小波变换与多分辨率分析报告
小波变换分析降水时间序列的多分辨率特性研究

d e c o mp o s e d u s i n g t h e a t r o u s w a v e l e t t r a n s f o m .T r h e n ,Mu lt i — S c a l e E n t r o p y( MS E )a n a l y s i s t h a t h e l p s t o e l u c i d a t e s o m e
h t t p : / / w w w . j o c a . e n
小 波变 换 分 析 降水 时 间序 列 的 多分 辨率 特 性 研 究
何锡 玉 , 蔡 夕方 , 景嘉洲
( 海军海洋水文气象中心 , 北京 1 0 0 1 6 1 )
( } 通信作者电子邮箱 h e x y n e w @1 6 3 . c o n r )
J o u r n a l o f C o mp u t e r Ap p l i c a t i o n s
I S S N 1 0 o 1 . 9 O 8 1 C 0DE N J YI I DU
2O1 3. O6 . 3O
计算机应 用, 2 0 1 3 , 3 3 ( S 1 ) : 3 3 1 —3 3 4 文章编号 : 1 0 0 1 —9 0 8 1 ( 2 0 1 3 ) S 1 — 0 3 3 1 —0 4
t h a t t h e Ma nn . Ke n d a l l( MK1 r nk a c o r r e l a t i o n t e s t o f MS E C U l - V e s o f r e s i d u ls a a t v a i r o u s r e s o l u t i o n l e v e l s c o ld u d e t e r mi n e t h e
DIP08小波变换和多分辨率处理

大
学 信 息 与
H0 zG0z H1 zG1z 0 H0zG0z H1zG1z 2
消除混叠 消除幅度失真
通 信
矩阵表达
工
程 学 院 多 媒
G0 z
G1
z
H0 H1
z z
H0 H1
z z
2
0
令
H 0 z
H1
z
H0 H1
z z
H
m
z
体
通 信
g0n 1n h1n
&
g0 n 1 n2 h1n
大 学
常采用较高的分辨率观察
信 息
物体尺寸很大或者对比度很强,只需要较低
与 的分辨率
通
信 工 程
物体尺寸大小不易,强弱对比度同时存在, 则适合用不同的分辨率对其进行研究
学
院 多
多分辨率处理
媒 体
图象金字塔
通 信
子带编码
中 心
哈尔变换
门
爱
东
Digital Image Processing 第八章 小波变换,Men Aidong, Multimedia Telecommunication Centre, BUPT
学 院
具有双正交性
多
表 完美重建滤波器族
媒
体
通
信
中
心
门
爱
东
Digital Image Processing 第八章 小波变换,Men Aidong, Multimedia Telecommunication Centre, BUPT
17
北
子带编码
京
邮 电
一维滤波器用于二维可分离滤波器
小波分析课件第四章多分辨分析和正交小波变换

其他领域
正交小波变换还广泛应用于金 融、医学、地球物理等领域的 数据分析和处理。
03
多分辨分析与正交小波变换的关系
多分辨分析与正交小波变换的联系
两者都是小波分析中的重要概念,共同构成了小波 分析的基础。
多分辨分析为正交小波变换提供了理论框架,正交 小波变换是多分辨分析的具体实现。
正交小波变换可以看作是多分辨分析的一种特例, 其中尺度函数和小波函数都是正交的。
正交小波变换的应用场景
ቤተ መጻሕፍቲ ባይዱ01
02
03
04
信号处理
正交小波变换在信号处理中主 要用于信号去噪、压缩和特征 提取等。
图像处理
正交小波变换在图像处理中主 要用于图像压缩、去噪、增强 和特征提取等。
数据压缩
正交小波变换可用于数据压缩 领域,特别是对于非平稳信号 和图像数据的压缩,具有较好 的压缩效果和重建精度。
