三角函数图像的综合运用
三角函数的图像与性质教案

三角函数的图像与性质优秀教案一、教学目标:1. 理解三角函数的定义,掌握正弦函数、余弦函数、正切函数的图像与性质。
2. 能够运用三角函数的图像与性质解决实际问题。
3. 提高学生的数学思维能力,培养学生的数学审美观念。
二、教学内容:1. 三角函数的定义与基本性质2. 正弦函数的图像与性质3. 余弦函数的图像与性质4. 正切函数的图像与性质5. 三角函数图像与性质的综合应用三、教学重点与难点:1. 重点:三角函数的定义,正弦函数、余弦函数、正切函数的图像与性质。
2. 难点:三角函数图像与性质的综合应用。
四、教学方法:1. 采用问题驱动法,引导学生探索三角函数的图像与性质。
2. 利用多媒体课件,展示三角函数的图像,增强学生的直观感受。
3. 结合实际例子,让学生学会运用三角函数的图像与性质解决实际问题。
4. 开展小组讨论,培养学生的合作与交流能力。
五、教学过程:1. 导入:通过复习初中阶段学习的三角函数知识,引导学生进入本节课的学习。
2. 三角函数的定义与基本性质:讲解三角函数的定义,引导学生掌握三角函数的基本性质。
3. 正弦函数的图像与性质:利用多媒体课件展示正弦函数的图像,讲解正弦函数的性质。
4. 余弦函数的图像与性质:利用多媒体课件展示余弦函数的图像,讲解余弦函数的性质。
5. 正切函数的图像与性质:利用多媒体课件展示正切函数的图像,讲解正切函数的性质。
6. 三角函数图像与性质的综合应用:结合实际例子,讲解如何运用三角函数的图像与性质解决实际问题。
7. 课堂小结:对本节课的内容进行总结,强调重点知识点。
8. 课后作业:布置相关练习题,巩固所学知识。
9. 课后反思:教师对本节课的教学进行反思,总结经验教训。
10. 教学评价:对学生的学习情况进行评价,了解学生对三角函数图像与性质的掌握程度。
六、教学策略与资源:1. 教学策略:采用问题引导式教学,鼓励学生主动发现问题、解决问题。
利用数学软件或在线工具,让学生亲自动手绘制三角函数图像,加深对函数性质的理解。
4.4三角函数的图像性质及应用

-φ-φ1.y=A sin(ωx+φ)的有关概念y=A sin(ωx+φ)(A>0,ω>0),x∈R振幅A周期2πT=ω频率1ωf=T=2π相位ωx+φ初相φ2.用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点如下表所示:x0-φωπ2ωπ-φω3π2ω2π-φωωx+φy=A sin(ωx+φ)π2Aπ3π2-A2π0 3.函数y=sin x的图象经变换得到y=A sin(ωx+φ)(A>0,ω>0)的图象的步骤如下:【思考辨析】(2)y =sin ⎝x -4⎭的图象是由 y =sin ⎝x +4⎭的图象向右平移个单位得到的.(√ )1.y =2sin ⎝2x -4⎭的振幅、频率和初相分别为2.已知函数 f (x )=sin ⎝2x +6⎭.若 y =f (x -φ) (0<φ< )是偶函数,则 φ=解析 因为 y =f (x -φ)=sin ⎣2(x -φ)+6⎦=sin ⎝2x -2φ+6⎭是偶函数,所以-2φ+ = +k π, k ∈Z ,得 φ=- - ,k ∈Z .又 0<φ< ,所以 φ= .3.(2015· 湖南改编)将函数 f (x )=sin 2x 的图象向右平移 φ⎝0<φ<2⎭个单位后得到函数 g (x )的]判断下面结论是否正确(请在括号中打“√”或“×”)(1) 利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( × )⎛ π⎫ ⎛ π⎫ π 2(3)由图象求解析式时,振幅 A 的大小是由一个周期内的图象中的最高点的值与最低点的值确定的.( √ )(4)函数 f (x )=A sin(ωx +φ)的图象的两个相邻对称轴间的距离为一个周期.