低频模拟小信号的电磁兼容设计

合集下载

电磁兼容性设计报告

电磁兼容性设计报告

电磁兼容性设计报告1. 引言电磁兼容性(Electromagnetic Compatibility,EMC)是指在电子器件、系统或设备之间,以及与环境之间可以相互协调地工作、相互共存的能力。

在现代社会中,电子设备的数量和种类不断增加,电磁干扰问题也越来越突出。

因此,进行电磁兼容性设计是确保电子设备正常运行的重要环节。

本报告基于某公司开发一款新型电子设备的需求,结合相关标准和技术要求,就电磁兼容性设计进行分析和评估,并提出相应的解决方案。

2. 设计要求根据项目需求,该电子设备的主要使用环境为办公室,主要功能涉及通信、数据处理和控制。

设计要求如下:- 抗干扰能力强,能在遭受电磁干扰时维持正常工作;- 对外部环境的辐射和传导干扰具有一定的抵抗能力;- 设备自身不会产生辐射、电磁泄漏等对周围设备和人员构成危害;- 符合相关国家和行业的电磁兼容性标准。

3. 设计分析3.1 环境分析根据使用环境为办公室,通常存在辐射源如电脑、打印机、Wi-Fi路由器等。

环境中可能存在的传导干扰主要来自电源线、网络线、电话线等。

在通信和控制方面,需与其他设备进行数据传输,可能会受到电磁干扰。

3.2 技术要求分析根据相关标准,我们需要考虑以下几个方面的技术要求:- 电磁辐射:在工作频率范围内,辐射功率应适应环境要求,同时符合国家和行业标准,如GB9254对辐射限值的规定;- 电磁泄漏:控制电磁泄漏在国家和行业规定的范围内,如GB17625对电磁泄漏限值的规定;- 抗干扰能力:通过设计合理的电磁屏蔽和滤波器等措施,提高设备的抗干扰能力;- 接地设计:合理规划设备的接地和线缆布线,减小接地回路的电阻,确保设备的接地有效。

4. 设计方案4.1 电磁辐射控制为满足电磁辐射限值要求,采取以下措施:- 选择合适的屏蔽材料和结构,对电磁泄漏进行有效遏制;- 优化电路布局,减小回路面积,降低电磁辐射;- 使用滤波器对电源和信号线进行滤波,减少谐波分量;- 选择精确的元器件参数,减少非线性失真的产生。

第六章 电磁兼容性设计

第六章 电磁兼容性设计

设备电磁兼容设计流程
①方框1、2提供原始数据,即电磁环境电平和系统效能的定 量规定。方框5、6和10确定敏感度门限和耦合电平、预测 电磁易损性。
②方框ll确定防护要求,对于防护要求低于30dB的设备,一 般不需要附加防护措施,设计将被提交批准,如果防护要 求在30~70dB之间,则需附加防护措施,如果预测表明 将出现电磁易损性,或防护要求超过70dB,则应进行复 审或重新设计,可以要求修改对预期环境的规定,或对系 统效能重新进行说明。
6.1 电磁兼容性设计的一般概念
6.1.2 电磁兼容性设计方法 费效比 措施 结构 屏蔽 滤波
开发进程
概念 设计 产品 市场
电磁兼容设计基本方法是指标分配和 功能分块设计, 首先根据标准把整 体电磁兼容指标逐级分配到各功能 块上,细化成系统级、设备级、电 路级和元件级的指标。然后,按照 要实现的功能和电磁兼容指标进行 电磁兼容设计,如按要实现的功能, 按骚扰源类型,按骚扰传播的渠道 以及按敏感设备的特性等
(2)电磁兼容设计的主要参数
①敏感度门限和干扰允许值
敏感度门限指敏感设备对干扰所呈现最小的 不希望有的响应电平。是确定干扰允许值 的基本出发点。干扰允许值必须小于能在 敏感设备中引起错误响应的电平值,应考 虑设备或系统工作受干扰时,在最敏感的 频率和最危险的状态下所允许的干扰电平, 在统计性设计时,应考虑设备或系统干扰 电平的概率。
(1)电磁兼容设计的具体内容
④设备及电路的电磁兼容设计
是系统电磁兼容设计的基础,是最基本的电 磁兼容性设计,其内容包括控制发射、控 制灵敏度、控制耦合以及接线、布线与电 缆网的设计、滤波、屏蔽、接地与搭接的 设计等。在设计中,可针对设备、分系统 及系统中可能会出现的电磁兼容问题,灵 活地运用这些技术,并要同时采取多种技 术措施