多分辨分析与正交小波变换的区别
02
01
03
多分辨分析主要关注的是函数在不同尺度上的表示, 而正交小波变换更注重在不同尺度上的细节信息。
正交小波变换具有更好的灵活性和适应性,可以针对 特定问题设计特定的小波函数和尺度函数。
正交小波变换在信号处理、图像处理等领域的应用更 为广泛,而多分辨分析更多用于理论分析。
正交小波变换的算法与实现
算法
正交小波变换的算法主要包括一维离散正交小波变换和二维离散正交小波变换。一维离散正交小波变换的算法包 括Mallat算法和CWT算法等,而二维离散正交小波变换的算法主要基于图像分块处理。
实现
正交小波变换的实现通常需要使用数字信号处理库或图像处理库,如Python的PyWavelets库或OpenCV库等。
小波分析课件第四章多分辨分析和正交小波变换

• 多分辨分析概述 • 正交小波变换原理 • 多分辨分析与正交小波变换的关系 • 正交小波变换的实现方法 • 正交小波变换的实例分析
01
多分辨分析概述
定义与特点
定义
多分辨分析是从小尺度到大尺度逼近 研究对象的一种分析方法,它能够同 时揭示研究对象在不同尺度上的特征 。
多分辨分析在信号处理中能够提 供更加准确和全面的信息,有助 于更好地理解和分析信号。
多分辨分析的历史与发展
1 2 3
历史回顾
多分辨分析的思想起源于20世纪80年代,随着 小波理论的不断发展,多分辨分析逐渐成为研究 热点。
当前研究
目前,多分辨分析在理论和应用方面都取得了重 要进展,广泛应用于图像处理、信号处理、数值 计算等领域。
模式识别
正交小波变换可以用于特征提取和 模式分类等任务。
03
02
图像处理
正交小波变换可以用于图像的压缩、 去噪、增强等处理。
数值分析
正交小波变换可以用于求解偏微分 方程、积分方程等数学问题。
04
03
多分辨分析与正交小波变换的关系
多分辨分析与正交小波变换的联系
两者都基于多尺度分析思想
多分辨分析和小波变换都是从不同尺度上分析信号,能够捕捉到 信号在不同尺度上的特征。
优点
连续小波变换能够更好地适应信号的突变和非线性特性, 能够更准确地描述信号的局部特征。
缺点
连续小波变换的计算复杂度较高,需要更多的计算资源和 时间,同时对于非连续信号的处理也存在一定的困难。
基于滤波器的小波变换
01 02
定义
基于滤波器的小波变换是一种通过设计特定的滤波器来实现小波变换的 方法,通过滤波器对信号进行卷积操作,可以得到不同尺度上的小波系 数。
小波与多分辨率分析(冈萨雷斯)

江西财经大学
N*N哈尔变换矩阵的第i行包含了元素
,其中
江西财经大学
令N=4,k、p和q的值为
则4*4变换矩阵H4为:
江西财经大学
傅里叶变换的缺点
傅里叶分析理论对于有限平稳的周期信号比较有 效,而对于非平稳信号的分析效果不够好。主要原因 有:
1、三角基函数在时域上不能局部化,无法实现时 域上的局部分析。由于信号的傅里叶变换代表的是该 信号在某个频率w的谐波分量的振幅,它是由整个信号 的形态所决定的,因此无法从傅里叶变换值确定该信 号在任一时间上的相关信息。
江西财经大学
在小波分析中,近似值是大的缩放因子计算的系数,
表示信号的低频分量,而细节值是小的缩放因子计算的系
数,表示信号的高频分量。实际应用中,信号的低频分量 往往是最重要的,而高频分量只起一个修饰的作用。如同 一个人的声音一样, 把高频分量去掉后,听起来声音会发 生改变,但还能听出说的是什么内容,但如果把低频分量 删除后,就会什么内容也听不出来了。
江西财经大学
3、傅里叶变换不能同时进行时域和频 域的分析。这是因为信号经过傅里叶变 换后,它的时间特性消失,只能进行频 域信息分析。
江西财经大学
什么是小波变换
像傅立叶分析一样,小波分析就是把一个信号分解为将 母小波经过缩放和平移之后的一系列小波,因此小波是小
波变换的基函数。小波变换可以理解为用经过缩放和平移
江西财经大学
江西财经大学
3.惟一包含在所有 中的函数是f(x)=0 如果考虑最粗糙的展开函数(即 ),惟一可表达的函数 是没有信息的函数,即
4.任何函数都可以以任意精度表示 所有可度量的、平方可积函数都可以用极限
表示
