3-5三角函数图像与应用
初中数学 函数模块3-5--锐角三角函数讲义(含答案解析)

锐角三角函数题型一:正切的概念在直角三角形ABC 中,90C ∠=︒,A ∠,B Ð,C ∠所对应的边分别是a ,b ,c ,则正弦值等于对边与邻边的比值.即tan aA b=,根据直角三角形三边关系易证,0tan A <,()090︒<∠<︒A ①角的正切值例1.1如图,点E 在正方形ABCD 的边AB 上,若1EB =,2EC =,则tan DCE ∠为()A .12B .2C D 【详解】∵四边形ABCD 是正方形,∴90B ∠=︒,//AB CD ∴DCE BEC ∠=∠,∵1EB =,2EC =,∴BC ==,∴tan tan ∠=∠==BCDCE BEC BE;故答案选D .变式1.11.如图,在直角BAD 中,延长斜边BD 到点C ,使12DC BD =,连接AC ,若tanB=53,则tan CAD ∠的值()A.3B.5C.13D.15【答案】D 【解析】【分析】延长AD ,过点C 作CE AD ⊥,垂足为E ,由5tan 3B =,即53AD AB =,设5AD x =,则3AB x =,然后可证明CDE BDA ∆∆∽,然后相似三角形的对应边成比例可得:12CE DE CD AB AD BD ===,进而可得32CE x =,52DE x =,从而可求1tan 5EC CAD AE ∠==.【详解】解:如图,延长AD ,过点C 作CE AD ⊥,垂足为E ,5tan 3B =,即53AD AB =,∴设5AD x =,则3AB x =,CDE BDA ∠=∠Q ,CED BAD ∠=∠,CDE BDA ∴∆∆∽,∴12CE DE CD AB AD BD ===,32CE x ∴=,52DE x =,152AE x ∴=,1tan 5EC CAD AE ∴∠==.故选:D .【点睛】本题考查了锐角三角函数的定义,相似三角形的判定和性质以及直角三角形的性质,是基础知识要熟练掌握,解题的关键是:正确添加辅助线,将CAD ∠放在直角三角形中.②网格图中求正切值例1.2如图,ABC 的顶点在正方形网格的格点上,则tan A 的值为________.【详解】解:如图,由格点知:AB ==,AC ∵12=⋅⋅ ABC S BC AE 1432=⨯⨯6=,12=⋅⋅ ABC S AB CD 12=⨯=,6=,∴CD =.∴AD ==.∴tan 2==CDA AD.故答案为:2.变式1.22.如图,小正方形的边长均为1,A 、B 、C 分别是小正方形的三个顶点,则sin BAC ∠的值为()A.12B.2C.1D.【答案】B 【解析】【分析】连接BC ,先根据勾股定理求得AB 、BC 、AC 的长,然后再利用勾股定理逆定理证得ABC ∆是直角三角形,最后根据正弦的定义解答即可【详解】解:如图:连接BC ,每个小正方形的边长均为1,AB ∴==BC ==AC ==,222AB BC AC += ,ABC ∆∴是直角三角形,sin2BC BAC AC ∴∠===.故答案为B .【点睛】本题主要考查了勾股定理、勾股定理逆定理以及正弦的定义,根据题意证得ABC ∆是直角三角形是解答本题的关键.③利用图形的变换求正切值例1.3如图,矩形ABCD 中,5AB =,3BC =,E 为边AB 上一点,且3BE =,DAE△沿DE 翻折得到DFE △,连接BF ,tan ∠EFB 的值为________.【详解】解:过点F 作FO AO ⊥于点O ,作FH AB ⊥于点H ,过B 作BG FE ⊥于点G ,∵折叠∴90DAE DFE ∠=∠=︒∴180︒∠=-∠ADF AEF ∵180∠=︒-∠FEB AEF ∴ADF FEB∠=∠∵90∠=∠=︒EGB DOF ,3DF AD ==,3BE =∴DF BE=∴() ≌DOF EGB AAS ∴=GB OF532AE AB BE =-=-=∵13112222=⋅==⋅=⋅= FEB S BE FH FH FE GB AE GB GB ∴32GB FH =∵四边形OAHF 中,四个内角均为90︒,∴四边形OAHF 是矩形,∴=FH AO ∵=GB FO ∴32=FO AO3=∴22(3)9+-=FO AO ∴2413=AO 或0AO =(舍去)∴241531313==-=OD EG ∴3243621313==⨯=FO GB Rt FGB V 中,363613tan 1511213GB GFB GF ∠===-∴36tan 11∠=EFB 故答案为:3611.变式1.33.如图,在菱形纸片ABCD 中,3AB =,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则tan EFG ∠的值为________.【答案】3【解析】【分析】连接AE 交GF 于O ,连接BE ,BD ,则△BCD 为等边三角形,设AF=x=EF ,则BF=3-x ,依据勾股定理可得Rt △BEF 中,BF 2+BE 2=EF 2,解方程(3-x )2+2=x 2,即可得到EF=218,再根据Rt △EOF 中,=即可得出tan ∠EFG=EO FO =.【详解】解:如图,连接AE 交GF 于O ,连接BE ,BD ,则△BCD 为等边三角形,∵E 是CD 的中点,∴BE ⊥CD ,∴∠EBF=∠BEC=90°,Rt △BCE 中,CE=cos60°×3=1.5,∴Rt △ABE 中,由折叠可得,AE ⊥GF ,EO=12,设AF=x=EF ,则BF=3-x ,∵Rt △BEF 中,BF 2+BE 2=EF 2,∴(3-x )2+)2=x 2,解得x=218,即EF=218,∴Rt △EOF 中,=,∴tan ∠EFG=EO FO =【点睛】本题考查了菱形的性质、解直角三角形以及折叠的性质:折叠是一种对称变换,对应边和对应角相等.解题时,常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.题型二:正弦的概念在直角三角形ABC 中,90C ∠=︒,A ∠,B Ð,C ∠所对应的边分别是a ,b ,c ,则正弦值等于对边与斜边的比值.即sin aA c=,根据直角三角形三边关系易证,0sin 1A <<,()090︒<∠<︒A ①角的正弦值例2.1在ABC 中,90C ∠=︒,2BC =,2sin 3A =,则边AC 的长是()A B .3C .43D 【详解】解答:在Rt ABC △中,∵22sin 3===BC A AB AB ,∴3AB =,∴根据勾股定理,得AC =故选A .变式2.14.在Rt ABC ∆中,90C ∠=︒,1BC =,4AB =,则sin B 的值是()A.5B.14C.13D.4【答案】D 【解析】【分析】首先根据勾股定理求得AC 的长,然后利用正弦函数的定义即可求解.【详解】∵∠C=90°,BC=1,AB=4,∴AC ===∴4AC sinB AB ==,故选:D .【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.②网格图中求正弦值例2.2如图,ABC 的顶点是正方形网格的格点,则sin A 的值为()A .12B C .10D 【详解】解:如图所示,取格点D ,连接DC ,由网格可得出DC =,AC =,AD =,∵222+=∴222DC AD AC =+,则:90CDA ∠=︒,故sin5===DCA AC .故选:B .变式2.25.正方形网格中,∠AOB 如图放置,则sin ∠AOB 的值为()A.2B.2C.3D.1【答案】B【解析】【分析】如图,连接AD ,CD ,根据勾股定理可以得到OD=AD ,则OC 是等腰三角形底边上的中线,根据三线合一定理,可以得到△ODC 是直角三角形.根据三角函数的定义就可以求解.【详解】解:如图,连接AD ,CD ,设正方形网格的边长是1,则根据勾股定理可以得到:,,∠OCD=90°.则=∴sin ∠AOB=2CD OD ==,故选:B .【点睛】本题考查锐角三角函数的概念,注意到图中的等腰三角形是解决本题的关键.③利用图形的变换求正弦值例2.3如图,Rt ABC 中,90ACB ∠=︒,D 是AC 上一点,连接BD ,将ABC 沿BD翻折,点C 落在边AB 的点C '处,连接CC '.若15AB =,4sin 5A =,则CC '长________.【详解】如图,设BD 与CC '的交点为点O ,∵在Rt ABC 中,90ACB ∠=︒,15AB =,4sin 5A =,∴45BC AB =,即4155BC =,解得12BC =,∴9==AC ,由翻折的性质得:12'==BC BC ,C D CD '=,90'∠=∠=︒BC D ACB ,∴15123''=-=-=AC AB BC ,设AD x =,则9C D CD AC AD x '==-=-,在Rt AC D ' 中,222AC C D AD ''+=,即2223(9)x x +-=,解得5x =,∴5AD =,4CD =,在Rt BCD 中,BD ==又∵BC BC '=,C D CD '=,∴BD 是CC '的垂直平分线,∴BD CC '⊥,2'=CC OC ,∴Rt 1122=⋅=⋅ BCD S BC CD BD OC ,即1112422⨯⨯=⨯,解得5OC =,∴25'==CC OC ,故答案为:5.变式2.36.如图,将矩形ABCD 沿对角线BD 对折,点C 落在E 处,BE 与AD 相交于点F .(1)求证:BFD △是等腰三角形;(2)若4BC =,2CD =,求AFB ∠的正弦值.【答案】(1)见解析;(2)45【解析】【分析】(1)根据矩形性质和平行线的性质得∠ADB =∠CBD ,结合折叠性质得出∠ADB =∠DBF ,再根据等腰三角形的判定即可证得结论;(2)设BF=DF =x ,则AF=4﹣x ,利用勾股定理求解x 值,再根据正弦定义求解即可.【详解】解:(1)∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠ADB =∠CBD ,由折叠性质得:∠DBF =∠CBD ,∴∠ADB =∠DBF ,∴BF=DF ,∴△BFD 是等腰三角形;(2)∵四边形ABCD 是矩形,∴AD=BC =4,AB=CD =2,∠A =90°,设BF=DF =x ,则AF=4﹣x ,在Rt △ABF 中,由勾股定理得:22+(4﹣x )2=x 2解得:x =52,∴sin ∠AFB =24552AB BF ==,即AFB ∠的正弦值为45.【点睛】本题考查矩形性质、折叠性质、平行线的性质、等腰三角形的判定、勾股定理、正弦定义、解一元一次方程,熟练掌握相关知识的联系与运用是解答的关键.题型三:余弦的概念在直角三角形ABC 中,90C ∠=︒,A ∠,B Ð,C ∠所对应的边分别是a ,b ,c ,则正弦值等于邻边与斜边的比值.即cos b A c=,根据直角三角形三边关系易证,0cos 1A <<,()090︒<∠<︒A 角的余弦值例3.1如图,在Rt ABC 中,90C ∠︒=,13AB =,5AC =,则cos A 的值是________.【详解】解:在Rt ABC 中,5cos 13AC A AB ==,故答案为:513.变式3.17.在Rt △ABC 中,∠C =90°,AB =10,AC =8,则cos A =_____.