( × )(5)函数 y =A cos(ωx +φ)的最小正周期为 T ,那么函数图象的两个相邻对称中心之间的距离为T2.( √ )⎛ π⎫1 π答案 2,π,-4.⎛ π⎫ π 2.答案π3⎡ π⎤ ⎛ π⎫ π π 6 2π k π π π6 2 2 3⎛ π⎫π图象,若对满足|f (x 1)-g (x 2)|=2 的 x 1,x 2,有|x 1-x 2|min =3,则 φ=.答案π6解析 因为 g (x )=sin [2 x -φ =sin(2x -2φ),所以|f (x 1)-g (x 2)|=|sin 2x 1-sin(2x 2-2φ)|=2.因为-1≤sin 2x 1≤1,-1≤sin(2x 2-2φ)≤1,所以 sin 2x 1 和 sin(2x 2-2φ)的值中,一个为 1,另一个为-1,不妨取 sin 2x 1=1,sin(2x 2-2φ)π π=-1,则 2x 1=2k 1π+2,k 1∈Z,2x 2-2φ=2k 2π-2,k 2∈Z,2x 1-2x 2+2φ=2(k 1-k 2)π+π,(k 1⎪⎪因为0<φ<,所以0<-φ<,则φ=.答案y=10sin⎝8x+4⎭+20,x∈[6,14]所以A=×(30-10)=10,b=×(30+10)=20,所以ω=.又×10+φ=2π,4所以y=10sin⎝8x+4⎭+20,x∈[6,14].5.(2014·安徽)若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,答案3π-k2)∈Z,π得|x1-x2|=⎪(k1-k2)π+2-φ⎪.πππ222ππ故当k1-k2=0时,|x1-x2|min=2-φ=3,π64.(教材改编)如图,某地一天从6~14时的温度变化曲线近似满足函数y=A sin(ωx+φ)+b,则这段曲线的函数解析式为.⎛π3π⎫解析从图中可以看出,从6~14时的是函数y=A sin(ωx+φ)+b的半个周期,121212π又2×ω=14-6,π8π83π解得φ=,⎛π3π⎫π4则φ的最小正值是.8解析∵函数f(x)=sin(2x+)的图象向右平移φ个单位得到g(x)=sin[2(x-φ)+]=sin(2x+又∵g(x)是偶函数,∴-2φ=kπ+(k∈Z).∴φ=--(k∈Z).当k=-1时,φ取得最小正值.例1已知函数y=2sin⎝2x+3⎭.(3)说明y=2sin⎝2x+3⎭的图象可由y=sin x的图象经过怎样的变换而得到.解(1)y=2sin⎝2x+3⎭的振幅A=2,周期T==π,初相φ=.(2)令X=2x+,则y=2sin⎝2x+3⎭=2sin X.6y=2sin⎝2x+3⎭πππ444-2φ),ππ42kππ283π8题型一函数y=A sin(ωx+φ)的图象及变换⎛π⎫(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;⎛π⎫⎛π⎫2ππ23π⎛π⎫3列表如下:xXy=sinX⎛π⎫π-π12π212π3π7π123π2-1-25π62π描点画出图象,如图所示:(3)方法一 把 y =sin x 的图象上所有的点向左平移 个单位长度,得到 y =sin ⎝x +3⎭的图象; 再把 y = sin ⎝x +3⎭ 的图象上所有点的横坐标缩短到原来的sin ⎝2x +3⎭的图象;最后把 y =sin ⎝2x +3⎭上所有点的纵坐标伸长到原来的 2 倍(横坐标不变 ),即可得到 y =2sin ⎝2x +3⎭的图象.方法二 将 y =sin x 的图象上所有点的横坐标缩短为原来的 倍(纵坐标不变),得到 y =sin 2x再将 y =sin 2x 的图象向左平移 个单位长度,得到 y =sin ⎣2⎝x +6⎭⎦=sin ⎝2x +3⎭的图象;再将 y =sin ⎝2x +3⎭的图象上所有点的纵坐标伸长为原来的 2 倍(横坐标不变),即得到 y =2sin ⎝2x +3⎭的图象.