江西财经大学
小波变换与多分辨率分析课件

有效地去除信号中的噪声。
02
小波变换在信号压缩中的应用
小波变换可以将信号分解为近似分量和细节分量,通过去除细节分量,
可以实现信号的压缩。
03
小波变换在信号恢复中的应用
小波变换可以捕捉到信号中的突变部分,通过逆变换,可以恢复出原始
信号。
多分辨率分析在图像处理中的实验演示
多分辨率分析在图像去噪中的应用
领域也有广泛的应用。
算法复杂度
小波变换的算法复杂度相对 较低,容易实现,而多分辨 率分析的算法复杂度较高, 实现相对困难。
小波变换与多分辨率分析的未来展望
01
应用领域拓展
02
算法优化
ቤተ መጻሕፍቲ ባይዱ
03
结合其他技术
小波变换和多分辨率分析在信号处理、 图像处理、数据压缩等领域已经得到 广泛应用,未来随着技术的不断发展, 它们的应用领域将会更加广泛。
小波变换的应用
小波变换在图像处理中有着广泛的应用,例如图像压缩、去噪、
01
重建等。
02
小波变换在音频处理中也得到了广泛应用,例如音频压缩、去
噪、特征提取等。
小波变换还被广泛应用于信号处理、数字水印、雷达信号处理
03
等领域。
02
多分辨率分析基
多分辨率分析的定 义
定义概述
多分辨率分析是信号处理中的一种重要技术,它通过在不同尺度上分析信号,能够同时获得信号的时间和频率信息。
定义背景
随着信号处理技术的发展,人们逐渐认识到仅通过傅里叶分析无法完全揭示信号的时频特性,因此需要一种更全面的 分析方法。
定义目的 多分辨率分析旨在提供一种框架,将信号分解成不同尺度的成分,以便更精细地描述信号的时频特性。
02-多分辨率信号分解理论:小波变换

一个多分辨率信号分解理论:小波表示摘要:多分辨率表示对于分析图像信号内容十分有效,我们研究了在一给定分辨率下逼近信号算子的性能。
显示出在分辨率12+j 和j 2下逼近信号的信息不同,通过在小波标准正交基2L 上分解这一信号可以将其提取。
小波标准正交基是一系列函数,它由扩大和转化唯一函数)(x ψ来构建。
这一分解定义了一个正交多尺度表示叫做小波表示。
它由金字塔算法来计算,其基于正交镜像滤波器的卷积。
对于图像,小波表示区分了几种空间定位。
我们研究这一表示在数据压缩,图像编码,结构辨别及分形分析上的应用。
关键词-编码,分形,多分辨率金字塔,正交镜像滤波器,结构辨别,小波变换 1. 引言在计算机视觉方面,很难由图像像素的灰度强度来直接分析一个图像的信息内容。
的确,这一数值依赖于照明条件。
更为重要的是图像强度的局部变化。
邻居的大小即对比计算处必须被采用于我们要分析的物体大小。
这一尺寸为测量图像局部变化定义了参考分辨率。
总的来说,我们想要识别的结构具有差异很大的尺寸。
因此,定义分析图像的优先或最优分辨率是不可能的。
一些研究人员发明了图像比对算法用来处理不同分辨率下的图像。
为这一目的,一种算法可以识别图像信息至一系列在不同分辨率下显现的细节。
给定一个提高分辨率的序列j r ,在分辨率j r 下的图像细节被定义为它的分辨率j r 下逼近与低分辨率1-j r 下逼近之间的信息差别。
多分辨率分解使得我们可以获得图像的尺度不变性演绎。
图像尺度随着场景与相机光学中心间的距离而变化。
当图像尺寸修改时,我们对于图像的演绎不应该变化。
多分辨率分解可以满足局部尺度不变性如果分辨率参量j r 的序列以指数形式变化。
我们假设存在分辨率一步R ∈α对于所有整数j ,j j r α=。
如果相机靠近场景时间为α,则每一物体被投影到一个2α的区域比相机焦平面更大。
即每一物体以α倍大的分辨率度量。
因此,新图片在分辨率j α下细节与先前在分辨率1+j α下图像细节相一致。
007-小波分析(第二讲)-多分辨率分析与正交小波变换

ψ m,n构成 一个框架
ψ m,n构成 一个正交基
non-orthogonal orthogonal DWT DWT 冗余 无冗余
北京科技大学 机械工程学院
18/ 73
Haar小波
1, 0 t 1/2 (t) - 1, 1/2 t 1 0 , others
小波进行重构的基本条件
北京科技大学 机械工程学院
6/ 73
信号的重构---如何进行离散小波逆变换?