【答案】45【解析】【分析】根据勾股定理求出边BC 的长,利用余弦定理cos A=A A ∠∠的临边的斜边即可解得.【详解】Rt △ABC 中,∠C =90°,AB =10,AC =8,所以所以cos A =AC AB =810=45.【点睛】本题考查勾股定理以及余弦定理.②网格图中求余弦值例3.2如图,已知ABC 的三个顶点均在正方形网格的格点上,则cos A 的值为________.【详解】解:如图所示:连接BD ,可得:90CDB ∠=︒,BD =,AD =AB ,故cos5AD A AB ===..变式3.28.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC 的顶点都在格点上,则∠BAC 的余弦值是____.【答案】5【解析】【分析】先根据勾股定理的逆定理判断出△ABC 的形状,再由锐角三角函数的定义即可得出结论.【详解】解:∵AB 2=32+42=25、AC 2=22+42=20、BC 2=12+22=5,∴AC 2+BC 2=AB 2,∴△ABC 为直角三角形,且∠ACB =90°,则cos ∠BAC 5AC AB ==,.【点睛】本题考查的是锐角三角函数的定义,勾股定理及其逆定理,熟知在一个三角形中,如果两条边长的平方之和等于第三边长的平方,那么这个三角形是直角三角形是解答此题的关键.③利用图形的变换求余弦值例3.3如图,在菱形纸片ABCD 中,2AB =,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则cos EFG ∠的值为________.【详解】过点A 作AP CD ⊥,交CD 延长线于P ,连接AE ,交FG 于O ,∵四边形ABCD 是菱形,∴2AD AB ==,∵将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,∴∠=∠AFG EFG ,FG AE ⊥,∵//CD AB ,AP CD ⊥,∴AP AB ⊥,∴90∠+∠=︒PAE EAF ,∵90∠+∠=︒EAF AFG ,∴∠=∠PAE AFG ,∴∠=∠EFG APE ,∵//CD AB ,60DAB ∠=︒,∴60PDA ∠=︒,∴sin 6022=⋅︒=⨯=AP AD ,1cos60212=⋅︒=⨯=PD AD ,∵E 为CD 中点,∴112DE AD ==,∴2=+=PE DE PD ,∴==AE ,∴cos cos7∠=∠===AP EFG PAE AE .故答案为7变式3.39.如图,在菱形ABCD 中,4AB =,B Ð是锐角,AE BC ⊥于点E ,M 是AB 的中点,连接MD ,ME .若90EMD ∠=︒,则cos B 的值为___________.【答案】12【解析】【分析】延长DM 交CB 的延长线于点H .首先证明△ADM ≌△BHM ,得出AD=HB=4,MD=MH ,由线段垂直平分线的性质得出EH=ED ,设BE=x ,利用勾股定理构建方程求出x ,即BE ,结合AB 得出cosB 的值.【详解】解:延长DM 交CB 的延长线于点H .如图所示:∵四边形ABCD 是菱形,∴AB=BC=AD=4,AD ∥CH ,∴∠ADM=∠H ,∵M 是AB 的中点,∴AM=BM ,在△ADM 和△BHM 中,AMD BMH ADM H AM BM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADM ≌△BHM (AAS ),∴AD=HB=4,MD=MH ,∵∠EMD=90°,∴EM ⊥DH ,∴EH=ED ,设BE=x ,∵AE ⊥BC ,∴AE ⊥AD ,∴∠AEB=∠EAD=90°,∵AE 2=AB 2-BE 2=DE 2-AD 2,∴42-x 2=(4+x )2-42,解得:x=2-,或x=2--(舍),∴BE=2,∴cosB=2142BE AB-==.故答案为:12-.【点睛】本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.题型四:同角三角函数关系(拓展)1.若90A B ∠+∠=︒,则sin cos A B =,sin cos B A =,tan tan 1A B ⋅=2.平方关系:22sin cos 1A B +=3.比值关系:sin tan cos =AA A例4若α是锐角,tan tan501⋅︒=α,则α的值为()A .20︒B .30°C .40︒D .50︒【详解】解:∵tan tan501⋅︒=α∴5090+︒=︒α∴40α=︒.故选C .变式410.比较大小:sin81︒________tan 47︒;cos30︒________tan 60︒.(填“>,<或=”)【答案】①.<②.<【解析】【分析】①把sin81︒、tan 47︒分别与1进行比较,即可得到答案;②分别求出cos30︒、tan 60︒的值,然后进行比较即可.【详解】解:∵sin811︒<,tan 47tan 451︒>︒=,∴sin81tan 47︒<︒;∵cos302=°,tan 60︒=又∵2<,∴0cos30tan 6︒<︒;故答案为:<;<;【点睛】本题考查了三角函数的比较大小,解题的关键是正确的掌握三角函数的值,然后进行比较.题型五:特殊角的三角函数值①特殊角的三角函数值的混合运算例5.1计算:sin 30cos 601sin 60cos 45tan 60sin452︒︒+︒-︒︒+︒.【详解】原式1122=+,===,=;变式5.111.计算:(1)28sin 60tan 454cos30︒+︒-︒;(2)222tan 60cos 30sin 45tan 45︒+︒-︒︒.【答案】(1)7-;(2)134.【解析】【分析】(1)根据特殊锐角三角函数值代入计算即可;(2)根据特殊锐角三角函数值代入计算即可.【详解】解:(1)原式281422⎛⎫=⨯+-⨯ ⎪ ⎪⎝⎭3814=⨯+-7=-;(2)原式222122⎛⎫⎛⎫=+-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭31342=+-134=.【点睛】本题考查了特殊角的三角函数值,掌握特殊锐角的三角函数值是解决问题的关键.②由特殊角的三角函数值判断三角形的形状例5.2在ABC 中2(2cos |1tan |0-+-=A B ,则ABC 一定是()A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【详解】解:由2(2cos |1tan |0-+-=A B ,得2cos A =,1tan 0B -=.解得45A ∠=︒,45B ∠=︒,则ABC 一定是等腰直角三角形,故选:D .变式5.212.在ABC 中,若tanA=1,cosB=2,则下列判断最确切的是()A.ABC 是等腰三角形B.ABC 是等腰直角三角形C.ABC 是直角三角形D.ABC 是一般锐角三角形【答案】B【解析】【分析】先根据正切值、余弦值求出A ∠、B Ð的度数,再根据三角形的内角和定理可得C ∠的度数,然后根据等腰直角三角形的定义即可得.【详解】A ∠、B Ð是ABC 的内角,且tan 1A =,cos 2B =,45A ∴∠=︒,45B ∠=︒,18090C A B ∴∠=︒-∠-∠=︒,ABC ∴ 是等腰直角三角形,故选:B .【点睛】本题考查了特殊角的正切值与余弦值、三角形的内角和定理、等腰直角三角形的定义,熟记特殊角的正切值与余弦值是解题关键.③根据特殊角三角函数值求角的度数例5.3在ABC 1cos 02+-=C ,且B Ð,C ∠都是锐角,则A ∠的度数是()A .15︒B .60︒C .75︒D .30°1cos 02+-=C ,∴sin 02-=B ;1cos 02-=C .即sin 2B =;1cos 2C =.∴45B ∠=︒,60C ∠=°.∴180180456075∠=︒-∠-∠=︒-︒-︒=︒A B C .故选:C .变式5.313.已知tan tan tan()1tan tan αβαβαβ++=-⋅,22tan tan 21tan ααα=-α和β都表示角度),比如求tan105︒,可利用公式得()tan105tan 60452︒=︒+︒==-,又如求tan120︒,可利用公式得()()22tan120tan 2601︒=⨯︒==-,请你结合材料,若()tan 1203λ︒+=-(λ为锐角),则λ的度数是__________.【答案】30°【解析】【分析】设tan λx =,先根据公式可得到一个关于x 的分式方程,解方程可求出x 的值,再根据特殊角的正切函数值即可得出答案.【详解】设tan λx=由题意得:()tan120tan tan 1201tan120tan λλλ︒+︒+=-︒⋅()tan120tan ,tan 1203λx λ︒==︒+=-3=-解得3x =经检验,3x =是分式方程的根即tan 3λ=λQ 为锐角30λ∴=︒故答案为:30°.【点睛】本题考查了分式方程的解法、特殊角的正切函数值,熟记特殊角的正切函数值是解题关键.④三角函数值的大小例5.4如图所示的网格是正方形网格,则AOB ∠________COD ∠.(填“>”,“=”或“<”)【详解】解:根据题意可知tan 2AOB ∠=,tan 2∠=COD ,∴AOB COD ∠=∠,故答案为=.变式5.4.114.如果α是锐角,则下列成立的是()A.sin αcos α1+= B.sin αcos α1+> C.sin αcos α1+< D.sin αcos α1+≤【答案】B【解析】【分析】根据正弦函数是对边比斜边,余弦函数是邻边比斜边,三角形的两边之和大于第三边,可得答案.【详解】解:∵a 、b 是直角边,c 是斜边,∴sin α+cos α=a c +bc =a b c +,∵a+b>c ,∴a b c+>1,∴sin αcos α1+>.故选B.【点睛】本题考查了同角三角函数关系,利用正弦函数是对边比斜边,余弦函数是邻边比斜边是解题关键.变式5.4.215.如图,将ABC 绕点B 顺时针旋转()90αα︒<得到A BC ''△.请比较大小:sin ABA '∠______tan CBC '∠.【答案】<【解析】【分析】由旋转可得:ABA CBC α''∠=∠=<90,︒如图,构建直角三角形,ABA '且,ABA CBC ''∠=∠再利用锐角三角函数的定义可得:sin ,tan tan ,AA AA ABA CBC ABA AB A B'''''∠=∠=∠='由A B '<,AB 从而可得答案.【详解】解:由旋转可得:ABA CBC α''∠=∠=<90,︒如图,构建直角三角形,ABA '且,ABA CBC ''∠=∠由三角函数定义可得:sin ,tan tan ,AA AA ABA CBC ABA AB A B'''''∠=∠=∠='A B ' <,AB AA AB '∴<,AA A B''sin ABA '∴∠<tan .CBC '∠故答案为:<.【点睛】本题考查旋转的性质,锐角三角函数的定义,掌握以上知识是解题的关键.题型五:解直角三角形①解直角三角形1.解直角三角形的概念:在直角三角形中除直角外一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素,求出所有未知元素的过程叫做解直角三角形.2.