电磁兼容设计

电磁兼容设计

电磁兼容设计
1 电磁兼容设计
电磁兼容(EMC)设计是指将电磁能量和电子电路系统融为一体,
实现它们之间发展更好的协调关系的一种设计。

其目的在于使电子设
备在电磁环境中更有效地工作,同时也减少对其他设备带来的影响。

电磁兼容设计需要考虑多个参数,它们的控制特性非常重要。


先要考虑的是信号的模拟量。

除此之外,还要根据电磁性能和功率情
况指定固态元件和电子元件。

另外,还要考虑对产品本身和环境中电
磁辐射的抑制要求。

电磁兼容设计还重视电路原理,为了将电路彼此分开或连接,可
在硬件电路中使用不同类型的电容元件。

此外,还要考虑特定应用中
的雷暴和电弧。

电磁兼容设计还可利用信号处理电路来检测和抑制有
害电磁信号。

优秀的电磁兼容设计能够满足在电磁环境中运行所需的性能要求,确保能正常运行而不受有害的外部电磁信号的影响。

它的目的是为了
使电子设备能够更有效地工作,同时也减少它们对环境的影响。

做好
电磁兼容设计不仅有利于电子设备的健康使用,而且有利于改善环境
的电磁能质。

精品课件电磁兼容性设计ppt课件

精品课件电磁兼容性设计ppt课件
IC的引脚排列也会影响电磁兼容性能。因此IC的VCC与GND之间的距离越 近,去耦电容越有效。
无论是集成电路、PCB板还是整个系统,大部分噪声都与时钟频率及其 高次谐波有关。
合理的地线、适当的去耦电容和旁路电容能减小时钟辐射。
用于时钟分配的高阻抗缓冲器也有助于减小时钟信号的反射和振荡。
TTL和CMOS器件混合逻辑电路会产生时钟、有用信号和电源的谐波,因 此,最好使用同系列的逻辑器件。
铁氧体磁珠或串联电阻) -降低负载电容,以使靠近输出端的集电极开路驱动器而便于上拉,电阻值
尽量大 -处理器散热片与芯片之间经导热材料隔离,并在处理器周围多点射频接地 -电源的高质量射频旁路(解耦)在每个电源管脚都是重要的 -高质量电源监视电路需对电源中断、跌落、浪涌和瞬态干扰有抵抗能力 -需要一只高质量的“看门狗” -决不能在“看门狗”或电源监视电路上使用可编程器件 -电源监视电路及“看门狗”也需适当的电路和软件技术,以使它们可以适
模拟器件也需要为电源提供高质量的射频旁路和低频旁路。
对每个运放、比较器或数据转换器的每个模拟电源引脚的RC或LC滤波都 是必要的。
对模拟电路而言,模拟本振和IF频率一般都有较大的泄漏,所以需要着 重屏蔽和滤波。
02:33
20
2.3 逻辑电路设计
对高频数字电路布局时应作到有关的逻辑元件应相互靠近,易产 生干扰的器件(如时钟发生器)或发热器件应远离其他集成电路。
应大多数的不测情况 -当逻辑信号沿的上升/下降时间比信号在PCB走线中传输一个来回的时间短时,
应采用传输线技术
02:33
22
在逻辑电路中,数字信号的传输线的处理也相当重要。
当电路在高速运行时,在源和目的间的阻抗匹配非常重要。
否则过量的射频能量将会引起电磁兼容性问题。

电磁兼容EMC设计方案及测试技巧

电磁兼容EMC设计方案及测试技巧

电磁兼容EMC设计及测试技巧转载自:单片机工具之家当前,日益恶化的电磁环境,使我们逐渐关注设备的工作环境,日益关注电磁环境对电子设备的影响,从设计开始,融入电磁兼容设计,使电子设备更可靠的工作。

