高功率激光焊接技术
激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析激光焊接技术是一种高能束聚焦到小焊点上进行焊接的技术。
它利用激光束的高能量密度和较小的热影响区域,可以实现高精度、高效率和高质量的焊接。
激光焊接技术的原理是利用激光器产生的激光束,通过镜片的调整将激光束聚焦成小焊点,然后将激光束照射到焊接点上。
当激光束照射到工件表面时,激光能量会被吸收,形成热源,使接触到的工件表面迅速升温并熔化。
通过控制激光束的功率、速度和聚焦点的大小,可以控制焊接过程中的热输入和焊接区域,从而实现焊接的高精度和高质量。
激光焊接技术的工艺分析主要包括以下几个方面:1. 材料选择:不同材料对激光的吸收情况不同,在选择激光焊接工艺时需要考虑材料的吸光性和导热性。
通常情况下,高吸光性的材料更容易吸收激光能量,热输入更高,焊接速度也会更快。
2. 激光参数的选择:激光焊接的参数包括激光功率、激光脉冲频率、激光束的直径等。
这些参数直接影响焊接的速度、深度和质量。
激光功率越大,焊接速度越快,但也容易产生过高的热输入,导致焊接缺陷。
激光束的直径越小,焦点越集中,焊接速度也会更快,但对工件的要求也会更高。
3. 激光焊接工艺的控制:激光焊接工艺的控制主要包括焊接速度、焦点位置和气体环境的控制。
焊接速度一般根据焊接区域的尺寸和焊接质量的要求来确定,过快的焊接速度可能导致焊深不足,而过慢的焊接速度则容易产生焊接缺陷。
焦点位置的选择也很重要,需要将激光焦点调整到工件表面的适当位置,以确保焊缝的质量。
气体环境的选择可以影响焊接过程中的氧化、脱气和喷溅现象。
4. 激光焊接后的处理:激光焊接后的处理包括焊缝的清理和残余应力的释放。
焊缝的清理可以通过化学方法、机械方法或热处理方法来实现,以确保焊缝的质量。
残余应力的释放可以通过热处理、冷却和机械方法来实现,以减少焊接件的变形和应力集中。
激光焊接技术是一种高精度、高效率和高质量的焊接技术,它可以实现对材料的精确焊接,广泛应用于汽车、航空航天、电子和制造业等领域。
激光焊接工艺参数

激光焊接工艺参数激光焊接是一种高效、高质量、非接触的焊接方法,广泛应用于精密零件的制造、电子产品的组装、汽车工业、航空航天等领域。
激光焊接工艺参数对焊接质量和效率起着重要的影响。
下面将介绍一些常用的激光焊接工艺参数。
1.激光功率:激光焊接的功率决定了熔池的温度和熔化的能量。
功率过高会导致焊缝过深、过宽,功率过低则影响焊接质量。
根据不同材料和焊接要求,选择合适的激光功率,通常在几百瓦到几千瓦之间。
2.焦距:焦距是指激光束通过聚焦镜后在焊接部位形成的焦点与工件表面之间的距离。
焦距的选择与焊接材料的厚度、焊枪的设计、激光束的直径等因素相关。
焦距过大会导致焊接深度不够,焦距过小则容易引起溅射和熔洞。
3.光斑直径:光斑直径影响焊缝的宽度和深度。
通常情况下,焊接深度正比于光斑直径的平方。
选择合适的光斑直径可以控制焊缝的大小和形状。
4.扫描速度:扫描速度是指焊接头在工件上移动的速度。
扫描速度的选择要根据焊接材料的导热性和热膨胀系数来确定。
过高的扫描速度可能导致焊缝无法充分熔化,过低的扫描速度则容易引起过热和熔洞。
5.激光脉冲频率:激光脉冲频率决定了激光束的脉冲数。
较低的脉冲频率可以增加焊缝的深度,较高的脉冲频率则可以增加焊缝的宽度。
根据焊接要求选择合适的脉冲频率。
6.各向异性系数:各向异性系数是指焊接材料在激光束照射下沿不同方向扩散的能力。
