领域对材料的需求,并为人类社会的进步做出贡献。
在未来,材料物理与化学的研究将继续深入,并为各个领域的发展提供新的理论基础和实践应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
王宁博士(左)用电镜观察纳米 碳管,旁为汤子康博士。
电镜下的纳米碳管
Science, 2001, 292, 2462
N. Wang, Z. K. Tang, G. D. Li, J. S. Chen, Nature 2000, 408, 50
第40页
四、超 导 材 料的应用
从目前的研究情况来看,超导技术的应用可分成三类: 用超导材料作成磁性极强的超导磁铁,用于核聚变研 究和制造大容量储能装置、高速加速器、超导发电机和 超导列车,以解决人类的能源和交通问题; 用超导材料薄片制作约瑟夫逊器件,用于制造高速电 子计算机和灵敏度极高的电磁探测设备;
超导材料简介
超导概述 超导电性的基本特征
超导材料的种类
超导材料的应用
第1页
一、超 导 概 述
昂内斯(1853~1926) 荷兰低温物理学家 1908年成功地液化了氦气,1911年发现了 某些金属在液氦温度下电阻突然消失,即 “超导电性”现象,于 1913年获诺贝尔奖。
昂内斯(中间白衣者)在他 所创立的低温实验室内
18.1
NbTi
9.5
V3Ga
16.5
Nb3Ge
23.2
• 组成元素只有一种是超导元素或都不具有超导性
合金 Tc (K)ຫໍສະໝຸດ La2C3 5.9~11.0
C8K 9.5
MgB2 39
第25页
化 合 物 超 导 体
第26页
从应用角度对超导材料分类
强磁场(电)超导材料
1 2 3 4
铌钛(NbTi)合金,Nb3Sn等金属间化合物
• Hexagonal AlB2 type structure (P 6/m m m)
• Alternating layers of hexagonal Mg and honeycomb B
第37页
Fermi Surface
2D Bonding px,py () 3D Bonding pz () 3D Antibonding pz ()
第4页
1986年缪勒和柏德诺兹发现了钡镧铜氧体系高温超导化合物。于1987 年获得若贝尔奖。这一研究成果导致了多种液氮温区高温超导体材料 的出现,并宣告了超导技术开发应用时代即将到来。
第5页
金兹伯格
莱格特
阿布里科索夫
2003年诺贝尔物理学奖授予美国阿尔贡国家实验室的阿力克谢· 阿 布里科索夫、俄国莫斯科莱伯多夫物理研究所的维塔利· 金兹伯格 和美国伊利诺斯大学教授安东尼· 莱格特,以奖励他们在超导和超 流理论方面的先驱性贡献。
• (quasi) 2D cylinders derived from orbitals • 3D sheets from orbitals • two superconducting gaps:6.8 meV, 1.8 meV
第38页
MgB2的性质
第39页
Tc= 15 K
沸石晶体内的超导纳米碳管
弱连接超导体:S-I-S
超导隧道结(约瑟夫森结)示意图 两超导体中间的绝缘(真空, 正常)层也能让超导电流通过 的现象叫超导隧道效应。
第14页
物体是否为超导体的实验判据
电阻(率)-温度曲线,磁化率-温度曲线,比热容-温度曲线
第15页
实 例
水银的零电阻效应 MgB2的x-T曲线
锡在正常态(N)和超导态(S)的比热容
超导电子材料(弱电)
超导微波器件(YBCO高温超导薄膜) 超导量子干涉器件(SQUID)
铜稳定化多芯扭绞 超导线材Nb3Sn的截面 Tc=18.2K
高温超导材料
镧、钇、铋、铊等系列氧化物陶瓷及一些长链或环状结构的有机物
第27页
目前已被发现的高温超导体 ——铜基氧化物超导体分为五大家族
(1)稀土214家族。化学通式一般写为(R, Ba)2CuO4-x,R表示某一 种稀土元素。至少有十种稀土元素可以用来合成这个家族的超导态。这 个化学分子式中含两个(R,Ba)类原子,一个Cu原子,4个氧原子, 所以被称为214结构。在晶格中,R和Ba的位置是等价的,所以这里把 它们看作一类原子。由于一般地讲,在晶格中存在着氧原子少缺,所以 在分子式中写成O4-x。这个家族的超导转变温度约为36K。 (2)稀土123家族。化学通式为RBa2Cu3O7-x,R同样表示某个稀土 元素。至少有13种稀土元素可以用来合成这个家族的超导体。因为这 个家族的分子式中金属元素的个数分别为1,2和3,所以人们把这三种 家族称为123超导体家族。因为元素的增多,人们习惯上不再把氧原子 写出来表示这个家族。由于这个家族被发现的第一个成员的稀土元素是 钇(Y),所以人们也常把123家族称为钇家族。123家族的超导转变 温度为90K左右。
第28页
(3)铋超导家族
铋超导家族的化学通式为Bi2Sr2Can-1CunO2n+4,n=2,3。也就是 说这个家族有两个成员,即Bi2Sr2CaCu2O8和Bi2Sr2Ca2Cu3O10。习
惯上称为铋2212相和铋2223相。铋2212相的超导转变温度为85K,
铋2223相的超导转变温度为110K。在铋2223相中,如果用Pb少量 地取代Bi,材料的超导性能会得到改善。