电磁兼容设计主要包含浪涌(冲击)抗扰度、振铃波浪涌抗扰度、电快速瞬变脉冲群抗扰度、电压暂降、短时中断和电压变化抗扰度、工频电源谐波抗扰度、静电抗扰度、射频电磁场辐射抗扰度、工频磁场抗扰度、脉冲磁场抗扰度、传导骚扰、辐射骚扰、射频场感应的传导抗扰度等相关设计。

电磁干扰的主要形式电磁干扰主要是通过传导和辐射方式进入系统,影响系统工作,其他的方式还有共阻抗耦合和感应耦合。

传导:传导耦合即通过导电媒质将一个电网络上的骚扰耦合到另一个电网络上,属频率较低的部分(低于30MHz)。

在我们的产品中传导耦合的途径通常包括电源线、信号线、互连线、接地导体等。

辐射:通过空间将一个电网络上的骚扰耦合到另一个电网络上,属频率较高的部分(高于30MHz)。

辐射的途径通过空间传递,在我们电路中引入和产生的辐射干扰主要是各种导线形成的天线效应。

共阻抗耦合:当两个以上不同电路的电流流过公共阻抗时出现的相互干扰。

在电源线和接地导体上传导的骚扰电流,多以这种方式引入到敏感电路。

感应耦合:通过互感原理,将在一条回路里传输的电信号,感应到另一条回路对其造成干扰。

分为电感应和磁感应两种。

对这几种途径产生的干扰我们应采用的相应对策:传导采取滤波(如我们设计中每个IC的片头电容就是起滤波作用),辐射干扰采用减少天线效应(如信号贴近地线走)、屏蔽和接地等措施,就能够大大提高产品的抵抗电磁干扰的能力,也可以有效的降低对外界的电磁干扰。

电磁兼容设计对于一个新工程的研发设计过程,电磁兼容设计需要贯穿整个过程,在设计中考虑到电磁兼容方面的设计,才不致于返工,避免重复研发,可以缩短整个产品的上市时间,提高企业的效益。