不同金属材料的各向异性系数差异较大,选择合适的激光焊接参数可以减小焊缝形状的变化。
7.激光束模式:激光束的光斑形状可以通过调整激光器的谐振腔或使用适当的光学元件来改变。
常见的激光束模式包括高斯模式、倍高斯模式和束团模式等。
不同的光斑形状对焊接质量和效率有影响。
总结起来,激光焊接工艺参数包括激光功率、焦距、光斑直径、扫描速度、激光脉冲频率、各向异性系数和激光束模式等。
通过合理地选择这些参数,可以实现高质量、高效率的激光焊接。
高功率光纤激光焊接工艺的探讨

器 最多 达 1 %,加 工效 率优 势 明显【。 0 9 ]
光 纤 激 光器 应 用 特点 有 : ( )多元 化 的加 工 系 1
统 ,可 以通 过分光 器 连接 1 6根传 输光纤 ,布线 到 至 不 同的加工工位 ( 焊接 、切割 、熔覆 、淬火 等 ) ,然后
对 激光输 出进行 分时控 制 。就可 以实 现一 器多 用 的加
对 光 纤 激 光 焊 接 的 特 点 及 工 艺做 出详 细地 论 述 ,提 出 了有 参 考 价 值 的 光 纤 激 光 焊接 工 艺 ,对 光 纤 激 光 应 用 有 指 导 意 义 。
关 键 词 : 光 纤激 光 ;B P 激 光 焊 ;激 光功 率 ; 离焦 量 P ; 中图 分 类 号 :T A5 . C 67 文 献 标 志 码 :B
光纤激 光 器 ( ie L sr 主要 由泵 源 、耦 合 器 、 Fbr ae)
掺 稀 土元 素光纤 、光 纤结 构 的谐振 腔 ( 光栅 )等 部件
构 成 ,泵 源 由一 个或 多个 大功 率激 光二极 管构 成 ,其 结 构 示意 如 图 1 所示 。
证 零件 之 问 的装 配公 差 ,可 以减 少 T件 焊 后精 加 工 。
B P越 小 ,光 束 质 量 越 高 )一 般 是 < 2mm・ rd P 1 ma ,
越高 ,目前 国外 已成 功研发 出 了高功率 的光纤 激光器 ,
在光 质量 和功 耗上 比传 统激光 器具 备更 大 的优势 ,并 且可 以减低 维护成本 和加工 费用 ,有 良好 的经 济效益 .
已在 欧美发 达 国家 的汽 车 、造 船 、航 空 等工业 领域 得
到 了 广 泛应 用 。光 纤 激 光 器 作 为 世 界 最 先 进 激 光 技 术 ,有 可能 取代 传 统 的 晶体激 光 器 以及 C : 光器 , O激 光纤激 光 焊接应 用 的研究 也取 得 了相应 的成果 . 目前 光 纤激 光 已成 功用 于钢 、铝 、钛 、铜 以及 金属 玻璃 的 焊接 I ] t ,并且 实 现 了光纤 激 光与 G A 和 MI 的复 - 2 TW G 合 焊 ] ,可见 光纤 激光 的应用 前景相 当可观 。
激光焊接工艺参数

激光焊接工艺参数激光焊接是一种高精度、高效率的焊接方法,其原理可分为热传导型焊接和激光深熔焊接。
前者适用于功率密度小于104~105 W/cm2的情况,而后者则适用于功率密度大于105~107 W/cm2的情况。
在激光深熔焊接中,能量转换机制是通过“小孔”(Key-hole)结构来完成的。
在足够高的功率密度激光照射下,材料产生蒸发并形成小孔,小孔内充满高温蒸汽,孔壁外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。
小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。
