电解电容寿命的计算方法
固态电解电容寿命计算公式

固态电解电容寿命计算公式固态电解电容的寿命计算可不是个简单的事儿,不过别担心,咱们一起来好好捋捋。
先来说说为啥要关心固态电解电容的寿命。
就拿我之前遇到的一件事来说吧,我给家里组装了一台电脑,用了没多久,电脑就频繁死机、重启。
我一开始还以为是系统出了问题,各种重装系统、更新驱动,可都没啥用。
后来找了个懂行的朋友一看,原来是主板上的固态电解电容出了毛病,寿命到了,性能不稳定。
这可把我给郁闷坏了,花了不少时间和精力去折腾。
从那以后,我就特别在意这固态电解电容的寿命问题。
要计算固态电解电容的寿命,得先搞清楚几个关键的因素。
其中最重要的就是工作温度和纹波电流。
工作温度越高,电容内部的化学变化就越剧烈,寿命也就越短;纹波电流越大,电容承受的压力也就越大,同样会缩短寿命。
一般来说,我们可以使用下面这个公式来大致计算固态电解电容的寿命:L = L0 × 2^[(T0 - T)/10] × I0^(-0.4) 。
这里的 L 就是估算的电容寿命,L0 是电容在额定温度和额定纹波电流下的标称寿命,T0 是电容的额定工作温度,T 是实际工作温度,I0 是电容的额定纹波电流。
比如说,有一个固态电解电容,它的标称寿命 L0 是 5000 小时,额定工作温度 T0 是 85℃,额定纹波电流 I0 是 1 安培。
如果它实际工作温度是 65℃,实际纹波电流是 0.8 安培,那我们来算算它的寿命。
首先,(T0 - T)/10 = (85 - 65)/10 = 2。
然后 2^[(T0 - T)/10] = 2^2 = 4 。
接着,I0^(-0.4) = 1^(-0.4) = 1 。
所以,寿命 L = 5000 × 4 × 1 = 20000 小时。
但要注意,这只是个大致的估算,实际情况可能会更复杂。
因为电容的使用环境、工作电压、制造工艺等都会对寿命产生影响。
再比如说,在一些高温高湿的环境中,电容可能会更容易受到腐蚀,从而缩短寿命。
铝电解电容寿命计算

铝电解电容寿命计算
一、老化速率的估算:
1.上电老化法:
将电容器以额定电压上电,根据老化加速现象,可以通过一定时间的
上电老化来模拟长时间的使用情况,然后通过测量电容值和电阻值的变化
来估算老化速率。
2.高温老化法:
将电容器置于高温环境下,在一定时间内观察电容值和电阻值的变化
情况,通过测量结果推算老化速率。
二、寿命预测的评估:
寿命预测是指根据老化速率估算结果,结合已知的老化模型和工作条件,来评估电容的使用寿命。
寿命预测主要包括以下几个方面:
1.应力与老化模型分析:
分析电容在不同工作条件下所受的应力,包括电压应力、温度应力、
电流应力等,通过建立老化模型,估算电容的老化速率。
2.寿命试验与寿命模型:
进行一系列的寿命试验,通过测量电容值和电阻值的变化来评估电容
器的寿命。
同时,根据试验数据建立寿命模型,并根据模型进行寿命预测。
3.可靠性评估:
通过对电容器寿命的评估来评估电路的可靠性,从而预测系统的可靠性。
可靠性评估一般包括寿命试验、故障数据分析、可靠度预测等。
总结起来,铝电解电容寿命计算主要包括老化速率的估算和寿命预测的评估。
通过对电容的老化机制、应力分析和寿命模型的建立,可以对电容器的使用寿命进行估算和预测。
这对于电子设备的可靠性设计和电路寿命评估具有重要意义。
电容寿命计算公式

RIFA、Nichicon、Rubycon的电解电容计算公式电解电容寿命计算是电容电路设计的最关键的一步,它直接考量电容的设计寿命,电容寿命主要受到温度的影响,所以在设计时候考虑到热源和风道,是提高电容寿命的有效方式,在设计时尽量让电容远离热源,通风好,有时利用强制风冷的方式,尽量让电容工作于低温情况下。
关于电容的寿命计算步骤这里不详述,请参考“电解电容寿命设计步骤”一文,以下主要介绍rifa ,nichicon ,Rubycon 电容寿命得计算公式。
