人教版数学九年级上册《二次函数的图像和性质》第二课时PPT
合集下载
人教版九年级数学上册《二次函数y=ax2+bx+c的图象和性质》(第2课时)课件

3.已知二次函数y=ax2+bx+c,当x=0时,y=1;当x=-1时,y =6;当x=1时,y=0.求这个二次函数的解析式.
解:由题意,得aa+-bb++cc==06,,解得ab==2-,3,
c=1,
c=1,
∴二次函数的解析式为y=2x2-3x+1
知识点2:利用“顶点式”求二次函数的解析式 4.已知某二次函数的图象如图所示,则这个二次函数的解析式 为( D ) A.y=2(x+1)2+8
B.y=18(x+1)2-8
C.y=29(x-1)2+8 D.y=2(x-1)2-8
5.已知抛物线的顶点坐标为(4,-1),与y轴交于点(0,3),求 这条抛物线的解析式.
解:由题意,设二次函数的解析式为y=a(x-4)2-1,把(0,3)代入 得3=a(0-4)2-1,解得a=14,∴y=14(x-4)2-1 知识点3:利用“交点式”求二次函数的解析式 6.如图,抛物线的函数表达式是( D )
A.y=12x2-x+4 B.y=-12x2-x+4 C.y=12x2+x+4 D.y=-12x2+x+4
7.已知一个二次函数的图象与x轴的两个交点的坐标分别为(-1, 0)和(2,0),与y轴的交点坐标为(0,-2),求这个二次函数的解析 式.
解:由题意,设二次函数解析式为y=a(x+1)(x-2),把(0,-2) 代入得-2=-2a,∴a=1,∴y=(x+1)(x-2),即y=x2-x-2
8.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能 是( D )
A.y=x2-x-2 B.y=-12x2-12x+2 C.y=-12x2-12x+1 D.y=-x2+x+2
9.二次函数y=-x2+bx+c的图象的最高点是(-1,-3),则b,c
26.2二次函数的图象与性质(第2课时)课件(共12张PPT)

为0 。
3.函数y=3x2+5与y=3x2的图象的不同之处是( C
)
A.对称轴
B.开口方向
C.顶点
D.形状
4.已知抛物线y=2x2-<1上有两点(x1,y1 ) ,(x1,y1 ) 且x1<x2<0,则y1 y2(填“<”或“>”)
5.已知一个二次函数图像的顶点在y轴上,并 且离原点1个单位,图像经过点(–1,0),求该 二次函数解析式。
1.5
1
0.5
y3x2 1
1
2
-0.5
-1
在同一直角坐标系中
画出函数 y 1 x2 y 1x2 2 3
5 4
y
3 y 1 x2 2
3
3 2
的图像
1
x
–5 –4 –3 –2 –1O –1
–2
y 1x2 2
–3
3
–4
–5
12345
y 1 x2 2 3
y 1 x2 3
试说出函数y=ax2+k(a、k是常数,a≠0)的图 象的开口方向、对称轴和顶点坐标,并填写下 表.
1
-6 -4 -2
2
4
6
x y=3x2 y=3x2–1
… –1 –0.6
…3
1.08
…2
0.08
(2)二次函数 y=3x²-1 的图 象与二次函数
y=3x²的图象有 什么关系?
-2
-1
–0.3
0
0.3
0.27
0
0.27
–0.73 – 1 –0.73
y 3x2
2
0.6 1 … 1.08 3 … 0.08 2 …
谢谢观赏
You made my day!
人教版九年级上数学22.二次函数的图像和性质课件(21张)

6
5
坐标平面中描点(x,y),
4
再用平滑曲线顺次连
3 2
接各点,就得到y=x2的
1 -5 -4 -3 -2 -1 o 1
2
3
4
5
x
图像.
请画函数y=-x2的图像 解:(1) 列表 x … -3 -2 -1 0 1 2 3 …
(2) 描点 y=-x2 … -9 -4 -1 0 -1 -4 -9 …
(3) 连线
当x=0时,y最小值=0
当x=0时,y最大值=0
在对称轴左侧递减 在对称轴右侧递增
在对称轴左侧递增 在对称轴右侧递减
对称轴、顶点、最低点、最高点
y x2
这条抛物线关于 y轴对称,y轴就 是它的对称轴.
对称轴与抛物 线的交点叫做 抛物线的顶点.
y x2
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
都是轴对称图形,y轴是它们的对称轴.
抛物线与对称轴的交点(0,0)叫做抛物线的顶点.
抛物线y=x2的顶点(0,0)是它的最低点.
抛物线y=-x2的顶点(0,0)是它的最高点.
例2:在同一直角坐标系中,画出函数 y 1 x2, y 2x2
2
的图象. 解:分别填表,再画出它们的图象,如图
x ··· -4 -3 -2 -1 0 1 2 3 4 ···
1、函数y=2x2的图象的开向口上 ,对称y轴轴 ,顶点(0是,0) ; 2、函数y=-3x2的图象的开口向下 ,对称轴y轴 ,顶点(是0,0) ;
3、已知抛物线y=ax2经过点A(-2,-8).
(1) 求此抛物线的函数解析式 (2)写出这个二次函数图象的对称轴,顶点坐标及开口方向;
人教版九年级数学上册 22.1 二次函数的图象和性质课时 课件(共30张PPT)