理论依据:①三边关系:勾股定理222+=a b c ②两锐角互余:90A B ∠+∠=︒③边角之间的关系:tan a A b =,sin a A c=,cos a A c =3.常见类型:①已知两条边,先利用边角关系求出两个角,再利用勾股定理求出另一条边②已知一边一角,先求出另一角,再利用边角关系求出其余的边长例5.1已知2sin 3α=,其中α为锐角,求cos α、tan α、cot α的値.【详解】∵2sin 3α=∴设α的对边2k =,直角三角形的斜边3=k ,由勾股定理求出α的邻边=,∴cos α33k ==,tan 5α===,cot 22k α==.变式5.116.(1)在△ABC 中,∠B =45°,cosA 12=.求∠C 的度数.(2)在直角三角形ABC 中,已知sinA 45=,求tanA 的值.【答案】(1)75°;(2)43.【解析】【分析】(1)由条件根据∠A 的余弦值求得∠A 的值,再根据三角形的内角和定理求∠C 即可;(2)根据角A 的正弦设BC=4x ,AB=5x ,得AC 的长,根据三角函数的定义可得结论.【详解】解:(1)∵在△ABC 中,cosA 12=,∴∠A =60°∵∠B =45°,∴∠C =180°﹣∠B ﹣∠A =75°;(2)∵sinA 45BC AB ==,∴设BC =4x ,AB =5x ,∴AC =3x ,∴tanA 4433BC x AC x ===.【点睛】本题主要考查了锐角三角函数的知识以及三角形的内角和定理,属基础题.②构造直角三角形例5.2在ABC 中,8AB =,6BC =,B Ð为锐角且1cos 2B =.(1)求ABC 的面积;(2)求tan C .【详解】(1)如图,过点A 作AH BC ⊥于H .∵1cos 2B =,∴60B ∠=︒,∴1cos 842=⋅=⨯=BH AB B ,sin 82=⋅=⨯=AH AB B ,∴11622=⋅⋅=⨯⨯= ABC S BC AH (2)在Rt ACH 中,∵90AHC ∠=︒,AH =742=-=-=CH BC BH ,∴tan 2===AH C CH.变式5.217.如图,在△ABC ,∠A=30°.(1)求BD 和AD 的长;(2)求tan C 的值.【答案】(1)BD =3,AD =(2)tan C =2.【解析】【详解】(1)∵BD ⊥AC ,∴∠ADB =∠BDC =90°.在Rt △ADB 中,AB =6,∠A =30°,∴BD =AB·sin30°=3,∴ꞏcos30AD AB =︒=.(2)CD AC AD =-==在Rt △BDC 中,tan2BD C CD ∠===.视频题型六:解直角三角形的实际应用①方位角问题从标准方向的北端起,顺时针方向到直线的水平角,称为该直线的方位角,方位角的取值范围是0360︒-︒.例6.1如图,在A 处测得点P 在北偏东60︒方向上,在B 处测得点P 在北偏东30°方向上,若AP =千米,则点AB 两点的距离为()千米.A .4B .C .2D .6【详解】解:由题意可知,30︒∠= PAC ,60PBC ∠=︒,∵AP =,∴1sin 302PC AP =︒=⨯=cos 609AC AP =︒==,∴3tan 60PC BC ===︒,∴936AB AC BC =-=-=,故选:D .变式6.118.如图,在一条笔直的海岸线上有A ,B 两个观测站,A 在B 的正东方向.有一艘小船从A 处沿北偏西60︒方向出发,以每小时20海里速度行驶半小时到达P 处,从B 处测得小船在它的北偏东45︒的方向上.(1)求AB 的距离;(2)小船沿射线AP 的方向继续航行一段时间后,到达点C 处,此时,从B 测得小船在北偏西15︒的方向.求点C 与点B 之间的距离.(上述两小题的结果都保留根号)【答案】(1)(5AB =+海里;(2)52+海里.【解析】【分析】(1)过点P 作PD AB ⊥于点D ,利用余弦定义解出AP 、AD 的长,再由直角三角形中,30°角所对的直角边等于斜边的一半解得PD 的长,最后根据等腰直角三角形两直角边相等的性质解题即可;(2)过点B 作BF AC ⊥于点F ,根据直角三角形中30°角所对的直角边等于斜边的一半,解得BF 的长,在Rt BCF 中,由勾股定理解得BC 的长即可.【详解】解:(1)如图,过点P 作PD AB ⊥于点D ,在Rt PAD V 中,90ADP ∠=︒,906030PAD ∠=︒-︒=︒,∵cos AD PAD AP∠=,200.510AP ⨯==∴cos 102PA A D D AP =⋅=⨯=∠152PD AP ==在Rt PBD 中,90BDP ∠=︒,904545PBD ∠=︒-︒=︒,∴5BD PD ==.∴(5AB =+海里(2)如图,过点B 作BF AC ⊥于点F ,在Rt ABF 中,90AFB ∠=︒,30BAF ∠=︒,∴(11522BF AB ==+在ABC 中,18045C BAC ABC ∠=︒-∠-∠=︒.在Rt BCF 中,90BFC ∠=︒,45C ∠=︒,∴52C B ==海里.∴点C 与点B 之间的距离为52海里.【点睛】本题考查解直角三角形的应用之方向角的问题,其中涉及含30°角的直角三角形的性质、余弦、三角形内角和、勾股定理等知识,是重要考点,难度较易,正确作出辅助线,构造直角三角形、掌握相关知识是解题关键.②仰角俯角问题仰角:视线在水平线上方的角.俯角:视线在水平线下方的角.例6.2如图,护林员在离树8m 的A 处测得树顶B 的仰角为45︒,已知护林员的眼睛离地面的距离AC 为1.6m ,则树的高度BD 为()A .8mB .9.6mC . 1.6)mD . 1.6)m +【详解】解:过点C 作CE BD ⊥于E ,∵45BCE ∠=︒,∴CEB △是等腰直角三角形,∴8==CE BE ,四边形ACED 是矩形,∴ 1.6==AC DE ,∴8 1.69.6=+=BD 米,故选B .变式6.219.如图,某飞机在空中A 处探测到地平面目标B ,此时从飞机上看目标B 的俯角为α,飞行高度AC a =,则飞机到目标B 的距离AB 为()A.sin a α⋅B.sin a αC.cos a α⋅ D.cos a α【答案】B 【解析】【分析】由题意得∠ABC=α,然后根据解直角三角形,即可求出AB 的长度.【详解】解:在Rt △ABC 中,∠ABC=α,AC a =,∵sin ACABα=,∴sin a AB α=.故选:B .【点睛】本题考查了解直角三角形的应用——仰角俯角问题,解题的关键是掌握正弦的定义进行解题.③坡度与坡比问题坡面的铅直高度h 与水平宽度l 的比叫做坡度,也称之为坡比,用字母i 表示坡比.即=hi l.坡度一般写成:a b 的形式,如1:5i =等.把坡面与水平面的夹角记作α,α叫做坡角,有tan ==hi lα.例6.3我市里运河有一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1:1,文化墙PM 在天桥底部正前方8米处(PB 的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为.有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM 是否需要拆除?请说明理由. 1.414=,1.732=)【详解】解:该文化墙PM 不需要拆除,理由:设新坡面坡角为α,新坡面的坡度为,∴3tan α==,∴30α=︒.作CD AB ⊥于点D ,则6CD =米,∵新坡面的坡度为,∴6tanCD CAD AD AD ∠===解得,AD =BC 的坡度为1:1,6CD =米,∴6BD =米,∴6)=-=-AB AD BD 米,又∵8PB =米,∴86)14146 1.732 3.6=-=--=-≈-⨯≈PA PB AB 米3>米,∴该文化墙PM 不需要拆除.变式6.320.如图,在市区A 道路上建造一座立交桥,要求桥面的高度h 为4.8米,引桥的坡角为14°,则引桥的水平距离l 为____米(结果精确到0.1m ,参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25).【答案】19.2【解析】【分析】根据题意利用正切列式进行求解即可.【详解】解:由题意可得:tan14°=4.80.24h l l=≈,解得:l =19.2,故答案为:19.2.【点睛】本题主要考查解直角三角形,熟练掌握利用三角函数进行求解问题是解题的关键.④利用三角函数测量高度例6.4如图所示,某建筑物楼顶有信号塔EF ,卓玛同学为了探究信号塔EF 的高度,从建筑物一层A 点沿直线AD 出发,到达C 点时刚好能看到信号塔的最高点F ,测得仰角60ACF ∠=︒,AC 长7米.接着卓玛再从C 点出发,继续沿AD 方向走了8米后到达B 点,此时刚好能看到信号塔的最低点E ,测得仰角30B ∠=︒.(不计卓玛同学的身高)求信号塔EF 的高度(结果保留根号).【详解】解:在Rt △ACF 中,∵60ACF ∠=︒,7AC =米,∴tan 60=⋅︒=AF AC ∵8BC =米,∴15AB =米,在Rt ABE △中,∵30B ∠=︒,∴tan30153=⋅︒=⨯=AE AB 米,∴=-=-=EF AF AE ,答:信号塔EF 的高度为变式6.421.如图,AB 和CD 是同一地面上的两座相距36米的楼房,在楼AB 的楼顶A 点测得楼CD 的楼顶C 的仰角为45°,楼底D 的俯角为30°,求楼CD 的高.【答案】楼CD 的高是(【解析】【分析】在题中两个直角三角形中,知道已知角和其邻边,只需根据正切值求出对边后相加即可.【详解】延长过点A 的水平线交CD 于点E则有AE ⊥CD ,四边形ABDE 是矩形,AE=BD=36∵∠CAE=45°∴△AEC 是等腰直角三角形∴CE=AE=36在Rt △AED 中,tan ∠EAD=EDAE∴∴答:楼CD 的高是()米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形是解题的关键.实战练22.在Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列各式中,正确的是()A.sin B =23B.cos B =23C.tan B =23D.tan B =32【答案】C 【解析】【详解】∵∠C =90°,AC =2,BC =3,∴,∴sinB=13AC AB ==,cosB=13BC AB ==,tanB=23AC BC =,故选C.23.如果把∠C 为直角的Rt ABC 各边的长都扩大到原来的2倍,那么锐角A 的各三角比的值()A.都扩大到原来的2倍B.都缩小到原来的一半C.都没有变化D.有些有变化【答案】C 【解析】【分析】根据正弦、余弦、正切的定义即可得.【详解】 在Rt ABC 中,90C ∠=︒,sin ,cos ,tan a b aA A A c c b ∴===,222sin ,cos ,tan 222a a b b a aA A A c c c c b b∴======,则当Rt ABC 各边的长都扩大到原来的2倍,锐角A 的各三角比的值都没有变化,故选:C .【点睛】本题考查了正弦、余弦、正切的定义,熟记定义是解题关键.24.