1、nichicon 的电解电容寿命计算公式nichicon 的电解电容寿命计算公式分为两种:a 、大封装电解电容(large can type );b 、小封装(miniature type )的电容,以下针对两种电容分别列出其计算公式。
A、large can type电容结算公式如下:其中:Ln: 估算之寿命(在环境温度Tn 和总纹波In )Lo: 在最大允许工作温度To 和最大允许工作纹波Im 条件下的额定寿命To: 最大允许工作温度Tn: 环境温度to: 在最大允许工作温度To 和最大允许工作纹波电流Im 条件下内部温升量Im :在最大允许工作温度To 条件下的最大允许工作纹波电流有效值(在标准频率条件下的正弦波)In :实际应用的纹波电流有效值Δ tn: 在环境温度Tn 和纹波电流In 条件下致使的内部温升K: 因纹波损耗引起温升的加速系数(Tn 从实际应用环境获得,In 根据其规格书中的纹波系数将实际纹波有效值归一到标准频率上的有效值。
其它参数可从规格书中得到)以上公式给出的是一个基本寿命与环境温度函数、热点温度及纹波电流函数之积。
其内部温升Δ tn 估算并非由电阻损耗计算方式,而是提供了一个参考点值和相应的比例转换公式。
此公式关键点是归一到标准频率的等效电流有效值In 的求解。
B、miniature type对小封装的电容有两种情况,对应不同情况有两种计算公式(a)使用规格书的L 值L: 在最大允许工作温度To 和额定DC 电压条件下的额定寿命Bn: 因实际应用纹波损耗引起温升的加速系数;α:寿命常数。
电解电容寿命计算

电解电容寿命计算
电解电容是一种常见的电子元件,在电路中扮演着储存电荷和滤
波的重要角色。
然而,电解电容的使用寿命并不长久,经过长时间使
用后容易损坏,导致电路出现故障。
为了提高电容的使用寿命,需要
进行寿命计算并采取相应措施。
电解电容的寿命主要取决于两个因素:工作温度和应用电压。
下面我们将介绍如何进行电解电容寿命计算。
第一步是确定电容的工作温度和应用电压。
通常,电容的温度和
电压会在其产品规格书中给出。
如果规格书中没有给出,可以使用温
度计和万用表等测试仪器进行测量。
如果电容的实际工作温度和应用
电压超过了其规格书中的限制,可能会导致电容的寿命缩短。
第二步是根据电容的工作温度和应用电压计算其寿命。
电容的寿
命可以用以下公式表示:
T= A * exp(Ea/ (k * T))
其中,T表示电容的寿命,A是通过实验测定的电容寿命常数,
Ea是电解电容的活化能,k是玻尔兹曼常数,T是电容的工作温度。
根据以上公式,可以得出结论:随着电容工作温度升高,其寿命
将减少;而随着应用电压升高,其寿命也会减少。
因此,在使用电容时,要严格遵守其工作温度和电压的限制,以延长其使用寿命。
总之,电解电容的寿命计算是非常重要的。
了解电容的使用寿命,可以帮助我们更好地进行电路设计和电子元件的选择,从而保证电路
的可靠性和稳定性。
希望以上介绍能对大家有所帮助。
电解电容寿命计算公式 说明(1)

代号
I0 IX
4、关于其他的寿命原因:
代号表示内容说明 最高使用温度下正常周波数的额定纹波电流(Arms)
实际使用中的纹波电流(Arms)
铝电解电容由于电解液通过封口部扩散到外部而导致磨耗故障,加速其现象的要因除上述周围温度与
纹波电流外有以下要因:
●过电压的情况
连续印加定格电压的过电压时,急速增大制品的漏电流量,这种漏电流引起发热产生气体,并导致内压
铝电解电容器的使用寿命计算公式
1、周围温度与寿命
温度对寿命的影响有静电容量的减少,损失角正接的增大,导致电解液通过封口部扩散到外部,电气
特性随时间的变化值与周围温度间成立试验公式,其关系式类似于温度增加,化学反应速度成指数倍 增加之化学反应规律式,称之为温度与铝电解电容寿命10℃法则。
LX=L0×B
W=IR2×R+VIL
代号
代号表示内容说明
W
内部的消费电力
IR
直流电流
R