对称轴:
x b 2a
课堂小结
二次函数 y=ax2+bx+c 的图象与性质:
开口方向 顶点坐标 对称轴
a>0 向上
b 2a
,
4ac 4a
b2
x= b
2a
增减性
最值
a<0 向下
对接中考
关于二次函数 y=2x2+4x-1,下列说法正确的是( D )
A.图象与 y 轴的交点坐标为(0,1)
B.图象的对称轴在 y 轴的右侧
10
5
O
5
10 x
新知探究 知识点1
结合二次函数 y 1 x2 6x 21 的图象,说出其性质. 2
y
x=6
10 当 x<6 时,y 随 x 的增大而减小;
当 x>6 时,y 随 x 的增大而增大.
5
O
5
10 x
新知探究 跟踪训练
知识点2 我们如何用配方法将一般式 y=ax2+bx+c(a≠0) 化成顶点式 y=a(x-h)2+k?
知识点2
y
x b 2a
O
x
如果 a>0,
当
x<
b 2a
时,y
随
x
的增大而减小;
当
x>
b 2a
时,y
随
x
的增大而增大.
知识点2
y x b
2a
O
x
如果 a<0,
当 x< b 时,y 随 x 的增大而增大;
2a
当 x> b 时,y 随 x 的增大而减小.
2a
跟踪训练
已知二次函数 y=-2x2+4x+3,请回答下列问题: (1)试确定该函数图象的开口方向、对称轴和顶点坐标; (2)在平面直角坐标系中,画出二次函数 y=-2x2+4x+3 的图象,并指出抛物 线 y=-2x2+4x+3 是由抛物线y=-2x2 经过怎样的平移得到的; (3)对于二次函数 y=-2x2+4x+3,当 x 取何值时,y 随 x 的增大而减小?
《二次函数的图像和性质》PPT课件 人教版九年级数学

2
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
《二次函数y=ax2+bx+c的图像和性质》二次函数PPT精品课件

和一次项同时提取公因数a,再进行配方会更简便.
3. 将二次函数y=-
1
4
x2+x+4写成y=a(x-h)2+k的形
式,并写出其开口方向、顶点坐标和对称轴.
解:y=-
x2+x+4=-
(x2-4x+4-4)+4=-
(x
-2)2+5,
∴此抛物线的开口向下,顶点坐标是(2,5),对称轴为直
线x=2.
2-_______.
=(x+_______)
4
15
2. 配方:y=2x2-4x+1
=2(x2-2x)+1
=2(x2-2x+______________-______________)+1
1
1
2-______________.
=2(x-______________)
1
1
课堂导练
【例1】利用配方法把抛物线y=x2-6x-3化为y=a(x-h)2
形式,并写出其开口方向、顶点坐标和对称轴.
解:y=x2-8x+16-16=(x-4)2-16,
∴该抛物线开口向上,顶点坐标为(4,-16),对称轴
为直线x=4.
【例2】用配方法把二次函数y=x2-x+2化成顶点式.
解:y=x2-x+2=x2-x+
即y= −
2
+
-
+2= −
新知探究
课堂小结
这节课你收获了什么? 还有什么疑惑?
新知探究
新知探究
新知探究
2
+
,
.
思路点拨:利用一次项系数的一半的平方来凑完全平方式
3. 将二次函数y=-
1
4
x2+x+4写成y=a(x-h)2+k的形
式,并写出其开口方向、顶点坐标和对称轴.
解:y=-
x2+x+4=-
(x2-4x+4-4)+4=-
(x
-2)2+5,
∴此抛物线的开口向下,顶点坐标是(2,5),对称轴为直
线x=2.
2-_______.
=(x+_______)
4
15
2. 配方:y=2x2-4x+1
=2(x2-2x)+1
=2(x2-2x+______________-______________)+1
1
1
2-______________.
=2(x-______________)
1
1
课堂导练
【例1】利用配方法把抛物线y=x2-6x-3化为y=a(x-h)2
形式,并写出其开口方向、顶点坐标和对称轴.
解:y=x2-8x+16-16=(x-4)2-16,
∴该抛物线开口向上,顶点坐标为(4,-16),对称轴
为直线x=4.
【例2】用配方法把二次函数y=x2-x+2化成顶点式.
解:y=x2-x+2=x2-x+
即y= −
2
+
-
+2= −
新知探究
课堂小结
这节课你收获了什么? 还有什么疑惑?
新知探究
新知探究
新知探究
2
+
,
.
思路点拨:利用一次项系数的一半的平方来凑完全平方式
人教版九年级数学上册22.2:二次函数y=ax2+bx+c的图像与性质课件 (共46张PPT)