在Rt △ABC 中,∠C =90°,BC =5,AC =12,则sinB 的值是()A.512B.125C.513D.1213【答案】D 【解析】【分析】直接利用勾股定理得出AB 的长,再利用锐角三角函数得出答案.【详解】解:如图所示:∵∠C =90°,BC =5,AC =12,∴13AB ==,∴12sin 13AC B AB ==.故选:D .【点睛】本题考查勾股定理的应用和锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,解题的关键是理解三角函数的定义.25.若锐角A 、B 满足条件4590A B <<< 时,下列式子中正确的是()A.sin sin A B > B.cot cot B A> C.tan tan A B> D.cos cos A B>【答案】D 【解析】【分析】根据锐角三角函数的增减性进行判断即可.【详解】∵4590A B <<< ,∴sin sin A B <,cot cot B A <,tan tan A B <,cos cos A B >.故只有D 选项正确.故选D.【点睛】本题考查锐角三角函数的增减性,锐角的余弦值和余切值是随着角度的增大而减小,锐角的正弦值和正切值随着角度的增大而增大.26.如图,在菱形ABCD 中,∠ABC =120°,对角线AC ABCD 的周长为()A. B.20C. D.16【答案】D 【解析】【分析】连接BD 交AC 于点O ,由菱形的性质得出AB =BC =CD =AD ,AC ⊥BD ,OA =OC =12AC ,∠ABD =∠CBD =12∠ABC =60°,求出∠BAO =30°,由直角三角形的性质得OB =3OA =2,AB =2OB =4,即可得出答案.【详解】解:连接BD 交AC 于点O ,如图:∵四边形ABCD 是菱形,∴AB =BC =CD =AD ,AC ⊥BD ,OA =OC =12AC ,∠ABD =∠CBD =12∠ABC =60°,∴∠BAO =30°,∴OB =OA tan 30⋅︒=3⨯,AB =2OB =4,∴菱形ABCD 的周长=4AB =16;故选:D .【点睛】本题考查了菱形的性质,解直角三角形,含30°角的直角三角形的性质等知识;熟练掌握菱形的性质是解题的关键.27.如图,在△ABC 中,sinB=13,tanC=2,AB=3,则AC 的长为()A.B.C.D.2【答案】B 【解析】【分析】过A 点作AH ⊥BC 于H 点,先由sin ∠B 及AB=3算出AH 的长,再由tan ∠C 算出CH 的长,最后在Rt △ACH 中由勾股定理即可算出AC 的长.【详解】解:过A 点作AH ⊥BC 于H 点,如下图所示:由1sin =3∠=AH B AB ,且=3AB 可知,=1AH ,由tan =2∠=AHC CH ,且=1AH 可知,12CH =,∴在Rt ACH ∆中,由勾股定理有:2===AC .故选:B .【点睛】本题考查了解直角三角形及勾股定理等知识,如果图形中无直角三角形时,可以通过作垂线构造直角三角形进而求解.28.如图,点A ,B ,C 在正方形网格的格点上,则sin BAC ∠等于()A.3B.5C.10D.5【答案】D 【解析】【分析】连接格点CD ,根据勾股定理求出三角形的边长,再利用勾股定理的逆定理判断出直角三角形,最后由三角函数的意义求解即可.【详解】解:如图,连接格点CD ,∵AD 2=22+22=8,CD 2=12+12=2,AC 2=12+32=10,∴AD 2+CD 2=AC 2,∴∠ADC =90°,由勾股定理得,AC ,CD ,∴sin ∠BAC =CDAC 5 ,故选:D .【点睛】本题考查了三角函数的意义,勾股定理等知识,根据网格构造直角三角形和利用勾股定理求边长是解决问题的关键.29.如图,△ABC 与△DEF 都是正方形网格中的格点三角形(顶点在格点上),那么△ABC 与△DEF 的周长比为()A. B.1:2 C.1:3 D.1:4【答案】A 【解析】【分析】设正方形网格的边长为1,根据勾股定理求出△EFD 、△ABC 的边长,运用三边对应成比例,则两个三角形相似这一判定定理证明△BAC ∽△EDF ,即可解决问题.【详解】解:如图,设正方形网格的边长为1,由勾股定理得:DE 2=22+22,EF 2=22+42,∴DE =,EF =同理可求:AC ,BC ,∵DF =2,AB =2,∴BC AB AC EF DE DF ===,∴△BAC ∽△EDF ,∴C △ABC :C △DEF =1,故选A .【点睛】本题主要考查了勾股定理和相似三角形的判定及其性质定理的应用问题,熟练掌握相似三角形的判定与性质是解题的关键.30.如图,在等腰ABC ∆中,AB AC =.若BAC α∠=,AB m =,则底边BC =()A.sin m α⋅B.2sin m α⋅C.2sin2m α⋅ D.sin2m α⋅【答案】C 【解析】【分析】首先如图过点A 作AD ⊥BC 交BC 于D 点,据此接着利用等腰三角形性质可以得出∠BAD=12∠BAC=12α,BC=2BD ,然后在Rt △ABD 中,根据sin ∠=BDBAD AB求出BD ,最后利用BC=2BD 求出答案即可.【详解】如图,过点A 作AD ⊥BC 交BC 于D 点,则△ABD 是直角三角形,∵△ABC 为等腰三角形,AD ⊥BC ,∴∠BAD=12∠BAC=12α,BC=2BD ,在Rt △ABD 中,sin sin2BD BDBAD AB mα===∠,∴sin2BD m α=⋅,∴22sin 2BC BD m α==⋅⋅,故选:C .【点睛】本题主要考查了解直角三角形的综合运用,熟练掌握相关方法是解题关键.31.如图,在高楼前D 点测得楼顶A 的仰角为30°,向高楼前进60m 到达C 点,又测得楼顶A 的仰角为45°,则该高楼的高度大约为()A.82mB.160mC.52mD.30m【答案】A【解析】【分析】【详解】解:Rt△ABC中,∠ACB=45°,∴BC=AB,Rt△ABD中,∠ADB=30°,∴BD=AB÷tan AB,∴DC=BD-BC=)AB=60米,≈82米,即楼的高度约为82.0米,∴AB故选A.32.如图,河坝横断面迎水坡AB的坡比为1,坝高BC=3m,则AB的长度为()A.6mB.mC.9mD.【答案】A【解析】【分析】根据坡比的概念求出AC,根据勾股定理求出AB.【详解】解:∵迎水坡AB的坡比为1,∴BC AC =3AC =解得,AC =,由勾股定理得,AB ==6(m ),故选:A .【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度的概念是解题的关键.33.在△ABC 中,∠C 90°,sinA 1213,BC 12,那么AC ______.【答案】5【解析】【分析】先根据正切的定义得到sinA=BC AB =1213,则可得到AB=13,然后根据勾股定理计算AC 的长.【详解】在△ABC 中,∠C=90°,∵sinA=BC AB =1213,BC=12,∴AB=13,∴.故答案为5.【点睛】本题考查锐角三角函数的定义,勾股定理.解此题的关键在于熟练掌握其知识点.34.cos45°-12tan60°=________;【答案】12-【解析】【分析】根据特殊角的三角函数值进行计算.【详解】解:原式11222=-=-.故答案是:12-.【点睛】本题考查特殊角的三角函数值,解题的关键是记住特殊角的三角函数值.35.在ABC 中,2cos (1cot )0A B +-=,则ABC ∆的形状是__________.【答案】钝角三角形【解析】【分析】根据非负数的性质得到cos =02-A ,1cot =0-B ,从而求出∠A 与∠B 的度数,即可判断△ABC 的形状.【详解】∵2cos (1cot )0A B -+-=∴cos =02-A ,1cot =0-B即cos =2A ,cot =1B ∴=30A ∠︒,=45∠︒B ∴=1803045=105∠︒-︒-︒︒C ∴ABC ∆是钝角三角形故答案为:钝角三角形【点睛】本题考查了非负数的性质,三角形的分类与特殊角度的三角函数值,熟记特殊角度的三角函数值是解题的关键.36.如图,在Rt △ABC 中,∠C =90°,b =20,c =,则∠B 的度数为_______.【答案】45°【解析】。
3-5 两角和与差的正弦、余弦和正切公式

cos
α+β α+β 或 sin 的值.(2)先由 tan α=tan[(α-β)+β],求 tan α 的 2 2 值, 再求 tan 2α 的值, 这种方法的优点是可确定 2α 的取值范围. (3) 通过求角的某种三角函数值来求角,在选取函数时,遵照以下原 则:①已知正切函数值,选正切函数;②已知正、余弦函数值,
π 4 π 3 又∵cos(4+α)=-5,∴sin4+α=5,
π 3π 3π ∵0<β<4,∴ 4 < 4 +β<π,
基础知识整合
典例重点突破
试题深度研析
课时专项训练
高考总复习 数学
3π 5 3π 12 又∵sin 4 +β=13,∴cos( 4 +β)=-13,
基础知识整合
典例重点突破
试题深度研析
课时专项训练
高考总复习 数学
1 π ∵tan α=3<1 且 α 为锐角,∴0<α<4, π 3π π 同理 0<β,γ<4,∴0<α+β+γ< 4 ,∴α+β+γ=4.
基础知识整合
典例重点突破
试题深度研析
课时专项训练
高考总复习 数学
【归纳提升】
β α α+β (1) 注意变角 α-2 - 2-β = ,可先求 2
cos2α
基础知识整合
典例重点突破
试题深度研析课时专项训练来自高考总复习 数学【归纳提升】
(1)三角函数式的化简要遵循“三看”原则,
一看角,二看名,三看式子结构与特征. (2)对于给角求值问题,往往所给角都是非特殊角,解决这类
问题的基本思路有
①化为特殊角的三角函数值; ②化为正、负相消的项,消去求值; ③化分子、分母出现公约数进行约分求值.
基础知识整合
三角函数的图像与性质说课课件

二.学 情 分 析
(1)高一学生有一定的抽象思维能力,而形象思
维在学习中占有不可替代的地位,所以本节要紧 紧抓住数形结合方法进行探索.
(2)本班学生对数学科特别是函数内容的学
可知:正弦函数图像每经过 2k (k Z) 单位长度就重复出现,所以
...... 6 ,4 ,2 ,2 ,4 ,6..... 都是函数的周期.
2k(kZ)
最小正周期:如果周期函数f(x)的所有周期中存在一个最小整数, 那么这个最小整数就叫做f(x)的最小正周期 根据上述定义,我们有:
正弦函数是周期函数,2k (k Z且k 0) 都是它的周期,最小正周期为2
1
6
4
2
0
2
4
x
-1
1、定义域 3、最小正周期 4、单调性 : 增区间 5、最值 当x=
余弦曲线
2、值域
减区间
时,ymin
当x= 6、奇偶性
时,ymax
[设计意图]:通过把学习任务转移给学生,激发学生的主体意识和成就 动机,通过自主探索,给予学生解决问题的自主权,促进生生交流 ,最 终使学生成为独立的学习者 ,随着问题的解决,学生的积极性将被调动
单调区间为
2k
2
,2k
2
(k
Z
)
【设计意图】:通过列举正弦函数的几个
单调区间,最后归纳出函数所有的单调区 间,体现从特殊到一般的知识认识程 ,
培养学生观察、归纳的学习能力,有助于 以后理解记忆正弦型函数的相关性质.