一个工程从研发到投向市场需要经过需求分析、工程立项、工程概要设计、工程详细设计、样品试制、功能测试、电磁兼容测试、工程投产、投向市场等几个阶段。

电磁兼容性(EMC)仿真设计

电磁兼容性(EMC)仿真设计

设计早期对电磁兼容性(EMC)问题的考虑随着产品复杂性和密集度的提高以及设计周期的不断缩短,在设计周期的后期解决电磁兼容性(EMC)问题变得越来越不切合实际。

在较高的频率下,你通常用来计算EMC的经验法则不再适用,而且你还可能容易误用这些经验法则。

结果,70%~90%的新设计都没有通过第一次EMC测试,从而使后期重设计成本很高,如果制造商延误产品发货日期,损失的销售费用就更大。

为了以低得多的成本确定并解决问题,设计师应该考虑在设计过程中及早采用协作式的、基于概念分析的EMC仿真。

较高的时钟速率会加大满足电磁兼容性需求的难度。

在千兆赫兹领域,机壳谐振次数增加会增强电磁辐射,使得孔径和缝隙都成了问题;专用集成电路(ASIC)散热片也会加大电磁辐射。

此外,管理机构正在制定规章来保证越来越高的频率下的顺应性。

再则,当工程师打算把辐射器设计到系统中时,对集成无线功能(如Wi-Fi、蓝牙、WiMax、UWB)这一趋势提出了进一步的挑战。

传统的电磁兼容设计方法正常情况下,电气硬件设计人员和机械设计人员在考虑电磁兼容问题时各自为政,彼此之间根本不沟通或很少沟通。

他们在设计期间经常使用经验法则,希望这些法则足以满足其设计的器件要求。

在设计达到较高频率从而在测试中导致失败时,这些电磁兼容设计规则有不少变得陈旧过时。

在设计阶段之后,设计师制造原型并对其进行电磁兼容性测试。

当设计中考虑电磁兼容性太晚时,这一过程往往会出现种种EMC问题。

对设计进行昂贵的修复通常是唯一可行的选择。

当设计从系统概念设计转入具体设计再到验证阶段时,设计修改常常会增加一个数量级以上。

所以,对设计作出一次修改,在概念设计阶段只耗费100美元,到了测试阶段可能要耗费几十万美元以上,更不用提对面市时间的负面影响了。

电磁兼容仿真的挑战为了在实验室中一次通过电磁兼容性测试并保证在预算内按时交货,把电磁兼容设计作为产品生产周期不可分割的一部分是非常必要的。

电磁兼容性原理与设计

电磁兼容性原理与设计

第一章电磁兼容性原理与设计1.电磁兼容性的基本概念电磁兼容性是一个新概念,它是抗干扰概念的扩展和延伸。

从最初的设法防止射频频段内的电磁噪声、电磁干扰,发展到防止和对抗各种电磁干扰。

进一步在认识上产生了质的飞跃,把主动采取措施抑制电磁干扰贯穿于设备或系统的设计、生产和使用的整个过程中。

这样才能保证电子、电气设备和系统实现电磁兼容性。

1. 1电磁兼容性的概念A、电磁噪声与电磁干扰电磁噪声是指不带任何信息,即与任何信号都无关的一种电磁现象。

在射频频段内的电磁噪声,称为无线电噪声。

由机电或其他人为装置产生的电磁现象,称为人为噪声。

来源于自然现象的电磁噪声,称为自然噪声。

电磁干扰则是指任何能中断、阻碍,降低或限制通信电子设备有效性能的电磁能量。

由大气无线电噪声引起的,称为天线干扰。

由银河系的电磁辐射引起的,称为宇宙干扰。

由输电线、电网以及各种电子和电气设备工作时引起的,称为工业干扰。

B、电磁兼容电磁兼容性是指电子、电气设备或系统在预期的电磁环境中,按设计要求正常工作的能力。

它是电子、电气设备或系统的一种重要的技术性能。

其包括两方面的含义:①设备或系统应具有抵抗给定电磁干扰的能力,并且有一定的安全余量。

②设备或系统不产生超过规定限度的电磁干扰。

从电磁兼容性的观点出发,电子设备或系统可分为兼容、不兼容和临界状态三种状态:IM=Pi-Ps(dB)式中:IM -------电磁干扰余量Pi-------干扰电平Ps-------敏感度门限电平当Pi>Ps即干扰电平高于敏感度门限电平时,IM>0,表示有潜在干扰,设备或系统处于不兼容状态当Pi<Ps即干扰电平低于敏感度门限电平时,IM<0,表示设备或系统处于兼容状态当Pi=Ps即干扰电平等于敏感度门限电平时,IM=0,表示设备或系统处于临界状态1. 2电磁兼容性常用术语根据国家标准GJB—85《电磁干扰和电磁兼容性名词术语》选择一部分,供参考① 一般术语设备(Equipment)——作为一个独立单元进行工作,并完成单一功能的任何电气、电子或机电装置。

电磁兼容性实现途径及方法

电磁兼容性实现途径及方法

电磁兼容性实现途径及方法第一篇:电磁兼容性实现途径及方法电磁兼容性实现途径及方法这要从分析形成电磁干扰后果的基本要素出发。

由电磁骚扰源发射的电磁能量,经过耦合途径传输到敏感设备,这个过程称为电磁干扰效应。

因此,形成电磁干扰后果必须具备三个基本要素:1、电磁骚扰任何形式的自然现象或电能装置所发射的电磁能量,能使共享同一环境的人或其它生物受到伤害,或使其他设备分系统或系统发生电磁危害,导致性能降级或失效,这种自然现象或电能装置即称为电磁骚扰源。

2、耦合途径耦合途径即传输电磁骚扰的通路或媒介。

3、敏感设备(Victim)敏感设备是指当受到电磁骚扰源所发射的电磁能量的作用时,会受到伤害的人或其它生物,以及会发生电磁危害,导致性能降级或失效的器件、设备、分系统或系统。

许多器件、设备、分系统或系统可以既是电磁骚扰源又是敏感设备。

为了实现电磁兼容,必须从上面三个基本要素出发,运用技术和组织两方面措施。

所谓技术措施,就是从分析电磁骚扰源、耦合途径和敏感设备着手,采取有效的技术手段,抑制骚扰源、消除或减弱骚扰的耦合、降低敏感设备对骚扰的响应或增加电磁敏感性电平;为个对人为骚扰进行限制,并验证所采用的技术措施的有效性,还必须采取组织措施,制订和遵循一套完整的标准和规范,进行合理的频谱分配,控制与管理频谱的使用,依据频率、工作时间、天线方向性等规定工作方式,分析电磁环境并选择布置地域,进行电磁兼容性管理等。