内部阻抗等效串联电阻 ESR
V
印加电压
IL
漏电流
漏电流 LC最高使用温度增加到20℃的 5-10倍程度,由于 I R远大于IL,可成立如下公式:
W=IR2×R
◆ 内部发热与放热达到平衡温度的条件公式如下:
IR2×R=βA△T
代号
T0 - TX 10
代号
代号表示内容说明
L0
最高温度条件下,印加定格电压或重迭额定纹波电流时的保证寿命(hrs)
LX
实际使用中的寿命(hrs)
T0
制品的最高使用温度(℃)
Tx
实际使用时的周围温度(℃)
B:温度加速系数 温度加速系数 B,如果是最高使用温度以下时,可以用 B≈2来计算,升温 10℃,约 2倍的加速率; 设定较低的使用时的周围温度 T X,能保证长期的寿命。 2、印加电压与寿命 使用在线路板上的 RADIAL型、SNAP-IN型铝电解电容,若在最高使用温度及额定工作电压以下的情况 使用时,印加电压的影响比周围温度及直流电流的影响小,对于铝电解电容来说,实际计算可以不考虑 降压使用对寿命计算之影响。 3、纹波电流重迭时的寿命 铝电解电容比其他类的电容损失角大,会因纹波电流而内部发出热量。由于施加的纹波电压发出的热量 会导致温度上升,对寿命有很大影响,印加电流电压时的发热情况如下公式来计算:
电解电容使用寿命计算

电解电容使用寿命
影响电解电容寿命的因素有很多种,比如电解液的类型、工作状态、封装规格和使用环境等等,计算电容寿命公式:Lx=L0*KT*KR1*Kv
Lx:电容预期寿命
L0/LR:电容加速寿命,可以查阅电容规格书.
KT:环境温度影响系数(每升高10度,寿命降低一半)
KT等于2的(T0-Tx)/10次方
T0:电容最高工作温度(85或105)
Tx:电容实际工作温度
KR1/KR2:纹波电流影响系数.
KR1与L0对应,等于2的-T/5次方.T:纹波电流所引起的电容内部温升
Kv:工作电压影响系数
康富松电解电容(KFSON)厂家生产的电容器产品系列众多,品种齐全;产品包括:长寿命电解电容器、高频低阻电解电容、UPS 专用电解电容,LED专用电解电容器等,康富松产品被广泛用于LED驱动电源、UPS电源、工业控制设备等各大领域。
如何计算电解电容使用寿命

如何计算电解电容使用寿命
作为电子产品的重要部件电解电容,在开关电源中起着不可或缺的作用,它的使用寿命和工作状况与开关电源的寿命息息相关。
在大量的生产实践与理论探讨中,当开关电源中电容发生损坏,特别是电解电容冒顶,电解液外溢时,电源厂家怀疑电容质量有问题,而电容厂家说电源设计不当,双方争执不下。
以下就电解电容的使用寿命和使用安全作些分析,给电子工程师提供一些判断依据。
1、阿列纽斯(Arrhenius)
1.1 阿列纽斯方程
阿列纽斯方程是用来描述化学物质反应速率随温度变化关系的经验公式。
电解电容内部是由金属铝等和电解液等化学物质组成的,所以电解电容的寿命与阿列纽斯方程密切相关。
阿列纽斯方程公式:k=Ae-Ea/RT 或lnk=lnA—Ea/RT (作图法)
●K 化学反应速率
●R 为摩尔气体常量
●T 为热力学温度
●Ea 为表观活化能
●A 为频率因子
1.2 阿列纽斯结论
根据阿列纽斯方程可知,温度升高,化学反应速率(寿命消耗)增大,一般来说,环境温度每升高10℃,化学反应速率(K 值) 将增大2-10 倍,即电容工作温度每升高10℃,电容寿命减小一倍,电容工作温度每下降10℃,其寿命增加一倍,所以,环境温度是影响电解电容寿命的重要因素。
2、电解电容使用寿命分析
1)公式:
根据阿列纽斯方程结论可知,电解电容使用寿命计算公式如下:。
电解电容寿命计算方法

电解电容寿命计算方法寿命估算(Life Expectancy):电解电容在最高工作温度下,可持续动作的时间。