思考:正弦函数的减区间是? 当x取何值时,y取最值?
三角函数的图像与性质

2. 会求正弦函数、余弦函数的函数的周期、单调区间及最值
教学难点:1.掌握正弦函数、余弦函数的图像及其性质,并能用它研究与其有关的复合函数的性质
2. 会求正弦函数、余弦函数的函数的周期、单调区间及最值
考点及考试要求:1.理解正弦函数、余弦函数概念,理解周期函数
【注】函数图像与性质应该结合起来,不应把他们孤立开来,特别注意,画出的图像只是整个图像的一部分,由于正余弦函数是周期函数,他们的图像是周而复始出现的,我们在研究时可通过一个周期内的图像进行研究
【热身练习】
1.函数 的定义域为_______
2.函数 的奇偶性为_______
3.设函数 ,则f(x)的最大值是______
2.求三角函数的值域的常用方法:
(1)将所给的三角函数转化为一个角的同一函数,利用其基本函数的值域求值域
(2)将所给的三角函数转化为二次函数,通过配方求值域
(3)换元法
(4)利用三角函数有界性
(5)利用基本不等式求值域
【自我测试】
1.函数 的定义域为__________
2.函数 的最大值为_________
最小正周期
对称中心
单调性
递增
递减( )
递增
递减( )
最值
【注】(1)正余弦函数的有界性在解题时,容易忽视,必须加深印象;
(2)正余弦函数在定义域内都是非单调函数,但都有单调区间
(3)正余弦函数的最值问题,要对取得最值时的x的值,加强记忆
2.正余弦函数的图像
(1)图1为正弦函数的图像
(2)图2为余弦函数的图像
(1) (2)
4.正余弦函数的奇偶性问题
8个三角函数名称及符号

8个三角函数名称及符号(原创版)目录1.引言:介绍三角函数2.三角函数的定义与性质3.六个基本三角函数4.两个辅助三角函数5.三角函数的应用6.结论:总结三角函数的重要性正文1.引言三角函数是数学中一个重要的领域,它的应用广泛,包括在物理、工程、地理、航海等多个领域。
在我们学习三角函数之前,我们需要先了解三角函数的基本概念和名称。
2.三角函数的定义与性质三角函数是指在直角三角形中,角度和边长之间的一种关系。
它主要包括正弦、余弦、正切、余切、正割、余割、正弦余弦和余弦正弦八个函数。
这八个函数的名称和符号如下:- 正弦(sine,sin):对边/斜边,符号为 sinθ- 余弦(cosine,cos):邻边/斜边,符号为 cosθ- 正切(tangent,tan):对边/邻边,符号为 tanθ- 余切(cotangent,cot):邻边/对边,符号为 cotθ- 正割(secant,sec):斜边/邻边,符号为 secθ- 余割(cosecant,csc):斜边/对边,符号为 cscθ- 正弦余弦(sin-cos,sin(θ±)):(sinθ±cosθ)/√2,符号为sin(θ±)- 余弦正弦(cos-sin,cos(θ)):(cosθsinθ)/√2,符号为 cos(θ)3.六个基本三角函数六个基本三角函数指的是正弦、余弦、正切、余切、正割、余割,它们的函数图像和性质如下:- 正弦函数:周期性函数,值域为 [-1,1],奇函数- 余弦函数:周期性函数,值域为 [-1,1],偶函数- 正切函数:周期性函数,值域为实数集,奇函数- 余切函数:周期性函数,值域为实数集,偶函数- 正割函数:周期性函数,值域为实数集,奇函数- 余割函数:周期性函数,值域为实数集,偶函数4.两个辅助三角函数两个辅助三角函数指的是正弦余弦和余弦正弦,它们的函数图像和性质与基本三角函数类似,只是在值域和奇偶性上有所不同。
2023年新高考数学一轮复习5-3 三角函数的图象与性质(知识点讲解)含详解

专题5.3 三角函数的图象与性质(知识点讲解)【知识框架】【核心素养】1.与不等式相结合考查三角函数定义域的求法,凸显数学运算的核心素养.2.与二次函数、函数的单调性等结合考查函数的值域(最值),凸显数学运算的核心素养.3.借助函数的图象、数形结合思想考查函数的奇偶性、单调性、对称性等性质,凸显数学运算、直观想象和逻辑推理的核心素养.4.五点作图与函数图象变换、函数性质相结合考查三角函数图象问题,凸显直观想象、数学运算的核心素养.5.将函数图象、性质及函数零点、极值、最值等问题综合考查y =Asin(ωx +φ)的图象及应用,凸显直观想象、逻辑推理的核心素养.【知识点展示】(一)“五点法”作图“五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在()sin y A x h ωϕ=++的图象.(二)正弦函数、余弦函数、正切函数的图象与性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x =tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当()22x k k Z ππ=+∈时,max 1y =;当()22x k k Z ππ=-∈时,min 1y =-.当()2x k k Z π=∈时,max 1y =;当()2x k k Z ππ=+∈时,min 1y =-.既无最大值,也无最小值周期性2π 2ππ奇偶性 ()sin sin x x -=-,奇函数()cos cos x x -=偶函数()tan tan x x -=-奇函数单调性 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上是增函数;在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上是减函数.在[]()2,2k k k Z πππ-∈上是增函数;在π[]()2,2k k k Z πππ+∈上是减函数.在(),22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭上是增函数.(1)正、余弦函数一个完整的单调区间的长度是半个周期,y =tan x 无单调递减区间,y =tan x 在整个定义域内不单调.(2)求y =A sin(ωx +φ)的单调区间时,要注意A 和ω的符号.尽量化成ω>0的形式,避免出现增减区间的混淆. (三)常用结论 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.函数具有奇、偶性的充要条件(1)函数y =A sin(ωx +φ)(x ∈R )是奇函数⇔φ=k π(k ∈Z ); (2)函数y =A sin(ωx +φ)(x ∈R )是偶函数⇔φ=k π+π2(k ∈Z );(3)函数y =A cos(ωx +φ)(x ∈R )是奇函数⇔φ=k π+π2(k ∈Z );(4)函数y =A cos(ωx +φ)(x ∈R )是偶函数⇔φ=k π(k ∈Z ).【常考题型剖析】题型一:“五点法”做函数()sin y A x h ωϕ=++的图象例1. (2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.例2.(2022·全国·模拟预测)已知函数()()2sin f x x ωϕ=+,0>ω,2πϕ≤.若()12f x =,()20f x =,且12x x -的最小值为4π,()01f =,求解下列问题. (1)化简()f x 的表达式并求()f x 的单调递增区间;(2)请完善表格并利用五点作图法绘制该函数在一个周期内的图象,并求()f x 在区间70,12π⎡⎤⎢⎥上的最值.【规律方法】用“五点法”作图应抓住四条:①将原函数化为()sin y A x h ωϕ=++()0,0A ω>>或()cos y A x h ωϕ=++()0,0A ω>>的形式;②求出周期2T πω=;③求出振幅A ;④列出一个周期内的五个特殊点,当画出某指定区间上的图象时,应列出该区间内的特殊点. 题型二:三角函数的定义域例3.(2022·宁夏·银川一中高一期中)函数()f x )A .3,48x k x k k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭B .,44x k x k k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭C .3,2428k k xx k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭D .,2424k k xx k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭例 4. 函数y =sin x -cos x 的定义域为 .【总结提升】 三角函数定义域的求法(1)求三角函数的定义域常化为解三角不等式(组).(2)解三角不等式(组)时常借助三角函数的图象或三角函数线.(3)对于函数y =A tan(ωx +φ)的定义域可令ωx +φ≠k π+π2,k ∈Z 求解.题型三:三角函数的值域(最值)例5.(2012·山东·高考真题(文))函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为( )A .2B .0C .-1D .1-例6. (2022·安徽·砀山中学高一期中)函数22tan 3tan 1y x x =-+-,ππ,44x ⎡⎤∈-⎢⎥⎣⎦的值域为______.例7.(2014·北京·高考真题(文))函数()3sin 26f x x π⎛⎫=+ ⎪⎝⎭的部分图象如图所示.(1)写出()f x 的最小正周期及图中0x 、0y 的值;(2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值.【总结提升】求三角函数的值域(最值)的三种类型及解法思路(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).题型四:三角函数的单调性例8.(2021·全国·高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( )A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭例9.(2015·全国·高考真题(文))函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈B .13(2,2),44k k k Z ππ-+∈C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈例10.(2015·安徽·高考真题(理))已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) A .()()()220f f f <-< B .()()()022f f f <<- C .()()()202f f f -<< D .()()()202f f f <<-例11. (2020·西安模拟)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A .(0,2] B .⎝⎛⎦⎤0,12 C .⎣⎡⎦⎤12,34 D .⎣⎡⎦⎤12,54【规律方法】1.三角函数单调区间的求法(1)将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,若ω<0,借助诱导公式将ω化为正数. (2)根据y =sin x 和y =cos x 的单调区间及A 的正负,列不等式求解. 2. 已知单调区间求参数范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解(3)周期性法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解. 3.比较三角函数值大小.题型五:三角函数的周期性、奇偶性、对称性例12.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( )A .1B .32C .52D .3例13. (2019·全国·高考真题(文))函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .例14.(2015·四川·高考真题(文))下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .cos 22y x π⎛⎫=+ ⎪⎝⎭B .sin 22y x π⎛⎫=+ ⎪⎝⎭C .sin2cos2y x x =+D .sin cos y x x =+例15.(2020·全国·高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【规律方法】1.求三角函数周期的常用方法 (1)公式法求周期①函数f (x )=A sin(ωx +φ)+B 与f (x )=A cos(ωx +φ)+B 的周期为T =2π|ω|;②函数f (x )=A tan(ωx +φ)+B 的周期T =π|ω|.(2)对称性求最值①两对称轴距离的最小值和两对称中心距离的最小值都等于T 2;②对称中心到对称轴距离的最小值等于T4;③两个最大(小)值点之差的最小值等于T . 2.(1)函数y =A sin(ωx +φ)(x ∈R ):是奇函数⇔φ=k π(k ∈Z );偶函数⇔φ=k π+π2(k ∈Z );(2)函数y =A cos(ωx +φ)(x ∈R ):是奇函数⇔φ=k π+π2(k ∈Z );是偶函数⇔φ=k π(k ∈Z ).3.如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 4.求对称轴方程(对称中心坐标)的方法(1)求f (x )=A sin(ωx +φ)图象的对称轴方程,只需对ωx +φ=π2+k π(k ∈Z )整理,对称中心横坐标只需令ωx+φ=k π(k ∈Z ),求x .(2)求f (x )=A cos(ωx +φ)的对称轴方程,只需对ωx +φ=k π(k ∈Z )整理,对称中心横坐标为ωx +φ=π2+k π(k∈Z ),求x 即可.(3)求f (x )=A tan(ωx +φ)的对称中心的横坐标,只需对ωx +φ=k π2(k ∈Z ),求x .题型六:三角函数()sin y A x ωϕ=+的解析式例16.