电磁兼容性是电子设备或系统的主要性能之一,电磁兼容设计是实现设备或系统规定的功能、使系统效能得以充分发挥的重要保证。

必须在设备或系统功能设计的同时,进行电磁兼容设计。

电磁兼容设计的目的是使所设计的电子设备或系统在预期的电磁环境中实现电磁兼容。

其要求是使电子设备或系统满足EMC标准的规定并具有两方面的能力:1.能在预期的电磁环境中正常工作,无性能降低或故障;2.对该电磁环境不是一个污染源。

为个实现电磁兼容,必须深入研究以下五个问题:第一,对于电磁骚扰源的研究,包括电磁骚扰源的频域和时域特性,产生的机理以及抑制措施等的研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

WORK NOTE低频蟆撅小信号的电磁兼容设计在电子电器产品的电路设计中,无论是音视频信号还是各类传感器信号的处理,都属于低频模拟小信号的处理范畴。

这些信号具有幅值低、频率低、连续变化的特点。

产品设计时为避免低频模拟小信号(以下简称小信号)受到电磁干扰影响,应针对小信号处理的各个环节加以考虑,包括连接电缆及接口的设计,电路设计,接地、屏蔽及滤波设计,印制电路板(PCB)设计等。

连掛电缆及搭口的设计实际应用中,小信号从传感器或信号源可能需经过较长距离的传输才能到达信号接收端被放大和处理.接口及电缆设计,应避免小信号在传输过程中遭受环境电磁骚扰影响。

双绞线能有效地屏蔽外部磁场干扰,其屏蔽原理如图1所示。

当有外部磁场存在时,双绞线相邻的环路感应的干扰电流大小近似相等,方向相反,能有效抵消。

噪声电流…・噪声源»/F F/,••''')I-I«f,,1*•1•I I I I>>I『:十.'、一^被感应侧■.今Y-W-—图1双绞线磁场屏蔽原理传输电缆设计如下:当传输信号频率带宽低于io kHz,传输距离小于10m时,信号传输线一般仅需考虑低频磁场干扰影响,此时最佳的传输线缆为双绞线,信号线与其回线进行双绞,能有效屏蔽低频磁场干扰;当传输信号频率带宽高于10kHz小于1MHz(对带宽超过1MHz的信号,不在此文讨论范围),传输距离大于10m时,信号传输线除考虑低频磁场影响外,还需考虑电场的影响,此时最佳的传输线缆为外带屏蔽层的双绞线。

为避免屏蔽层两端接地形成低频地环路干扰,线缆屏蔽层在信号源端浮地,在信号接收端与接收单元的金属外壳360。

环接并通过其接地;若接收端无金属外壳,线缆屏蔽层应在接口处接其公共参考地。

当有多路信号需要传输时,若信号电平相差不大.可位于同一电缆中传输,此时,每路信号与其回流线单独双绞。

为防止线缆中不同信号相互之间强耦合,不同绞线组单位长度扭绞次数应适当错开。

若信号电平相差较大,或存在高灵敏度信号时,宜分开使用不同电缆传输。

设计时还需注意,单芯屏蔽线没有低频磁场屏蔽效果,应尽量避免用作低频模拟信号传输;用于保护音频敏感电路的电缆屏蔽层仅允许一端接地,且永远不要把屏蔽层用作音频敏感信号的回线。

信号电缆使用屏蔽线缆时,若信号线缆屏蔽层在接收端与设备金属外壳360。

环接并通过其接地,就能有效抑制环境中存在的高频连续干扰与脉冲干扰。

当线缆使用非屏蔽双绞线或线缆屏蔽层效果有限时,则需在线缆与设备的接口处施加高频滤波电路抑制高频干扰及共模滤波电路抑制地环路干扰;同时,还需根据脉冲干扰的特点施加相应脉冲干扰吸收器抑制ESD和EFT等脉冲类干扰。