激光焊接的主要工艺参数包括激光功率、激光束直径、焊接速度、焊接距离、焊接角度、焊接气体等。
其中,激光功率是最关键的参数,它决定了焊缝的宽度和深度。
激光束直径和焊接速度的关系也非常重要,如果激光束直径过大,焊缝将会过宽,而如果焊接速度过快,焊缝将会过窄。
焊接距离和焊接角度也会影响焊缝的质量,而焊接气体则可以保护焊缝和减少氧化。
因此,在进行激光焊接时,需要根据具体情况调整这些参数,以获得最佳的焊接效果。
激光焊接中,激光功率是一个关键因素。
当激光功率密度超过一定的阈值时,熔深会大幅度提高,等离子体才会产生,从而实现稳定深熔焊。
如果激光功率低于此阈值,则只会发生表面熔化,即焊接以稳定热传导型进行。
当激光功率密度处于小孔形成的临界条件附近时,深熔焊和传导焊交替进行,导致熔深波动很大。
因此,在激光深熔焊时,需要同时控制激光功率和焊接速度。
光束焦斑大小是激光焊接中最重要的变量之一,因为它决定功率密度。
然而,对于高功率激光来说,测量光束焦斑大小是一个难题。
最简单的方法是等温度轮廓法,即用厚纸烧焦和穿透聚丙烯板后测量焦斑和穿孔直径。
但是,需要通过实践来掌握激光功率大小和光束作用的时间。
材料对激光的吸收取决于材料的一些重要性能,如吸收率、反射率、热导率、熔化温度、蒸发温度等,其中最重要的是吸收率。
激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析激光焊接技术是一种使用激光束来进行焊接的方法。
它利用激光束的高能量和高聚焦度,将材料加热到熔点或者融化状态,从而实现材料的焊接。
激光焊接技术已广泛应用于各个行业,包括汽车制造、电子设备制造、航空航天工业等。
激光焊接技术的原理是利用激光器产生的激光束,经过透镜聚焦后,将高能量的激光束集中到焊接接头上。
当激光束照射到材料上时,它会与材料表面的原子或者分子产生相互作用,将光能转换为热能。
这样,就可以在局部区域内使材料加热到高温,从而达到焊接的目的。
激光焊接技术的工艺分析主要包括焊接参数的选择和焊接过程的控制。
焊接参数的选择是激光焊接工艺中非常重要的一环。
它包括激光功率、激光束的聚焦度、焊接速度等参数的选择。
激光功率的选择要根据焊接材料的种类和厚度来确定,功率过低会导致焊接质量不理想,功率过高会使焊接区域过热。
激光束的聚焦度决定了焊接区域的尺寸和能量密度,它的选择要根据焊接接头的形状和尺寸来确定。
焊接速度的选择要根据焊接接头的材料和厚度来确定,速度过快会导致焊接区域充分融化不充分,速度过慢会使焊接区域过热。
焊接过程的控制是保证激光焊接质量的关键。
焊接过程的控制包括焊接接头的准备、激光束的照射、焊接区域的保护、焊接过程的监控等。
焊接接头的准备包括清洁表面、调整焊接接头的形状和尺寸等。
激光束的照射要保证激光束的聚焦度和焊接速度均匀稳定。
焊接区域的保护可以采用惰性气体保护或者真空环境,以防止氧化和污染。
焊接过程的监控可以通过温度传感器、红外摄像头等设备来实现,以保证焊接过程的质量和稳定性。
激光焊接技术是一种高精度、高效率的焊接方法。
它的原理是利用激光束将材料加热到熔点或者融化状态,然后实现材料的焊接。
激光焊接技术的工艺分析包括焊接参数的选择和焊接过程的控制,这些都是保证激光焊接质量的关键。
激光焊接技术的应用前景非常广阔,它将继续在各个领域中发挥重要作用。
激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析
激光焊接技术是一种高精密性焊接技术,其原理是利用高能量激光束对焊接材料进行