例1:指出抛物线:y x2 5x 4
的开口方向,求出它的对称轴、顶点坐 标、与y轴的交点坐标、与x轴的交点坐 标。并画出草图。
对于y=ax2+bx+c我们可以确定它的开口 方向,求出它的对称轴、顶点坐标、与y 轴的交点坐标、与x轴的交点坐标(有交 点时),这样就可以画出它的大致图象。
方法归纳
② c=0 <=>图象过原点;
③ c<0 <=>图象与y轴交点在x轴下方。
⑷顶点坐标是( b , 4ac b2 )。
2a
4a
(5)二次函数有最大或最小值由a决定。
当x=- —2ba 时,y有最大(最小)
值 y= 4ac-b2
______________________
4a
例2、已知函数y = ax2 +bx +c的图象如 下图所示,x= 1 为该图象的对称轴,根
的平方
整理:前三项化为平方形 式,后两项合并同类项
a x
b
2
4ac
b2
.
化简:去掉中括号
2a 4a
函数y=ax²+bx+c的对称轴、 顶点坐标是什么?
y ax2 bx c的对称轴是:x b 2a
顶点坐标是:( b , 4ac b2 ) 2a 4a
1. 说出下列函数的开口方向、对称轴、顶 点坐标:
D. 4ac-b2 >0-1 o 1 x 4a
5.若把抛物线y = x2 - 2x+1向右平移2个单位,再向
下平移3个单位,得抛物线y=x2+bx+c,则( B )
A.b=2 c= 6
B.b=-6 , c=6
C.b=-8 c= 6
D.b=-8 , c=18
人教版九年级初中数学上册第二十二章二次函数-二次函数的图像和性质PPT课件全文

你还记得如何画出一次函数的图像吗?
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:
…
-2
-1
0
1
2
…
…
4
1
0
1
2
…
新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:
…
-2
-1
0
1
2
…
…
4
1
0
1
2
…
新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.类比探究二次函数 y = ax 2 的图象和性质
归纳: 如果 a>0,当 x<0 时,y 随 x 的增大而减小, 当x>0 时, 随 x 的增大而增大; 如果 a<0,当 x<0 时,y 随 x 的增大而增大, 当x>0 时,y 随 x 的增大而减小.
3.巩固练习
说出下列抛物线的开口方向、对称轴和顶点:
问题4 类比 a>0 时的研究过程,画图研究当 a<0 时,二 次函数 y = ax 2 的图象特征.
2.类比探究二次函数 y = ax 2 的图象和性质
问题5 你能说出二次函数 y = ax 2 的图象特征和性质吗?
2.类比探究二次函数 y = ax 2 的图象和性质
归纳: 一般地, 抛物线 y = ax 2 的对称轴是 y 轴, 顶点是 原点. 当 a>0 时, 抛物线开口向上,顶点是抛物线的最 低点; 当 a<0 时, 抛物线开口向下,顶点是抛物线的最 高点. 对于抛物线 y = ax 2 ,|a|越大,抛物线的开口越 小.
• 学习重点: 观察图象,得出二次函数 y = ax 2 的图象特征和性质.
1.复习研究函数的一般方法
问题1 你认为我们应该如何研究函数的图象和性质?
2.类比探究二次函数 y = ax 2 的图象和性质
问题2 类比一次函数的研究内容和研究方法,画出二次函 数 y = x 2 的图象,你能说说它的图象特征和性质吗?
(1) y 3x2; 开口向上、y 轴、原点.
(2) y 3x2; 开口向下、y 轴、原点. (3) y 1 x2 ; 开口向上、y 轴、原点.
3 (4) y 1 x2.开口向下、y 轴、原点.
3
3.巩固练习
抛物线 y 2 x2,其对称轴左侧,y 随 x 的增大而 3
课件说明
• 本节课由最特殊最简单的二次函数出发, 通过类比一次函数的图象和性质的研究内 容和研究方法,从特殊到一般地对二次函 数的图象和性质进行探究,继续加深对函 数的一般性认识.
课件说明
• 学习目标: 1.会用描点法画出形如 y = ax 2 的二次函数图象,了 解抛物线的有关概念; 2.通过观察图象,能说出二次函数 y = ax 2 的图象特 征和性质; 3.在类比探究二次函数 y = ax 2 的图象和性质的过程 中,进一步体会研究函数图象和性质的基本方法 和数形结合的思想.
2.类比探究二次函数 y = ax 2 的图象和性质
问题3 在同一直角坐标系中,画出函数 y 1 x2,y 2x2
2
的图象,这两个函数的图象与函数 y = x 2 的图象相比, 有什么共同点?有什么不同点?当 a>0 时,二次函数 y = ax 2 的图象有什么特点?
2.类比探究二次函数 y = ax 2 的图象和性质
增大 ;在对称轴的右侧,y 随 x 的增大而 减小 .
4.小结
(1)本节课学了哪些主要内容? (2)本节课是如何研究二次函数 y = ax 2 的图象和 性质的?
5.布置作业
教科书习题 22.1 第 3,4 题.