连续小波变换的逆变换
x(t ) 1 C
0
da 1 t WT (a, ) ( )d a 2 R a a
( w)
w
2
R
dw
只要满足“可容许条件”,即可进行逆变换
dense
j
V
j
{0}
f Vn f V0
f (2 n t ) V0
f (t n) V0 , 对所有n Z
正交基存在性 ψV0 使得{ψ(tn):nZ}是V0的 正交基。
可放宽为Reisz基,因为由Reisz 基可构造出一组正交基来
北京科技大学 机械工程学院 27/ 73
1986年秋,Mallat和Meyer提出了MRA框架
统一了在此之前的小波构造 提供了构造新的小波基方便的工具
北京科技大学 机械工程学院
22/ 73
小结
连续小波离散小波的关键问题:
离散的方式 尺度因子、平移因子 离散后构成框架、Reisz基或正交基 信号的重构 母小波的构造
14/ 71
小波分析中的框架
小波框架 小波母函数,经过平移和伸缩后构成一系列小波函 数,实际中都要将平移和伸缩因子离散化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京化工大学
小波变换使得图像压缩、传输和分析变得更快捷! W.X.J
傅里叶变换与小波变换
傅里叶变换的基础函数是正弦函数。 小波变换基于一些小型波,称为小波,具有变化的频率和 有限的持续时间。
傅里叶变换与小波变换
频域分析具有很好的局部性,但空间域上没有局部化功能。 傅里叶变换反映的是图像的整体特征。
尺度伸缩和整数平移函数定义为:
j,k (x) 2 j/2(2 j x k)
j z,k z
则集合{ j,k (x)}是(x)的展开函数集。从上式可以看出,
k决定了 j,k (x)在x轴的位置,j决定了 j,k (x)的宽度,即
沿x轴的宽或窄的程度,而2 j /2 控制其高度或幅度。由于
5.2 多分辨率展开
可展开的函数组成了一个函数空间,被称为展开 集合的闭合跨度,表示为:
V Spank x
k
f (x)V表示f (x)属于k x的闭合跨度
f (x) akk (x)
k
5.2 多分辨率展开
尺度函数
设(x)是平方可积函数,即(x) L2 (R),实数二值
5.1.2 子带编码
子带图像编码的二维4频段滤波器组
5.1.2 子带编码
5.1.2 子带编码
5.1.3 哈尔变换
哈尔变换 哈尔基函数是最古老也是最简单的正交小波。哈 尔变换本身是可分离的,也是对称的,可以用下 述矩阵形式表达: T=HFH
其中,F是一个N×N图像矩阵,H是N×N变换矩阵,T 是N×N变换的结果
2.渐进完全性: Vj {0}; Vj L2 (R)
jZ
jZ
3.伸缩规则性:f (x) Vj f (2x) Vj1, j Z
1 , z 0,1
N
hk (z) hpq (z)
1
22p
2 p
2
N
0
(q 1) / 2 p z (q 0.5) / 2 p (q 0.5) / 2 p z q / 2 p 其它
5.1.3 哈尔变换
N=4时
kpq 000 101 211 312
5.1.3 哈尔变换
变换矩阵H包含基函数 hk (z) ,它定义在连续闭区
间 z 0,1, k 0,1,2,..., N 1 N 2n
0 p n 1, p 0时,q 0或1 k 2p q 1
p 0时,1 q 2 p