(2016·全国·高考真题(文))函数sin()y A x ωϕ=+的部分图象如图所示,则( )A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(+)6y x π= 3π例17.(2020·全国·高考真题(理))设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【总结提升】1.由()sin y A x ωϕ=+的图象求其函数式:已知函数()sin y A x ωϕ=+的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定ϕ常根据“五点法”中的五个点求解,其中一般把第一个零点,0ϕω⎛⎫- ⎪⎝⎭作为突破口,可以从图象的升降找准第一个零点的位置.2. 根据图象求解析式=sin()y A x h ωϕ++问题的一般方法是:先根据函数=sin()y A x h ωϕ++图象的最高点、最低点确定A ,h 的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值. 题型七:三角函数的零点问题例18.(2010·浙江·高考真题(理))设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不存在零点的是( )A .[]4,2--B .[]2,0-C .[]0,2D .[]2,4例19.(2022·全国·高考真题(理))记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为____________.例20.(2018·全国·高考真题(理))函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.专题5.3 三角函数的图象与性质(知识点讲解)【知识框架】【核心素养】1.与不等式相结合考查三角函数定义域的求法,凸显数学运算的核心素养.2.与二次函数、函数的单调性等结合考查函数的值域(最值),凸显数学运算的核心素养.3.借助函数的图象、数形结合思想考查函数的奇偶性、单调性、对称性等性质,凸显数学运算、直观想象和逻辑推理的核心素养.4.五点作图与函数图象变换、函数性质相结合考查三角函数图象问题,凸显直观想象、数学运算的核心素养.5.将函数图象、性质及函数零点、极值、最值等问题综合考查y =Asin(ωx +φ)的图象及应用,凸显直观想象、逻辑推理的核心素养.【知识点展示】(一)“五点法”作图“五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在()sin y A x h ωϕ=++的图象.(二)正弦函数、余弦函数、正切函数的图象与性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x =tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当()22x k k Z ππ=+∈时,max 1y =;当()22x k k Z ππ=-∈时,min 1y =-.当()2x k k Z π=∈时,max 1y =;当()2x k k Z ππ=+∈时,min 1y =-.既无最大值,也无最小值周期性2π 2ππ奇偶性 ()sin sin x x -=-,奇函数()cos cos x x -=偶函数()tan tan x x -=-奇函数单调性 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上是增函数;在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦上是减函数.在[]()2,2k k k Z πππ-∈上是增函数;在π[]()2,2k k k Z πππ+∈上是减函数.在(),22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭上是增函数.(1)正、余弦函数一个完整的单调区间的长度是半个周期,y =tan x 无单调递减区间,y =tan x 在整个定义域内不单调.(2)求y =A sin(ωx +φ)的单调区间时,要注意A 和ω的符号.尽量化成ω>0的形式,避免出现增减区间的混淆. (三)常用结论 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期. 2.函数具有奇、偶性的充要条件(1)函数y =A sin(ωx +φ)(x ∈R )是奇函数⇔φ=k π(k ∈Z ); (2)函数y =A sin(ωx +φ)(x ∈R )是偶函数⇔φ=k π+π2(k ∈Z );(3)函数y =A cos(ωx +φ)(x ∈R )是奇函数⇔φ=k π+π2(k ∈Z );(4)函数y =A cos(ωx +φ)(x ∈R )是偶函数⇔φ=k π(k ∈Z ).【常考题型剖析】题型一:“五点法”做函数()sin y A x h ωϕ=++的图象例1. (2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在一个周期内的图象时,列表如下:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】(1)3A =,2ω=,3πϕ=;(2)最大值是3,最小值是32-. 【解析】 【分析】(1)利用三角函数五点作图法求解A ,ω,ϕ的值即可.(2)首先根据(1)知:3sin 23y x π⎛⎫=+ ⎪⎝⎭,根据题意得到11172636x πππ≤+≤,从而得到函数的最值.【详解】(1)由表可知max 3y =,则3A =, 因为566T πππ⎛⎫=--= ⎪⎝⎭,2T πω=,所以2ππω=,解得2ω=,即3sin(2)y x ϕ=+,因为函数图象过点,312π⎛⎫ ⎪⎝⎭,则33sin 212πϕ⎛⎫=⨯+ ⎪⎝⎭,即πsinφ16,所以262k ππϕπ+=+,k ∈Z ,解得23k πϕπ=+,k ∈Z ,又因为2πϕ<,所以3πϕ=.(2)由(1)可知3sin 23y x π⎛⎫=+ ⎪⎝⎭.因为3544x ππ≤≤,所以11172636x πππ≤+≤, 因此,当11236x ππ+=时,即34x π=时,32y =-, 当5232x ππ+=时,即1312x π=时,3y =. 所以该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值是3,最小值是32-.例2.(2022·全国·模拟预测)已知函数()()2sin f x x ωϕ=+,0>ω,2πϕ≤.若()12f x =,()20f x =,且12x x -的最小值为4π,()01f =,求解下列问题. (1)化简()f x 的表达式并求()f x 的单调递增区间;(2)请完善表格并利用五点作图法绘制该函数在一个周期内的图象,并求()f x 在区间70,12π⎡⎤⎢⎥上的最值.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,单调递增区间为(),Z 36k k k ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)完善表格见解析;图象见解析;最大值为2,最小值为 【解析】 【分析】(1)利用最大值点和零点可确定最小正周期,由此可求得ω;利用()01f =可求得ϕ,由此可得()f x 解析式;令()222262k x k k Z πππππ-+≤+≤+∈即可求得单调递增区间;(2)令26X x π=+,利用五点作图法即可完善表格并得到图象,结合图象可求得最值.(1)若()12f x =,()20f x =,即1x 是()f x 的最大值点,2x 是()f x 的零点,且12x x -的最小值为4π,设()f x 的最小正周期为T ,则44T π=,即2T ππω==,解得:2ω=. 由()01f =可得:()02sin 1f ϕ==,即有1sin 2ϕ=, 26k πϕπ∴=+或()526k k Z ππ+∈,又2πϕ<,6πϕ∴=, 综上所述:()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;令()222Z 262k x k k πππππ-+≤+≤+∈,解得:()Z 36k x k k ππππ-+≤≤+∈,()f x ∴的单调递增区间为(),Z 36k k k ππππ⎡⎤-++∈⎢⎥⎣⎦.(2)根据“五点作图法”的要求先完成表格:令2X x π=+.由图可知:当6x π=时,()f x 取到最大值2;当712x π=时,()f x 取到最小值3-. 【规律方法】用“五点法”作图应抓住四条:①将原函数化为()sin y A x h ωϕ=++()0,0A ω>>或()cos y A x h ωϕ=++()0,0A ω>>的形式;②求出周期2T πω=;③求出振幅A ;④列出一个周期内的五个特殊点,当画出某指定区间上的图象时,应列出该区间内的特殊点. 题型二:三角函数的定义域例3.(2022·宁夏·银川一中高一期中)函数()f x )A .3,48x k x k k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭B .,44x k x k k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭C .3,2428k k xx k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭D .,2424k k xx k Z ππππ⎧⎫-≤<+∈⎨⎬⎩⎭【答案】C 【解析】 【分析】利用关于正切型函数的不等式去求函数()f x =的定义域【详解】由πtan(2)14x,可得ππππ2π442k x k ,则π3πππ2428k k x则函数()f x 3,2428k k xx k Z ππππ⎧⎫+≤<+∈⎨⎬⎩⎭ 故选:C例 4. 函数y =sin x -cos x 的定义域为 . 【答案】5{|22,}44x k x k k Z ππππ+≤≤+∈ 【解析】法一:要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为4π,54π,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为5{|22,}44x k x k k Z ππππ+≤≤+∈. 法二:sin x -cos x =2sin (4x π-)≥0,将4x π-视为一个整体,由正弦函数y =sin x 的图象和性质可知2k π≤x -4π≤π+2k π(k ∈Z ),解得2k π+4π≤x ≤2k π+54π (k ∈Z ),所以定义域为5{|22,}44x k x k k Z ππππ+≤≤+∈ 【点睛】若定义域中含k π或2k π应注明k ∈Z . 【总结提升】 三角函数定义域的求法(1)求三角函数的定义域常化为解三角不等式(组).(2)解三角不等式(组)时常借助三角函数的图象或三角函数线. (3)对于函数y =A tan(ωx +φ)的定义域可令ωx +φ≠k π+π2,k ∈Z 求解.题型三:三角函数的值域(最值)例5.(2012·山东·高考真题(文))函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为( )A .2B .0C .-1D .1-【答案】A 【解析】709,,sin()1,363663x x x ππππππ∴≤≤∴-≤-≤≤-≤max min 2,y y ∴==故选A例6. (2022·安徽·砀山中学高一期中)函数22tan 3tan 1y x x =-+-,ππ,44x ⎡⎤∈-⎢⎥⎣⎦的值域为______.【答案】16,8⎡⎤-⎢⎥⎣⎦【解析】 【分析】由x 的范围求出tan x 的范围,再根据二次函数的性质即可得出答案. 【详解】因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以[]tan 1,1x ∈-,22312tan 3tan 12tan 48y x x x ⎛⎫=-+-=--+ ⎪⎝⎭,则当3tan 4x =时,()max 18f x =,当tan 1x =-时,()min 6f x =-, 所以函数()f x 的值域为16,8⎡⎤-⎢⎥⎣⎦.故答案为:16,8⎡⎤-⎢⎥⎣⎦.例7.(2014·北京·高考真题(文))函数()3sin 26f x x π⎛⎫=+ ⎪⎝⎭的部分图象如图所示.(1)写出()f x 的最小正周期及图中0x 、0y 的值;(2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值.【答案】(1)π,076x π=,03y =;(2)最大值0,最小值3-. 【解析】 【详解】试题分析:(1)由图可得出该三角函数的周期,从而求出00,x y ;(2)把26x π+看作一个整体,从而求出最(1)由题意知:()f x 的最小正周期为π,令y=3,则2+2k k 62x Z πππ+=∈,,解得+k k 6x Z ππ=∈,,所以076x π=,03y =. (2)因为[,]212x ππ∈--,所以52[,0]66x ππ+∈-,于是 当206x π+=,即12x π=-时,()f x 取得最大值0;当262x ππ+=-,即3x π=-时,()f x 取得最小值3-.【总结提升】求三角函数的值域(最值)的三种类型及解法思路(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).题型四:三角函数的单调性例8.(2021·全国·高考真题)下列区间中,函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭单调递增的区间是( )A .0,2π⎛⎫ ⎪⎝⎭B .,2ππ⎛⎫ ⎪⎝⎭C .3,2ππ⎛⎫ ⎪⎝⎭D .3,22ππ⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】 解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈, 取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫- ⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭, 32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪,CD 选项均不满足条件.