熔化并加热,使其达到熔化状态,然后使母材和焊材熔合,形成焊缝。
激光焊接技术具有
焊缝小、熔化深度浅、热影响区小、熔池凝固速度快、焊接速度快、成形美观等优点。
激光焊接工艺主要包括焊缝设计、焊接参数选择、设备调试、工艺控制等几个方面。
焊缝设计需要根据焊接材料的性质和焊接要求来确定焊缝的形状和尺寸。
焊接参数的选择
包括激光功率、焊缝速度、焊接气体种类和流量等,需要根据材料特性和焊接要求进行选择。
设备调试主要包括激光器的调试和光束传输系统的调试等。
工艺控制主要包括工件定位、焊接过程中的温度控制和焊接质量的检测等。
激光焊接工艺有很多种,其中比较常用的是峰值功率调制焊接、脉冲时间调制焊接和
连续波焊接等。
峰值功率调制焊接是在一定时间内增加激光功率,使焊接材料快速熔化和
凝固,从而实现焊接。
脉冲时间调制焊接是通过调节激光脉冲时间和脉冲频率,实现焊接
材料的熔化和凝固。
连续波焊接则是将激光束连续发射,通过控制焊接速度和功率,实现
材料融化和凝固。
激光焊接技术在飞机、船舶、汽车、机器人以及电子设备等领域的应用越来越广泛。
它不仅可以替代传统的焊接工艺,在提高焊接质量的同时,也能够提高生产效率和生产率。
未来,激光焊接技术有望进一步发展,成为高精度微观加工和大型结构焊接等领域的重要
工艺。
高功率半导体激光焊接智能装备关键技术及产业化

高功率半导体激光焊接智能装备关键技术及产业化下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!随着制造业的不断发展和半导体激光技术的进步,高功率半导体激光焊接智能装备成为制造业提高生产效率和产品质量的重要工具。
激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析激光焊接技术是一种利用激光高能密度、高能量流密度和高聚焦能力进行焊接的先进技术。
相比传统的电弧焊接和气体保护焊接,激光焊接具有更高的焊接速度、更小的热影响区和更高的焊接质量。
其原理是利用激光器将功率较高的激光束聚焦到焊缝上,使焊缝处的材料迅速加热并熔化,然后冷却凝固形成焊接接头。
激光焊接技术包括传统连续激光焊接和脉冲激光焊接两种。
传统连续激光焊接是将连续激光束聚焦到焊缝上,通过连续的加热和冷却过程实现焊接。
脉冲激光焊接则是利用脉冲激光束进行焊接,激光脉冲的能量和时间可以根据焊接工件的要求进行调整。
传统连续激光焊接的工艺参数主要包括焦距、聚焦点直径、激光功率和焊接速度等。
焦距决定了激光束在焊缝处的聚焦程度,聚焦点直径决定了激光束的功率密度,激光功率决定了焊接速度,焊接速度决定了焊接质量。
脉冲激光焊接的工艺参数主要包括脉冲能量、脉冲宽度和脉冲频率等,这些参数可以根据焊接工件的要求进行优化。
激光焊接的工艺分析主要包括焊接过程的数值模拟和实验验证。
通过数值模拟可以预测焊接过程中的温度分布、固相扩散、相变和应力变形等物理过程,通过实验验证可以验证数值模拟结果的准确性。
工艺分析的目的是找出最优的焊接工艺参数,以获得最佳的焊接质量和生产效率。
激光焊接技术在汽车制造、航空航天、电子电器和光电子等领域得到了广泛应用。
激光焊接可以实现对薄板、薄壁件和复杂结构的焊接,焊缝质量好,焊接速度快,适用于大批量生产。
激光焊接还可以实现金属与非金属的焊接,如金属与陶瓷、金属与塑料的焊接,这在传统焊接技术中是难以实现的。
激光焊接技术是一种高效、高质量的焊接技术。