设计时,需注意此类滤波和吸收电路的位置:对金属外壳设备,此类电路应位于线缆进入金属机壳的入口处;若为非金属外壳设备,则位于线缆与电路板的接口处。

电路设计一般电子设备低电平级电路是易受干扰电路,对单级放大电路,若信号源距离较远,其接地点一般选择为放大器端,使信号源与地隔离。

这样可使放大器免受两端地电位差的影响,从而抑制了地环路噪声干扰。

多级电路应采用串联式单点接地,其接地点选择在低电平级电路的输入端,以使电路受地电位差的干扰最小。

对高灵敏度小信号放大电路,减小放大器输入阻抗,可以有效抑制输入环路感应的噪声。

长距离传输信号采用差分平衡放大电路,可以有效克服地环路噪声。

运算放大器背景噪声电平比晶体管高数倍以上,对微弱小信号前级放大可考虑设计为低噪声晶体管放大电路。

运放的零漂会严重干扰直流微弱信号的时间和温度稳定性,对宜流放大器,建议采用斩波稳零放大器以抑制零漂。

放大器的带宽应与被放大信号带宽匹配,以控制放大器的带外响应。

不要盲目追求高带宽,过高的带宽会将高频噪声放大甚至产生寄生振荡,劣化放大器的信噪比。

放大器的非线性会对调幅射频连续波解调而引入低频干扰。

为了防止解调,电路的反馈回路需在宽频带范围内处于线性及稳定状态;尽可能增大放大器的线性动态范围,并使放大器始终工作在线性范围内,以减少非线性失真;同时,需要对容性负载进行合理缓冲。

当信号源与接收端距离比较远、源信号比较微弱时,为保证信号正确传递,应尽可能缩短信号传输线长度,以减小传输过程中可能引入的干扰;同时,应在输入端对信号进行差模和共模滤波,以滤除输入信号中混入的干扰;此外,还可能通过将微弱小信号在源端放大,以提高长距离传输信号的信噪比,较好抑制传输通道可能引入的干扰;或者,直接将A/D转换器前移到信号源端,使得信号源与工程师日志接收端之间传输的信号为数字信号,可以进一步提高传输通道的抗干扰能力。

音频模拟小信号放大器设计应重点关注以下几个方面:音频放大器应该用平衡输入式,并用屏蔽双绞线作输入信号线;用输入变压器来断开到远端音频输入电路的任何地环路;音频输入变压器应磁屏蔽,以免拾取电源磁场骚扰,变压器线圈初次级间应有效的静电屏蔽隔离;音频增益控制应在高增益前置放大器之后,否则,音频增益控制走线上的噪声和骚扰将拾取电平成为低电平输入信号的可观部分;音频放大器若用开关电源,需使用20kHz或更高的开关频率。

搭地、屏蔽及滤波设计在工作频率小于1MHz的低频模拟电路中,其布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用单点接地,以减少地环路引入的干扰。

需要注意的是,单点接地时,当信号接地线厶过长,与电路输入信号的波长2相比拟时(Z>〃20),需将输入信号当作高频信号处理,应选择就近多点接地。

若电路中有大量需要单点接地的单元,且每处需要单点接地的单元均单独并联连接到公共接地点.具体实施时可能因接地线过多而无法执行。

实际应用中应根据单点接地各单元的特点,对相互影响比较小的单元电路接地线先就近连接在一起,再一起连接到指定的公共参考接地点,此种接地方式称之为串联式单点接地;对相互影响比较大的单元电路,则分别直接连接到公共参考接地点,这种接地方式称之为并联式单点接地。

高灵敏度放大电路对辐射干扰极为敏感,可将PCB 板用金属屏蔽罩屏蔽起来,并将屏蔽罩焊接到PCB模拟地上。

有些高增益精密模拟运放为防外来电场干扰可能自带金属屏蔽壳,将金属屏蔽壳接至运放的公共模拟地,以屏蔽外部电磁干扰。

当低频模拟处理电路为单独的PCB板时,为避免周围环境的电磁辐射影响.宜对整块电路板加以屏蔽,且选择的屏蔽外壳应为铁磁性材料的金属外壳,如由钢板、铁板弯折成型,外壳上不得有大的孔洞缝隙,以保证外壳的导电和导磁的连续性,且应良好接地。