h0 z h00(z)
1 1 1 1
H4
1
1
4 2
1 2
1 0
1
0
0
0
2
2
5.1.3 哈尔变换
N=2时
H2
1 1 2 1
1对图像的多分辨率分解
1、其局部统计数据相对稳定; 2、大多数值为零,便于压缩; 3、原始图像的粗和细分辨率近 似可以从中提取。
一个乐谱,不光阐明了要演奏的音符(或频率),而且阐 明了何时要演奏。而傅里叶变换,只提供了音符或频率信 息,局部信息在变换过程中丢失了。
与Fourier变换相比,小波变换是空间(时间)和频率的局部 变换,它通过伸缩平移运算对信号逐步进行多尺度细化, 最终达到高频处时间细分,低频处频率细分,能自动适应 时频信号分析的要求,从而可聚焦到信号的任意细节。
5.1.1 图像金字塔
512
高斯和拉普拉斯金字塔
5.1.2 子带编码
在子带编码中,一 幅图像被分解成一 系列限带分量的集 合,称为子带,它 们可以重组在一起 无失真地重建原始 图像。
子带通过对输入进 行带通滤波而得到。
双通道子带编码和重建
5.1.2 子带编码
•完美重建滤波器族
•QMF 正交镜像滤波器 •CQF 共轭正交滤波器
一个金字塔图像结构
5.1.1 图像金字塔
高斯和拉普拉斯金字塔编码
首先对图像用5*5的高斯模板作低通滤波,滤 波后的结果从原图像中减去,图像中的高频细 节则保留在差值图像里;然后,对低通滤波后 的图像进行间隔采样,细节并不会因此而丢失
5.1.1 图像金字塔
高斯和拉普拉斯金字塔编码
拉普拉斯金字塔编码策略
5.2 多分辨率展开
序列展开
信号或函数常常可以被很好地分解为一系列展开 函数的线性组合。
f (x) akk (x)
k
其中,k是有限或无限和的整数下标,ak 是具有实数值
的展开系数,k (x) 是具有实数值的展开函数 如果展开是唯一的,f(x)只有一个ak系数与之对应,则 k (x) 称为基函数。
5.1 背景
为什么需要多分辨率分析? 如果物体的尺寸很小或对比度不高 高分辨率 如果物体尺寸很大获对比度很强 低分辨率 通常物体尺寸有大有小,或对比有强有弱同时存在
5.1.1 图像金字塔
一幅图像的金字塔是一系列以金字塔形状 排列的分辨率逐步降低的图像集合
金字塔的底部是待处理图像 的高分辨率表示,而顶部是 低分辨率近似。当向金字塔 的上层移动时,尺寸和分辨 率就降低。
包含在子空间中。
哈尔尺度函数
考虑单位高度、单位宽度的 尺度函数:
x
1 0
0 x 1 其它
V0展开函数都属于V1, V0是V1的一个子空间。
5.2 多分辨率展开
多分辨率分析是指满足下列性质的一系列子空间{Vj}, j Z
1.一致单调性: V0 V1 V2
5.2 多分辨率展开
函数的伸缩和平移
给定一个基本函数 (x) ,则 (x) 的伸缩和平移公式 可记为:
a,b (x) (ax b)
5.2 多分辨率展开
函数的伸缩和平移
例:给定函数
(
x)
sin(
0
x)
0 ≤ x 2
其它
则2, (x)的波形如下图所示
函数的伸缩和平移
j,k (x)的形状随j发生变化,(x)被称为尺度函数。
5.2 多分辨率展开
尺度函数
任何j,k上的跨度子空间: Vj Span j,k x k
j增大时,用于表示子空间函数的 j,k x 范围变窄,x有较小
变化即可分开。
随j增加 V j 增大,允许有变化较小的变量或较细的细节函数