Lx=Lo*2(To-Ta)/10Lx=实际工作寿命Lo=保证寿命To=最高工作温度(85℃or105℃)Ta= 电容器实际工作周围温度Example:规范值105℃/1000Hrs65℃寿命推估:Lx=1000*2(105-65)/10实际工作寿命:16000Hrs高温负荷寿命(Load Life)将电解电容器在最高工作温度下,印加额定工作电压,经一持续规定完成时间后,须符合下列变化:Δcap:试验前之值的20%以内tanδ:初期特性规格值的200%以下LC :初期特性规格值以下高温放置寿命(Shelf Life):将电解电容器在最高工作温度下,经一持续规定完成时间后,须符合下列变化:Δcap: 试验前之值的20%以内tanδ:初期特性规格值的200%以下LC:初期特性规格值以下高温充放电试验(Charge/Discharge Test)将电解电容器在最高工作温度下,印加额定工作电压,经充电30秒后再放电330秒为一cycle,如此经1,000 cycles 后,须符合下列变化:Δcap : 试验前之值的10%以内tanδ : 初期特性规格值的175%以下LC : 初期特性规格值以下纹波负荷试验(Ripple Life)将电解电容器在最高工作温度下,印加直流电压及最大纹波电流(直流电压+最大涟波电压峰值=额定工作电压),经一持续规定完成时间后,须符合下列变化:Δcap : 试验前之值的20%以内tanδ : 初期特性规格值的200%以下LC : 初期特性规格值以下常用电解电容公式容抗 : XC=1/(2πfC) 【Ω】感抗 : XL=2πfL 【Ω】阻抗: Z=√ESR2+(XL-XC)2 【Ω】纹波电流: IR=√(βA△T/ESR) 【mArms】功率 : P=I2ESR 【W】谐振频率 : fo=1/(2π√LC) 【Hz】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Load life
If the capacitor`s max.operating temperature is at 105℃(85℃),then after applying capacitor`s rated voltage (WV) for Lo hours at 105℃(85℃),the capacitor shall meet the requirements in detail specification.
where L0 is called ”load life” or “useful life (lifetime) at 105℃(85℃)”.
L x=L0x2(To-Tx)/10x2—△Tx/5where △T x=△T0x(I x/I0)2
Ripple life:
If the capacitor`s max .operating temperature is at 105℃(85℃),then after applying capacitor`s rated voltage (WV) with the ripple current for Lr hours at 105℃(85℃),the capacitor shall meet the requirements in detail specification . where Lr is called ”ripple life” or ”useful ripple life (ripple lifetime) at105℃(85℃) ”.
Lx= L r x2(To-Tx)/10x2(△To-△Tx)/5where △T x=△T0x(Ix/I0)2
The (ripple) life expectancy at a lower temperature than the specified maximum temperature may be estimated by the following equation , but this expectancy formula does not apply for ambient below+40℃.