例9.(2015·全国·高考真题(文))函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈B .13(2,2),44k k k Z ππ-+∈C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【答案】D 【解析】 【详解】由五点作图知,1+42{53+42πωϕπωϕ==,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 例10.(2015·安徽·高考真题(理))已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) A .()()()220f f f <-< B .()()()022f f f <<- C .()()()202f f f -<< D .()()()202f f f <<- 【答案】A 【解析】 【分析】依题意可求ω=2,又当x 23π=时,函数f (x )取得最小值,可解得φ,从而可求解析式f (x )=A sin (2x 6π+),解:依题意得,函数f (x )的周期为π, ∵ω>0, ∴ω2ππ==2.又∵当x 23π=时,函数f (x )取得最小值, ∴223π⨯+φ=2k π32π+,k ∈Z ,可解得:φ=2k π6π+,k ∈Z , ∴f (x )=A sin (2x +2k π6π+)=A sin (2x 6π+).∴f (﹣2)=A sin (﹣46π+)=A sin (6π-4+2π)>0.f (2)=A sin (46π+)<0, f (0)=A sin 6π=A sin56π>0, 又∵326ππ->4+2π562ππ>>,而f (x )=A sin x 在区间(2π,32π)是单调递减的,∴f (2)<f (﹣2)<f (0). 故选A .例11. (2020·西安模拟)已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A .(0,2] B .⎝⎛⎦⎤0,12 C .⎣⎡⎦⎤12,34 D .⎣⎡⎦⎤12,54【答案】D【解析】法一:(反子集法)∵x ∈⎝⎛⎭⎫π2,π,∴ωx +π4∈⎝⎛⎭⎫πω2+π4,πω+π4. ∵f (x )在⎝⎛⎭⎫π2,π上单调递减,∴⎩⎨⎧π2ω+π4≥π2+2k π,k ∈Z ,πω+π4≤3π2+2k π,k ∈Z ,解得⎩⎨⎧ω≥4k +12,k ∈Z ,ω≤2k +54,k ∈Z.∴k =0,此时12≤ω≤54,故选D .法二:(子集法)由2k π+π2≤ωx +π4≤2k π+3π2,得2k πω+π4ω≤x ≤2k πω+5π4ω,k ∈Z ,因为f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减, 所以⎩⎨⎧2k πω+π4ω≤π2,2k πω+5π4ω≥π,解得⎩⎨⎧ω≥4k +12,ω≤2k +54.因为k ∈Z ,ω>0,所以k =0,所以12≤ω≤54,即ω的取值范围为⎣⎡⎦⎤12,54.故选D . 【规律方法】1.三角函数单调区间的求法(1)将函数化为y =A sin(ωx +φ)或y =A cos(ωx +φ)的形式,若ω<0,借助诱导公式将ω化为正数. (2)根据y =sin x 和y =cos x 的单调区间及A 的正负,列不等式求解. 2. 已知单调区间求参数范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解(3)周期性法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解. 3.比较三角函数值大小.题型五:三角函数的周期性、奇偶性、对称性例12.(2022·全国·高考真题)记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫ ⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( )A .1B .32C .52D .3【答案】A 【解析】 【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解. 【详解】由函数的最小正周期T 满足23T ππ<<,得223πππω<<,解得23ω<<, 322π⎛⎫324ππ2所以12,63k k Z ω=-+∈,所以52ω=,5()sin 224f x x π⎛⎫=++ ⎪⎝⎭,所以5sin 21244f πππ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭.故选:A例13. (2019·全国·高考真题(文))函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .【答案】D 【解析】 【分析】先判断函数的奇偶性,得()f x 是奇函数,排除A ,再注意到选项的区别,利用特殊值得正确答案. 【详解】 由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又221422()1,2()2f πππππ++==>2()01f πππ=>-+.故选D . 例14.(2015·四川·高考真题(文))下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .cos 22y x π⎛⎫=+ ⎪⎝⎭B .sin 22y x π⎛⎫=+ ⎪⎝⎭C .sin2cos2y x x =+D .sin cos y x x =+【答案】A 【解析】 【分析】求出函数的周期,函数的奇偶性,判断求解即可. 【详解】 22πy =sin (2x 2π+)=cos2x ,函数是偶函数,周期为:π,不满足题意,所以B 不正确;y =sin2x +cos2x =(2x 4π+),函数是非奇非偶函数,周期为π,所以C 不正确;y =sin x +cosx =(x 4π+),函数是非奇非偶函数,周期为2π,所以D 不正确;故选A .例15.(2020·全国·高考真题(理))关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图象关于y 轴对称. ②f (x )的图象关于原点对称. ③f (x )的图象关于直线x =2π对称. ④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③ 【解析】 【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论. 【详解】对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③. 【规律方法】1.求三角函数周期的常用方法 (1)公式法求周期①函数f (x )=A sin(ωx +φ)+B 与f (x )=A cos(ωx +φ)+B 的周期为T =2π|ω|;②函数f (x )=A tan(ωx +φ)+B 的周期T =π|ω|.(2)对称性求最值①两对称轴距离的最小值和两对称中心距离的最小值都等于T2;②对称中心到对称轴距离的最小值等于T4;③两个最大(小)值点之差的最小值等于T . 2.三角函数是奇、偶函数的充要条件(1)函数y =A sin(ωx +φ)(x ∈R ):是奇函数⇔φ=k π(k ∈Z );偶函数⇔φ=k π+π2(k ∈Z );(2)函数y =A cos(ωx +φ)(x∈R ):是奇函数⇔φ=k π+π2(k ∈Z );是偶函数⇔φ=k π(k ∈Z ).3.如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 4.求对称轴方程(对称中心坐标)的方法(1)求f (x )=A sin(ωx +φ)图象的对称轴方程,只需对ωx +φ=π2+k π(k ∈Z )整理,对称中心横坐标只需令ωx+φ=k π(k ∈Z ),求x .(2)求f (x )=A cos(ωx +φ)的对称轴方程,只需对ωx +φ=k π(k ∈Z )整理,对称中心横坐标为ωx +φ=π2+k π(k∈Z ),求x 即可.(3)求f (x )=A tan(ωx +φ)的对称中心的横坐标,只需对ωx +φ=k π2(k ∈Z ),求x .题型六:三角函数()sin y A x ωϕ=+的解析式例16.(2016·全国·高考真题(文))函数sin()y A x ωϕ=+的部分图象如图所示,则( )A .2sin(2)6y x π=-B .2sin(2)3y x π=-C .2sin(+)6y x π=D .2sin(+)3y x π= 【答案】A 【解析】 【详解】试题分析:由题图知,2A =,最小正周期2[()]36T πππ=--=,所以22πωπ==,所以2sin(2)y x ϕ=+.因为图象过点(,2)3π,所以22sin(2)3πϕ=⨯+,所以2sin()13πϕ+=,所以22()32k k Z ππϕπ+=+∈,令0k =,得6πϕ=-,所以2sin(2)6y x π=-,故选A. 例17.(2020·全国·高考真题(理))设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π2【答案】C 【解析】 【分析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解. 【详解】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 的最小正周期为224332T πππω=== 故选:C 【总结提升】1.由()sin y A x ωϕ=+的图象求其函数式:已知函数()sin y A x ωϕ=+的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定ϕ常根据“五点法”中的五个点求解,其中一般把第一个零点,0ϕω⎛⎫- ⎪⎝⎭作为突破口,可以从图象的升降找准第一个零点的位置.2. 根据图象求解析式=sin()y A x h ωϕ++问题的一般方法是:先根据函数=sin()y A x h ωϕ++图象的最高点、最低点确定A ,h 的值,由函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值. 题型七:三角函数的零点问题例18.(2010·浙江·高考真题(理))设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不存在零点的是( ) A .[]4,2-- B .[]2,0-C .[]0,2D .[]2,4【答案】A(1)4sin(1)14sin11f -=-+=-+,因为sin1sin 4π>4sin110-+<,(0)4sin10f =>,因此()f x 在[1,0]-上有零点,故在[2,0]-上有零点;(2)4sin524sin(25)2f π=-=---,而025ππ<-<,即sin(25)0π->,因此(2)0f <,故()f x 在[0,2]上一定存在零点;虽然(4)4sin1740f =-<,但99()4sin(1)4sin(1)844f πππππ=+-=+-,又21243πππ<+<,即3sin(1)42π+>,从而,于是()f x 在区间9[2,]8π上有零点,也即在[2,4]上有零点,排除B ,C ,D ,那么只能选A .例19.(2022·全国·高考真题(理))记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若()f T =,9x π=为()f x 的零点,则ω的最小值为____________.【答案】3 【解析】 【分析】首先表示出T ,根据()f T =求出ϕ,再根据π9x =为函数的零点,即可求出ω的取值,从而得解;【详解】解: 因为()()cos f x x ωϕ=+,(0>ω,0πϕ<<)所以最小正周期2πT ω=,因为()()2πcos cos 2πcos f T ωϕϕϕω⎛⎫=⋅+=+== ⎪⎝⎭,又0πϕ<<,所以π6ϕ=,即()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭,又π9x =为()f x 的零点,所以ππππ,Z 962k k ω+=+∈,解得39,Z k k ω=+∈, 因为0>ω,所以当0k =时min 3ω=; 故答案为:3例20.(2018·全国·高考真题(理))函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3求出36x π+的范围,再由函数值为零,得到36x π+的取值可得零点个数.【详解】 详解:0x π≤≤ 193666x πππ∴≤+≤由题可知3336262x x ,ππππ+=+=,或5362x ππ+=解得4x ,99ππ=,或79π故有3个零点.。
正弦函数余弦函数的图像

课标A版·数学·必修第一册
[解] (1)列表:
x
0
π 2
π
3π 2
2π
sinx 0 1 0 -1 0
sinx- -1 0 -1 -2 -1 1
描点连线,如图所示.
第五章 5.4 5. 4.1
课标A版·数学·必修第一册
(2)列表:
x
0
π 2
π
3π 2
2π
cosx 1 0 -1 0 1
第五章 5.4 5. 4.1
课标A版·数学·必修第一册
请做:随堂巩固验收
第五章 5.4 5. 4.1
课标A版·数学·必修第一册
2.正弦函数图象的画法 (1)几何法 ①利用 正弦线 画出 y=sinx,x∈[0,2π]的图象; ②将图象 向左、向右 平行移动(每次 2π 个单位长度). (2)五点法 ①画出正弦曲线在[0,2π]上的图象的五个关键点 (0,0) , π2,1, (π,0) ,32π,-1, (2π,0) ,用光滑的曲线连接; ②将所得图象 向左、向右 平行移动(每次 2π 个单位长度).
y=sinx
的图象向 左平移π2
个单位长度即可,这是由于 cosx=
sinx+2π
.