设 z =ωx +φ,由 z 取 0, ,π, π,2π 来求出相应的 x ,通过列表,计算得出五点坐标,描(1)把函数 y =sin(x + )图象上各点的横坐标缩短到原来的 (纵坐标不变),再将图象向右平移 个单位长度,那么所得图象的一条对称轴方程为(填正确的序号).①x =- ;②x =- ;③x = ;④x = .(2)设函数 f (x )=cos ωx ( ω>0),将 y =f (x )的图象向右平移 个单位长度后,所得的图象与原图π ⎛ π⎫ 3⎛ π⎫ 1 2倍 ( 纵坐标不变 ) ,得到 y =⎛ π⎫⎛ π⎫⎛ π⎫12的图象;π ⎡ ⎛ π⎫⎤ ⎛ π⎫ 6⎛ π⎫⎛ π⎫思维升华 (1)五点法作简图:用“五点法”作 y =A sin(ωx +φ)的简图,主要是通过变量代换,π 3 2 2点后得出图象.(2)图象变换:由函数 y =sin x 的图象通过变换得到 y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.π 162π3π π π π2 4 8 4π3象重合,则 ω 的最小值等于.答案 (1)① (2)6解析(1)将y=sin(x+)图象上各点的横坐标缩短到原来的(纵坐标不变),得到函数y=sin(2x+);再将图象向右平移个单位长度,得到函数y=sin[2(x-)+]=sin(2x-),故x 2(2)由题意可知,nT=(n∈N*),例2(1)已知函数y=A sin(ωx+φ)(A>0,ω>0,|φ|<)的图象上一个最高点的坐标为(2,2),答案(1)y=2sin⎝8x+4⎭(2)f(x)=2sin(2x+)⎫解析(1)由题意得A=2,=6-2,所以T=16,ω==.又sin⎝8×2+φ⎭=1,所以+φ=+2kπ(k∈Z).又因为|φ|<,所以φ=.41234π162πππππ63362π=-是其图象的一条对称轴方程.π32ππ∴n·ω=3(n∈N*),∴ω=6n(n∈N*),∴当n=1时,ω取得最小值6.题型二由图象确定y=Asin(ωx+φ)的解析式π2由这个最高点到其右侧相邻最低点间的图象与x轴交于点(6,0),则此函数的解析式为.(2)函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,则函数f(x)的解析式为.⎛ππ⎫π3T2ππ⎛ππ4T84πππ224(2)由题图可知A=2,T7πππ=-=,所以T=π,故ω=2,因此f(x)=2sin(2x+φ),又⎝12π,- 2⎭为最小值点, ∴2× π+φ=2k π+ ,k ∈Z ,∴φ=2k π+ ,k ∈Z ,∴φ= .故 f (x )= 2sin(2x + ).则 A = ,b = .(2)求 ω,确定函数的最小正周期 T ,则可得 ω= . “最大值点”(即图象的“峰点”)时 ωx +φ= ;“最小值点”(即图象的“谷点”)时 ωx +φ= .函数 f (x )=2sin(ωx +φ)⎝ω>0,-2<φ<2⎭的部分图象如图所示,则 φ=3解析 ∵ = π- π,⎛ 7 ⎫7 3π12 2π3又|φ|<π,π3π3思维升华 确定 y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法:(1)求 A ,b ,确定函数的最大值 M 和最小值 m ,M -m M +m2 22πT(3)求 φ,常用的方法有:①代入法:把图象上的一个已知点代入(此时 A ,ω,b 已知)或代入图象与直线 y =b 的交点求 解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定 φ 值时,往往以寻找“最值点”为突破口.具体如下:π23π 2π答案 -T 1152 12 12∴T =π.2π又 T = ω (ω>0),2π∴ ω =π,⎛ ππ⎫.