第17页
H
Hc
正常态 超导态
0
Tc
T
第二类超导体
H Hc2
B 0, r = 0
N
Mixed T Tc
第18页
Hc1
B = 0,
S r
= 0 Meissner
第二类超导体的相图
混合态
Flux penetrates above the lower critical field Hc1 Superconductivity survives up to the upper critical field Hc2 Type II T<Tc 0<H<Hc1 T<Tc Hc1<H<Hc2
第11页
超导体与理想导体的磁性质的区别
超导态是一个 热力学平衡现 象,抗磁性可 逆;理想导体 的这种磁性质 与加场过程有 关,不可逆。
第12页
3. 超导体的临界参数
临界温度Tc 临界磁场Hc 临界电流密度Jc
维持超导状态的必要条件 一些金属超导体临界 磁场与温度的关系
第13页
4. 超导隧道效应
第6页
吴茂昆
朱经武
钇钡铜氧化合物,1987年2月,92K
赵忠贤
陈立泉
第7页
锶镧铜氧(1987年初,48.6K)、钡镧铜氧、钇钡铜氧系材料, 铋系超导体
二、超导电性的基本特征
Zero Resistance Meissner Effect No Power Loss Act as Magnet
Critical Properties
第20页
2 = 6 . 4 T c [1 (
T Tc
1
)] 2
正常态 能 量 费米能
正常态
20
超导态 超导态 T=0K, 0K<T<Tc
2
费米能
能隙随温度变化的曲线
超导体的能隙
第21页
三、超 导 材 料的种类
第22页
周期表中的元素超导体
大多数过渡元素和稀土元素都具有超导性;碱金属、铜、银、金,以及 一些铁磁和反铁磁元素未发现其超导电性。元素超导体中,铌具有最高 临界转化温度(9.2K);只有钒、铌和钽属于第二类,其他元素均属第一 类; 大多数超导合金和化合物则属于第二类。
Most alloys, HTS, MgB2.
第19页
超导现象的物理本质
1957年由巴丁(Bardeen)、库珀(Cooper)和施 里弗(Sehriffer)合作创建了超导微观理论(BCS) 。
库珀电子对通过格波相互作用, 其作用范围为10-6~10-9m; 每个库珀电子对的总动量相当, 这是零电阻产生的根源; 材料变为超导态后,电子结为 库珀对,能量降低2△,称其为 超导体的能隙。 库珀 电子对
Josephson Effects
-
Tc, Jc, Hc
Electron Tunnelling
第8页
1. 零电阻效应
不同导体的电阻-温度曲线
水银的零电阻效应
在特定的温度下材料的电阻突然消失的现象称为超导(电)现象,发生这 一现象的温度叫超导转变温度Tc,也叫临界温度。材料失去电阻的状态称 为超导态,存在电阻的状态称为正常态。具有超导态的材料称为超导材料。 零电阻效应是超导态的一个基本特征。
氧
90.2K
氮
77.3K
氮
4.2/1.7K
Hg
4.15K
In
3.4K
Sn
3.7K
Pb
7.2K
第2页
1957年巴丁、库珀和施里弗合作创建了超导微观理论 (BCS),于1972年获诺贝尔奖。这一理论能对超导电性 作出正确的解释,并极大地促进了超导电性和超导磁体 的研究与应用。
第3页
约瑟夫森和贾埃弗的发现,对于研制高性能的半导体和超导体元器件具 有很高的应用价值,并导致超导电子学的建立。
第29页
(4)铊超导家族
铊超导家族是高温超导体中最大的家族。又可分为两个分族。 第一个分族的分子通式为Tl2Ba2Can-1CunO2n+4,n=1,2,3…。这个家族有三 个主要成员,即2201相,2212相和2223相。2201相(Tl2Ba2CuO6)的超 导转变温度为90K,2212相(Tl2Ba2CaCu2O8)的超导转变温度为110K。 2223相(Tl2Ba2Ca2Cu3O10)的超导转变温度为125K。因这一分族的每个 成员的分子式里都含有两个Tl原子,在晶体结构上对应两个铊原子层,所 以人们又把这个分族叫做铊双层分族。 另一个分族的化学分子通式为Tl(Ba,Sr)2 Can-1CunO2n+3, n=1,2,3。这个通式 中的(Ba,Sr)表示这个位置可以是Ba也可以是Sr。当这个位置的原子是Sr时, Ca可以被某一种稀土元素(R)部分取代。能参与取代的稀土元素达15种之 多。这个家族的主要成员在晶体结构上有三个,即1201相,1212相和1223相。 因为每个相的(Ba,Sr)的位置都可以是Ba或者是Sr,所以结构上的三个相在化 学组成上就分成了TlBa2CuO5, TlSr2CuO5;TlBa2CaCu2O7,TlSr2CaCu2O7; TlBa2Ca2Cu3O9,TlSr2Ca2Cu3O9 6个成员。而每个含Sr的成员的Ca又可以被 稀土元素取代。所以这个分族有成员几十个。因这个分族每一个分子中只含 一个铊原子,即在晶格中只有一层铊原子,所以人们又常把这个分族称为铊 单层分族。铊单层分族的1201相、1212相和1223相的超导转变温度分别为 45K,95K和120K。