(2)用“五点法”:画余弦曲线 y=cosx 在[0,2π]上的图象时,
所取的五个关键点分别为 (0,1),π2,0,(π,-1),32π,0, (2π,1) ,再用光滑的曲线连接.
第五章 5.4 5. 4.1
课标A版·数学·必修第一册
1- 01 2 1 0
cosx
第五章 5.4 5. 4.1
课标A版·数学·必修第一册
在直角坐标系中,描出五点(0,0),π2,1,(π,2),32π,1, (2π,0),然后并用光滑的曲线连接起来,就得到 y=1-cosx,x ∈[0,2π]的图象.如图.
三角函数图象和性质(总结的很全面不看后悔)

三角函数专题辅导课程安排制作者:程国辉专题辅导一三角函数的基本性质及解题思路课时:4-5学时 学习目标:1. 掌握常用公式的变换。
2. 明确一般三角函数化简求值的思路。
第一部分 三角函数公式 1、两角和与差的三角函数:cos(α+β)=cos α·cos β-sin α·sin β cos(α-β)=cos α·cos β+sin α·sin β sin(α±β)=sin α·cos β±cos α·sin β tan(α+β)=(tan α+tan β)/(1-tan α·tan β)tan(α-β)=(tan α-tan β)/(1+tan α·tan β2、倍角公式:sin(2α)=2sin α·cos α=2/(tan α+cot α)cos(2α)=(cos α)^2-(sin α)^2=2(cos α)^2-1=1-2(sin α)^2 tan(2α)=2tan α/(1-tan^2α)cot(2α)=(cot^2α-1)/(2cot α)3、两角和与差的正弦、余弦、正切公式及倍角公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan 令 = = αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=-4、同角三角函数的基本关系式:(1)平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+= (2)倒数关系:sin αcsc α=1,cos αsec α=1,tan αcot α=1, (3)商数关系:sin cos tan ,cot cos sin αααααα==第二部分:三角函数的化简、计算、证明的恒等变形的基本思路:一角二名三结构首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第21页
返回导航
数学
解:∵y=sin x- 3cos x=2sinx-3π 由 y=sin 2x 的横坐标伸长到原来的 2 倍,纵坐标不变. 得到 y=sin x,再向右平移3π个单位得到 y=sinx-3π,再将纵坐标 伸长到 2 倍,横坐标不变,得到 y=2sinx-3π的图象.
第10页
返回导航
数学
解:①f(x)=sin ωx+ 3cos ωx
=212sin
ωx+
3 2 cos
ωx=2sinωx+3π,
又∵T=π,∴2ωπ=π,即 ω=2.
∴f(x)=2sin2x+π3. ∴函数 f(x)=sin ωx+ 3cos ωx 的振幅为 2,初相为π3.
第32页
返回导航
数学
2.如图是函数 y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象, 则该函数的解析式为________.
第33页
返回导航
数学
解析:由图知 A=5,由T2=52π-π=32π,得 T=3π,∴ω=2Tπ=23, 此时 y=5sin23x+φ. 下面求初相 φ. 法一:(单调性法): ∵点(π,0)在递减的那段曲线上,∴23π+φ∈2kπ+π2,2kπ+32π(k ∈Z).=2sin(ωx+φ)(ω>0,且|φ|<π2)的部分图象如图所
示,则函数 f(x)的一个单调递增区间是( )
A.-172π,51π2
B.-172π,-1π2
C.-1π2,71π2
D.-1π2,51π2
第31页
=π3.
∴该函数的解析式为 y=5sin23x+3π.
第36页
返回导航
数学
法四:(平移法): 由图象知,将 y=5sin23x的图象沿 x 轴向左平移π2个单位,就得到本 题图象,故所求函数解析式为 y=5sin23x+3π. 答案:y=5sin23x+3π
第37页
第28页
返回导航
数学
[方法引航] 根据 y=Asin(ωx+φ)+k 的图象求其解析式的问题,
主要从以下四个方面来考虑:
最大值-最小值
(1)A 的确定:根据图象的最高点和最低点,即 A=
2
;
(2)k 的确定:根据图象的最高点和最低点,即 k=最大值+2 最小值;
第29页
返回导航
数学
(3)ω 的确定:结合图象,先求出周期 T,然后由 T=2ωπ(ω>0)来确 定 ω; (4)φ 的确定:由函数 y=Asin(ωx+φ)+k 最开始与 x 轴的交点(最 靠近原点)的横坐标为-ωφ即令ωx+φ=0,x=-ωφ确定 φ.
返回导航
数学
解析:选 D.由函数的图象可得14T=23π-152π,
∴T=π,则 ω=2.
又图象过点152π,2,∴2sin2×152π+φ=2, ∴φ=-3π+2kπ,k∈Z,
取 k=0, φ=-π3,即得 f(x)=2sin2x-3π, 其单调递增区间为kπ-1π2,kπ+51π2,k∈Z,取 k=0,即得选项 D 正确.
第11页
返回导航
数学
②令 X=2x+3π,则 y=2sin2x+3π=2sin X. 列表,并描点画出图象:
x
-π6
π 12
π 3
7π 12
5π 6
X y=sin X
0
π 2
π
3π 2
2π
0 1 0 -1 0
y=2sin2x+3π
0 2 0 -2 0
第12页
返回导航
数学
③法一:把 y=sin x 的图象上所有的点向左平移3π个单位,得到 y =sinx+3π的图象,再把 y=sinx+π3的图象上的点的横坐标变为 原来的12倍(纵坐标不变),得到 y=sin2x+3π的图象,最后把 y= sin2x+3π上所有点的纵坐标变为原来的 2 倍(横坐标不变),即可 得到 y=2sin2x+3π的图象.
第35页
返回导航
数学
∴该函数的解析式为 y=5sin23x+3π. 法三:(起始点法):
函数 y=Asin(ωx+φ)的图象一般由“五点法”作出,而起始点的
横坐标 x 正是由 ωx+φ=0 解得的.故只需找出起始点横坐标 x0,
就可以迅速求得 φ.由图象易得 x0=-π2,∴φ=-ωx0=-23×-2π
由-1≤sinωx-π6≤1. ………………5 分 得-3≤2sinωx-π6-1≤1, 所以函数 f(x)的值域为[-3,1]. ………………6 分
第22页
返回导航
数学
考点二 由三角函数图象求解析式
1.由图象求三角
命题
函数性质
点 2.由图象求三角
函数解析式
第23页
返回导航
数学
[例 3] (1)如图是函数 y=Asin(ωx+φ)+2(A>0,ω>0)的图象的 一部分,它的振幅、周期、初相各是( )
第24页
返回导航
数学
A.A=3,T=43π,φ=-π6 C.A=1,T=43π,φ=-34π
基础知识导航 考点典例领航 智能提升返航 课时规范训练
第1页
返回导航
数学
数学
第5课时 函数y=Asin(ωx+φ)的图象及应用
第2页
返回导航
数学
1.y=Asin(ωx+φ)的有关概念
y=Asin(ωx+φ)(A 振幅 周期 频率 相位 初相
>0,ω>0),x∈[0,
+∞)表示一个振
A
T=
2π ω
第34页
返回导航
数学
由 sin23π+φ=0 得23π+φ=2kπ+π(k∈Z),∴φ=2kπ+3π(k∈Z). ∵|φ|<π,∴φ=3π.∴该函数的解析式为 y=5sin23x+3π. 法二:(最值点法):
将最高点坐标π4,5代入 y=5sin23x+φ, 得 5sinπ6+φ=5,∴6π+φ=2kπ+π2(k∈Z), ∴φ=2kπ+3π(k∈Z).又|φ|<π,∴φ=π3.
第16页
返回导航
数学
[方法引航] (1)五点法作简图:用“五点法”作 y=Asin(ωx+φ) 的简图,主要是通过变量代换,设 z=ωx+φ,由 z 取 0,2π,π,32 π,2π 来求出相应的 x,通过列表,计算得出五点坐标,描点后得 出图象. (2)图象变换:由函数 y=sin x 的图象通过变换得到 y=Asin(ωx+φ) 的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平 移”.
第14页
返回导航
数学
(2)把函数 y=cos 2x+1 的图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),然后向左平移 1 个单位长度,再向下平移 1 个单 位长度,得到的图象是( )
第15页
返回导航
数学
解析:把函数 y=cos 2x+1 的图象上所有点的横坐标伸长到原来 的 2 倍(纵坐标不变),得到函数 y=cos x+1 的图象,然后把所得 函数图象向左平移 1 个单位长度,再向下平移 1 个单位长度,得 到函数 y=cos(x+1)的图象,故选 A. 答案:A
A
0 -A 0
(ωx+φ)
第4页
返回导航
数学
3.函数 y=sin x 的图象变换得到 y=Asin(ωx+φ)(A>0,ω>0)的图
象的步骤
法一
法二
第5页
返回导航
数学
4.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移” 中平移的长度一致.(×) (2)将 y=3sin 2x 的图象向左平移4π个单位后所得图象的解析式是 y =3sin2x+4π.(×) (3)y=sinx-4π的图象是由 y=sinx+π4的图象向右平移π2个单位得 到的.(√)
求函数 f(x)的单调递增区间.
第38页
返回导航
数学
[规范解答]
(1)f(x)=
3 2 sin
ωx+12cos
ωx+
3 2 sin
ωx-12cos
ωx-
(cos ωx+1)
=2
3 2 sin
ωx-12cos
ωx-1………………2
分
=2sinωx-π6-1.………………3 分
第13页
返回导航
数学
法二:将 y=sin x 的图象上每一点的横坐标 x 变为原来的12倍,纵 坐标不变,得到 y=sin 2x 的图象;再将 y=sin 2x 的图象向左平移 π6个单位,得到 y=sin 2x+π6=sin 2x+3π的图象;再将 y = sin2x+3π的图象上每一点的横坐标保持不变,纵坐标变为原来的 2 倍,得到 y=2sin2x+3π的图象.
第17页
返回导航
数学
1.若本例(1)条件不变,作出 f(x)在 x∈[0,π]内的图象.
第18页
返回导航
数学
解:
x
0
ππ7 5 12 3 12π 6π
π
2x+3π
π 3
π 2
π
3 2π
2π
7 3π
f(x)
3 2
1
0 -1
0
3 2
第19页
返回导航
描点法作图:
第20页
返回导航
数学
数学
2.将本例(2)变为:由 y=sin 2x 如何变换得到 y=sin x- 3cos x的 图象.
f=T1=2ωπ
ωx+φ
φ
动量时
第3页
返回导航
数学
2.用五点法画 y=Asin(ωx+φ)一个周期内的简图
用五点法画 y=Asin(ωx+φ)一个周期内的简图时,要找五个关键
点,如下表所示:
x
-ωφ
-ωφ +2πω