由五点作图法可知当x=π时,2即2×π+φ=,∴φ=-.y).若初始位置为P0⎝2,⎭,当秒针从P(注:此时t=0)正常开始走时,那么点P的纵坐答案y=sin⎝-30t+6⎭位是.又函数周期是60(秒)且秒针按顺时针旋转,即T=⎪ω⎪=60,所以|ω|=π⎪2π⎪ππ63030所以y=sin⎝-30t+6⎭.例4已知关于x的方程2sin2x-3sin2x+m-1=0在⎝2,π⎭上有两个不同的实数根,则m ∴ω=2.512πωx+φ=,5π122π3题型三三角函数图象性质的应用命题点1三角函数模型的应用例3如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置P(x,⎛31⎫2标y与时间t的函数关系式为.⎛ππ⎫解析设点P的纵坐标y与时间t的函数关系式为y=sin(ωt+φ).由题意可得,函数的初相,即ω=-,⎛ππ⎫命题点2方程根(函数零点问题)⎛π⎫的取值范围是.答案(-2,-1)解析方程2sin2x-3sin2x+m-1=0可转化为m=1-2sin2x+3sin2x=cos2x+3sin2x=2sin⎝2x+6⎭,x∈⎝2,π⎭.设2x+=t,则t∈⎝6π,6π⎭,6=sin t,t∈⎝6π,6π⎭,有两个不同的实数根.∴y=和y=sin t,t∈⎝6π,6π⎭的图象有两个不同交点,如图:2由图象观察知,的范围为(-1,-),解析由例4知,的范围是⎣-1,2⎭,∴-2≤m<1,图象的两相邻对称轴间的距离为.(1)求f⎝8⎭的值;(2)求函数y=f(x)+f⎝x+4⎭的最大值及对应的x的值.=2⎣2=2sin⎝ωx+φ-6⎭.⎛π⎫⎛π⎫π⎛713⎫∴题目条件可转化为m⎛713⎫2m⎛713⎫m122故m的取值范围是(-2,-1).引申探究例4中,“有两个不同的实数根”改成“有实根”,则m的取值范围是.答案[-2,1)m⎡1⎫2∴m的取值范围是[-2,1).命题点3图象性质综合应用例5已知函数f(x)=3sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)π2⎛π⎫⎛π⎫解(1)f(x)=3sin(ωx+φ)-cos(ωx+φ)⎡31⎤sin(ωx+φ)-2cos(ωx+φ)⎦⎛π⎫因为f(x)是偶函数,则 φ- = +k π(k ∈Z ),所以 φ= +k π(k ∈Z ),又因为 0<φ<π,所以 φ= ,ωx +=2cos ωx .所以 f (x )=2sin 2⎭⎝因此 f =2cos = 2.⎝8⎭x +(2)y =2cos 2x +2cos 2⎣ ⎝ 4⎭⎦2x +=2cos 2x +2cos 2⎭⎝-2x =2 2sin ⎝4 ⎭2x -=-2 2sin4⎭⎝令 2x - =2k π- (k ∈Z ),y 有最大值 2 2,所以当 x =k π- (k ∈Z )时,y 有最大值 2 2.设函数 f (x )=3sin(ωx +φ)(ω>0,- <φ< )的图象关于直线 x = 对称,它的周期①f (x )的图象过点(0, );π π6 22π32π3⎛ π⎫ 2π π由题意得 ω =2· 2,所以 ω=2.故 f (x )=2cos 2x .⎛π⎫ π4⎡ ⎛ π⎫⎤⎛ π⎫=2cos 2x -2sin 2x⎛π ⎫⎛ π⎫ π π4 2π8思维升华 (1)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,建立数学模型再利用三角函数的有关知识解决问题.(2)方程 根的个数可转化为两个函数图象的交点个数.(3)研究 y =A sin(ωx +φ)的性质时可将 ωx +φ 视 为一个整体,利用换元法和数形结合思想进行解题.π π 2π2 2 3是 π,则下列说法正确的是.