通过优化工艺参数和进行工艺分析,可以进一步提高激光焊接的质量和生产效率,推动激光焊接技术的发展和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高功率激光焊接技术
要进行高功率激光焊接自然首先需要有高功率激光。
通常我们把输出功率在1kW以上的激光称为高功率激光。
当然,激光类型不同,其高功率的界限实际上会有所不同。
自上世纪90年代以来,激光技术有了快速发展,商用激光器的输出功率不断提高,从而使高功率激光焊接得以实现。
在现有的激光器类型中,二氧化碳(CO2)激光器和固体激光器是目前主要的2种高功率激光器。
CO2激光器为气体激光器,以He:N2:CO2混合气体为激光工作气体,通过对CO2分子的激励而发出激光,激光波长为10.6μm。
由于气体介质在谐振腔内的分布均匀性好,所以容易获得近衍射极限的高斯光束。
CO2激光器按照结构可细分为多种类型,其中快速轴流型、横流型和扩散冷却型是市场上高功率CO2激光器的三大类型。
这其中又以扩散冷却型的可达激光束质量最高,以快速轴流型的输出功率最高(可达20kW以上)。
市场上高功率的固体激光器主要有3类,即Nd:YAG激光、光纤激光和半导体激光,它们输出激光的波长均在1μm左右。
半导体激光因受限于其工作机理而只能获得光束质量较差的激光,即激光的发散角大、方向性差。
所以半导体激光主要用于堆焊(表面熔敷)、钎焊和浅熔深焊接。
Nd:YAG激光的最大输出功率已达6kW。
在其基础上发展起来的盘片式激光器输出功率可达8kW,电光转换效率达20%以上。
光纤激光是近几年来得到快速发展的固体激光器,其激光器结构独
特并且创新。
光纤激光以双包层光纤为谐振腔,
以二极管激光为泵浦源,其多模状态下可输出激光功率达25kW 以上的高质量光束。
因结构紧凑、维护简单、运行可靠,已表现出良好的应用势头,在相当多的领域正在逐步替代传统的Nd:YAG激光和CO2激光器。
2 主要激光焊接技术目前,常见的激光焊接技术,即纯激光焊接、激光填丝焊接和激光电弧复合焊接,也是高功率激光焊接的主要焊接技术方法。
纯激光焊接时因没有填充金属,对焊接件接头间隙有相当高的要求,要求间隙小、避免大的错边,所以厚板单道激光对接焊时一般较少采用纯激光焊,以避免出现过大的焊缝表面凹陷。
激光填丝焊则因填充金属加入而使其对间隙有一定的容忍度。
激光电弧复合焊,这里一般指激光-熔化极电弧复合焊,则因为熔化极的高效率熔化而进一步提高了间隙容忍度。
同时电弧热源的加入,使焊接过程热循环的变化更丰富。
图1显示的是这3种高功率激光焊接技术的原理和典型焊接接头横截面形状。
其中所给的激光电弧复合焊原理示意图中电弧是旁轴式的,通常还会有同轴复合方式。
纯激光和激光填丝焊的焊缝截面形状是相近的,而激光电弧复合焊的焊缝横截面形状结合了熔化极电弧焊和激光深熔焊的熔深特征,其上部为熔化极电弧形成的上宽下窄的倒三角熔深,下半部为激光束形成的窄而深的熔化区。
有研究对埋弧焊、激光填丝焊和激光电弧复合焊在焊接速度、一次可焊厚度、间隙容忍度、变形、金相和疲劳性能等方面进行了比较。
研究表明,激光电弧复合焊具有最优的综合性能,即其焊接速度最高、接头疲劳性能最优,一次可焊板厚大于埋
弧焊,并与纯激光焊接相同;焊接变形比埋弧焊小一个数量级,与激光填丝焊的接近;其间隙容忍度介于激光填丝和埋弧焊之间。
由此可以看到,激光电弧复合焊既有高的焊接生产率又有较高的间隙容忍度,是中厚板和厚板激光焊接的优选焊接方法。
洛阳蓬锦机械科技致力于激光切割加工及钣金结构件的设计制造。