由于低频模拟小信号对低频磁场极为敏感,只有铁磁性材料的外壳并保证导磁的连续性才能对低频磁场有良好的屏蔽作用;同时,电路对中高频的电场也敏感,所以,应保证外壳的导电连续性并良好接地。

穿过屏蔽外壳的小信号线若使用带屏蔽的双绞线,则屏蔽层与屏蔽罩保持360。

良好的环接;对不带屏蔽的双绞信号线,应在进出屏蔽罩处加以滤波,以滤除线缆可能感应的外部干扰。

低频模拟电路在干扰环境使用时,所有输入、输出信号需恰当的低通和共模滤波,且只能使用无源滤波。

对多级放大器或处理电路,各级之间应恰当进行差模和共模滤波,以抑制干扰在级间传递。

对信号线差模滤波设计时,应确保所使用的低通滤波器的截止频率大于信号频率上限,以避免影响有用信号的正确传递。

当干扰与有用信号频率比较接近时,为有效抑制干扰,可能需要使用高阶滤波器,以增加过渡频率处的陡悄度。

为防止地环路噪声耦合到低频有用信号中去,在信号的输入端使用恰当的共模滤波是有必要的。

对模拟电路中的运放、比较器或A/D转换器的每个模拟正负电源引脚应有良好的隔离和对地高频滤波,以抑制电源噪声。

通常情形下,RC滤波器比LC滤波器滤波效果更理想。

对有屏蔽外壳的电路,进出屏蔽外壳的信号和电源滤波电路应位于其进出外壳的接口处;对没有屏蔽外壳的电路,相应的滤波电路应位于线缆与电路板的接口处。

PD3设计对低频模拟小信号PCB设计时,模拟小信号处理电路部分应采用单点接地方式,其公共接地点一般选择电源输入接口的地线引脚连接点。

PCB布线应将小信号地与大电流地进行分离,使大电流不在小信号地线上流动,从而避免对其干扰。

PCB上既有高速逻辑电路,又有模拟小信号电路时,应使它们尽量分开,两者地线不得交叉互连,应分别与电源端地相连。

低频电路地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地;高速逻辑电路宜采用多点就近接地,地线应短而粗。

部分PCB对顶层和底层走线的空白区域用接地的大面积铜进行填充,简称覆铜。

由于覆铜不可避免形成大量的地环路,会对低频模拟小信号电路带来严重的干扰,一般情况下,禁止在PCB低频模拟小信号电路部分进行覆铜处理。

PCB设计时,为防止小信号受到高频高速及大信号的影响,宜将小信号处理电路单独制作PCB。

下面以包含低频模拟电路、数字电路、A/D及D/A转换电路的模数混合电路板为例对PCB分区设计进行介绍。

①首先对PCB分区:模拟电路元器件放置在模拟电路区,数字电路元器件放置在数字电路区,模数混合器件(如A/D及D/A器件)放置在两区域边界处,且让其模拟引脚部分位于模拟分区,数字(下转第48页)TESTING&MEASUREMENT无线电辐射骚扰测量中试验桌的影响评估Impact Assessment of Test Table in Radio Radiated Emission Measurement敦吉电子(上海)有限公司杨顺家摘要辐射骚扰场强测量中不同的实验室会使用不同类型的试验桌来放置受试设备,其中桌子的大小、结构、材料都会对测试结果有不同的影响。

介绍FRP材料、Styrene foam材料试验桌在200MHz~l GHz频率范围内对测试结果的影响,最终通过试验结果引入试验桌的标准不确定度。

关键词纤维增强复合材料;苯乙烯泡沫材料;半电波暗室;标准不确定度;相对介电常数AbstractDifferent laboratories in the measurement of radiated disturbances will use different types of setup-tables to place lhe EUT, size,structure,and material of the table have different effects on the test lesults.This text introduces the influence of the FRP material and the styrene foam material setup-table on the test results from200MHz to1GHz.Finally,the standard uncertainty of the setup-table is introduced through the experimental results.KeywordsFRP;styrene foam;semi—anechoic chamber;standard uncertainty;relative permittivity引言辐射骚扰测量不确定度评估时.主要是考虑测量接收机特性、天线特性、试验桌特性、场地的不理想性等影响。

相关文档
最新文档