L0 = Expected life period (hrs) at maximum operating temperature allowed
Lr = Expected ripple life period (hrs) at maximum operating temperature allowed
Lx = Expected life period (hrs) at actual operating temperature
T0 = Maximum operating temperature (℃) allowed
Tx = Actual operating ambient temperature(℃)
Ix = Actual applied ripple current (mArms) at operating frequency fo (Hz)
I0 = Rated maximum permissible ripple current IR (mArms) x frequency multiplier (C f) at f0 (Hz)
△T0≦5℃= Maximum temperature rise (℃) for applying Io (mArms)
△Tc = Temperature rise (℃) of capacitor case for applying Ix (mA/rms)
△T x = Temperature rise (℃) of capacitor element for applying Ix (mArms)
= K c△T c= K c(T c-T x)
where T c is the surface temperature (℃) of capacitor case
Tx is ditto.
K c is transfer coefficient between element and case of capacitor
From table below:
Dia ≦8Φ10Φ12.5Φ13Φ16Φ18Φ22Φ25Φ30Φ35Φ
Kc 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.50 1.65
鋁電解電容器的壽命估算法則:
Lx=Lr*2(To-Tx)/10*2(△To-△Tx)/5
△T x=kc(Tc-Tx)
△T x=△T0*(Ix/I0)2
當取△T x=△T0*(Ix/I0)2時.上述公式為:
Lx=Lr*2(To-Tx)/10*2[1-(Ix/I c)2]
式中:
Lx:實際工作溫度下期望的壽命時間
Lr:在允許的最大工作溫度下期望的壽命時間
To:允許的最高工作溫度
Tx:實際工作時的環境溫度
△To:施加紋波電流Io時的最大溫升.一般≦5℃
△Tx:施加紋波電流Ix時電容器內部溫升
Ix:在工作頻率fo時實際施加的紋波電流
Io: 在工作頻率fo時.額定允許的最大紋波電流乘頻率系數所得出的紋波電流
Tc:電解電容器外殼的表面溫度
Kc:電容器內部和外殼之間的熱傳導系數
外殼直徑≦8Φ10Φ12.5Φ13Φ16Φ18Φ22Φ25Φ30Φ35ΦKc 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.50 1.65
公式使用限制:
1.溫度低於規定的最高溫度
2.不適用於環境溫度低於+40℃
电解电容寿命10℃法则
t1-t2
L2=L1*2*
△t
L1: 为电容器工作在t1温度时的寿命。
L2:为电容器工作在t2温度的寿命。
△t:温度系数。
工作温度下降10℃寿命延长一倍,反过来则缩短一倍。
例:2200/10V 10*20 105℃ WE 2000H
L1=2000H t1=105℃
105℃-85℃
当工作温度为85℃时则: L2=2000*2* =8000H
10℃
反激开关电源输出电容计算
1、设定开关工作频率:f=60kHz ,输出电流Io=1A ;根据变压器,输入、输出电压求实际最大占空比Dmax=0.457;
2、计算Toff 、Ton :
Toff=1/f*(1-Dmax)=9.05 Ton=1/f*Dmax=7.62
3、计算输出峰值电流:
Ipk=
D Io −12 =A 68.3543
.01
*2= 4、根据反激式输出波形,来计算输出电容量:
由上图波形可知:Io 减少、Uo 也减小,即输出电解电容主要维持t1到t2时间段电压。
设输出纹波为120mV 则:
Vp-p=Ipk*
*min min p
Vp Ton
Ipk C C Ton −=⇒
Cmin=3.68*
uF mV
us
7.23312062.7=
5、纹波电流,一般取输出电流的5%〜20%,即Inppl=20%*1=0.2A 实际每个电解电容的纹波电流
为0.2A ,故满足设计要求。
6、ESR=
Ω==−=∆∆m A
mV
Iripple p Vp I V 6002.0120 实际最大值 7、ESR=Ω==−−m C 2787
.23310*65min 10*656
6 经验公式
注:ESR 值需要根据实际纹波电流大小而定,实际使用值比计算值应小得多;大概是最大值的
20%左右或更小。
Vo
I o。