(填序号)32②f (x )在[ , ]上是减函数;③f (x )的一个对称中心是( ,0);∴f (x )=3sin(2x +φ),f ( )=3sin( +φ),则 sin( +φ)=1 或-1.又 φ∈(- , ), +φ∈( , π),∴ +φ= ⇒φ= ,∴f (x )=3sin(2x + ).①:令 x =0⇒f (x )= ,正确.②:令 2k π+ <2x + <2k π+ ,k ∈Z⇒k π+ <x <k π+ ,k ∈Z .令 k =0⇒ <x < ,即 f (x )在( , )上单调递减,而在( , )上单调递增,错误.③:令 x = ⇒f (x )=3sin π=0,正确.④:应平移 个单位长度,错误.典例 (14 分)已知函数 f (x )=2 3sin( + )·cos( + )-sin(x +π).π 2π12 35π12④将 f (x )的图象向右平移|φ|个单位长度得到函数 y =3sin ωx 的图象.答案 ①③2π解析 ∵周期为 π,∴ ω =π⇒ω=2,2π 4π3 34π3π π 4π 5π 112 23 6 64π 3π π3 2 6π 632π π 3π2 6 2π 2π6 3π 2π63π 2π π π6 3 12 65π12π124.三角函数图象与性质的综合问题x π x π2 4 2 4(1)求 f (x )的最小正周期;(2)若将f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,π]上(2)将f(x)解析式中的x换成x-,得g(x),然后利用整体思想求最值.解(1)f(x)=23sin(+)·cos(+)-sin(x+π)=3cos x+sin x[4分]=2sin(x+),[6分]于是T==2π.[7分](2)由已知得g(x)=f(x-)=2sin(x+),[9分]∵x∈[0,π],∴x+∈[,],∴sin(x+)∈[-,1],[12分]∴g(x)=2sin(x+)∈[-1,2].[13分]a sinα+b cosα=a2+b2sin(α+φ)(其中tanφ=),或a sinα+b cosα=a2+b2cos(α-φ)(其中tanφ=),在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注.(sin x·aπ6的最大值和最小值.思维点拨(1)先将f(x)化成y=A sin(ωx+φ)的形式再求周期;π6规范解答xπxπ2424π32π1ππ66ππ7π666π162π6故函数g(x)在区间[0,π]上的最大值为2,最小值为-1.[14分]解决三角函数图象与性质的综合问题的一般步骤:第一步:(化简)将f(x)化为a sin x+b cos x的形式;第二步:(用辅助角公式)构造f(x)=a2+b2·b+cos x·);a2+b2a2+b2第三步:(求性质)利用f(x)=a2+b2sin(x+φ)研究三角函数的性质;第四步:(反思)反思回顾,查看关键点、易错点和答题规范.温馨提醒(1)在第(1)问的解法中,使用辅助角公式baab(2)求g(x)的最值一定要重视定义域,可以结合三角函数图象进行求解.±1.函数y=cos⎝2x-3⎭的部分图象可能是⎫[方法与技巧]1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x而言,而不是看角ωx+φ的变化.2.由图象确定函数解析式由图象确定y=A sin(ωx+φ)时,φ的确定是关键,尽量选择图象的最值点代入;若选零点代入,应根据图象升降找“五点法”作图中第一个零点.3.对称问题函数y=A sin(ωx+φ)的图象与x轴的每一个交点均为其对称中心,经过该图象上坐标为(x,A)的点与x轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻对称中心的距离).[失误与防范]1.由函数y=sin x的图象经过变换得到y=A sin(ωx+φ)的图象,如先伸缩,再平移时,要把x前面的系数提取出来.2.复合形式的三角函数的单调区间的求法.函数y=A sin(ωx+φ)(A>0,ω>0)的单调区间的确定,基本思想是把ωx+φ看做一个整体.若ω<0,要先根据诱导公式进行转化.3.函数y=A sin(ωx+φ)在x∈[m,n]上的最值可先求t=ωx+φ的范围,再结合图象得出y =A sin t的值域.A组专项基础训练(时间:40分钟)⎛π.2x -,∴当2x - =0,解析∵y =cos 3⎭⎝即 x = 时,函数取得最大值 1,结合图象看,可使函数在 x = 时取得最大值的只有④. 解析 取 K ,L 中点 N ,则 MN = ,因此 A = .由 T =2 得 ω=π.∵函数为偶函数,0<φ<π,∴φ= ,∴f (x )= cos πx ,3.已知函数 f (x )=2sin(ωx +φ)(ω>0,且|φ|< )的部分图象如图所示,则函数 解析 由函数的图象可得 T = π- π,又图象过点( π,2),∴2sin(2× π+φ)=2, ∴φ=- +2k π,k ∈Z ,∵|φ|< ,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则 f ( )的值为.答案3 ∴f ( )= cos = .答案 [k π- ,k π+ ],k ∈Z答案 ④⎛ π⎫ π 3π π6 62.设偶函数 f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,1641212π 2121 1 π 3 62 6 4π2f (x )的单调递增区间是.π 5π12 121 2 54 3 12∴T =π,则 ω=2.5 512 12π3π2∴取 k =0,则 φ=- ,即得 f (x )=2sin(2x - ),∴f (x )的单调增区间为 2k π- ≤2x - ≤2k π+ ,k ∈Z ,即单调递增区间为[k π- ,k π+ ],k ∈Z .4.已知曲线 f (x )=sin ωx + 3cos ωx (ω>0)相邻的两条对称轴之间的距离为 ,且曲线关于点 (x 0,0)中心对称,若 x 0∈⎣0,2⎦,则 x 0==2⎝ sin ωx + =2sin ⎝ωx +3⎭.∵曲线 f (x )=2sin ⎝ωx+3⎭相邻的两条对称轴之间的距离为 ,∴f (x )=2sin ⎝2x +3⎭. 又 x 0∈⎣0,2⎦,∴x 0= . 5.函数 f (x )=sin(2x +φ)⎝|φ|<2⎭的图象向左平移 个单位后所得函数图象的解析式是奇函数,则函数 f (x )在⎣0,2⎦上的最小值为 答案 - 3解析 由函数 f (x )的图象向左平移 个单位得 g (x )=sin ⎝2x +φ+3⎭的图象,π π3 3π π π2 3 2π 5π12 12π2⎡ π⎤.答案π3解析 f (x )=sin ωx + 3cos ωx⎛1 2 3 ⎫ 2 cosωx ⎭⎛ π⎫⎛ π⎫ π 22π∴最小正周期 T =π= ω ,∴ω=2,⎛ π⎫∵曲线关于点(x 0,0)中心对称;π∴2x 0+3=k π(k ∈Z ),k π π∴x 0= 2 -6(k ∈Z ),⎡ π⎤ π 3⎛ π⎫ π 6⎡ π⎤.2π ⎛ π⎫ 6因为是奇函数,所以 φ+ =k π,k ∈Z ,又因为|φ|< ,所以 φ=- ,2x -.所以 f (x )=sin 3⎭⎝0,,所以 2x - ∈ - ,,又 x ∈⎣ 2⎦ ⎣ 33 ⎦ ∴ω= =100π.∴I =10sin(100πt +φ).,10 ,∵图象过点⎝300⎭∴sin( +φ)=1, +φ=2k π+ ,k ∈Z ,∴φ=2k π+ ,k ∈Z ,又∵0<φ< ,∴φ= .100πt +,∴I =10sin6⎭⎝所以当 x =0 时,f (x )取得最小值为- 3.ω>0,0<φ< ) 的图象如右图所示,则当 t =秒时,电流强度是解析由图象知 A =10, = - = , ∴10sin(100π× +φ)=10,当 t = 秒时,I =-5 安.7.若函数 f (x )=sin(ωx +φ) (ω>0 且|φ|< )在区间⎣6, 3 ⎦上是单调递减函数,且函数从 1 减小2到-1,则 f ⎝4⎭= .答案3π3π π2 3⎛ π⎫⎡ π⎤ π ⎡ π 2π⎤ 326. 电流强度 I ( 安 ) 随时间 t ( 秒 ) 变化的函数I = A sin(ωt + φ)(A >0 ,π 12 100安.答案 -5T4 1 12 300 300 1002πT⎛ 1 ⎫ 1300π π π3 3 2π6π π2 6⎛ π⎫1100π ⎡π 2π⎤⎛π⎫2解析由题意可得,函数的周期为2×⎝3-6⎭=π,⎛⎫∴f(x)=sin⎝2x+6⎭,∴f⎝4⎭=sin⎝2+6⎭=cos=.8.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)在一个周期内的图象如图所示.若方程可得φ=答案或π解析由图象可知y=m和y=f(x)图象的两个交点关于直线x=或x=π对称,9.(2015·天津)已知函数f(x)=sin2x-sin2⎝x-6⎭,x∈R.(2)求f(x)在区间⎣-3,4⎦上的最大值和最小值.1-cos⎝2x-3⎭解(1)由已知,有f(x)=-⎛sin2x-所以f(x)的最小正周期T==π.⎛2ππ⎫2π即ω=π,∴ω=2,∴f(x)=sin(2x+φ).πππ由sin⎝2×6+φ⎭=1,|φ|<26,⎛π⎫⎛π⎫⎛ππ⎫π362π2f(x)=m在区间[0,π]上有两个不同的实数x1,x2,则x1+x2的值为.π433π263π4∴x1+x2=3或3π.⎛π⎫(1)求f(x)的最小正周期;⎡ππ⎤⎛π⎫1-cos2x221⎛13=2⎝2cos2x+2⎫1sin2x⎭-2cos2x=311π⎫44cos2x=2sin⎝2x-6⎭.2π2⎡ππ⎤⎡ππ⎤⎛π⎫1 (2)因为f(x)在区间⎣-3,-6⎦上是减函数,在区间⎣-6,4⎦上是增函数,且f⎝-3⎭=-4,4 所以 f (x )在区间⎣-3,4⎦上的最大值为 最小值为- .10.设函数 f (x )= 3- 3sin 2ωx -sin ωx cos ωx (ω>0),且 y =f (x )图象的一个对称中心到最近 的对称轴的距离为 .(2)求 f (x )在区间⎣π, 2 ⎦上的最大值和最小值.解 (1)f (x )= 3- 3sin 2ωx -sin ωx cos ωx= - 3× - sin 2ωx = 3 cos 2ωx - sin 2ωx=-sin ⎝2ωx -3⎭.依题意知 =4× ,ω>0,所以 ω=1.(2)由(1)知 f (x )=-sin ⎝2x -3⎭.当 π≤x ≤ 时, ≤2x - ≤ .⎛2 故 f (x )在区间⎣π, 2 ⎦上的最大值和最小值分别为 ,-1.11.已知函数 f (x )=A sin(ωx +φ) (A >0,|φ|< ,ω>0)的图象的一部分如图所⎛ π⎫1⎛π⎫3f ⎝-6⎭=-2,f ⎝4⎭=,⎡ π π⎤34 ,1 22π 4(1)求 ω 的值; ⎡ 3π⎤231-cos 2ωx 1 2 2 2 12 2⎛π⎫2π π 2ω 4⎛ π⎫3π 5π π 8π 2 3 3 3 所以- 3 π⎫2 ≤sin ⎝2x -3⎭≤1.所以-1≤f (x )≤ 3.⎡ 3π⎤3 2B 组 专项能力提升(时间:20 分钟)π 2示,则该函数的解析式为 .答案 f (x )=2sin ⎝2x +6⎭∴1=2sin(ω·0+φ),即 sin φ= .∵|φ|< ,∴φ= .又∵ π 是函数的一个零点,且是图象递增穿过 x 轴形成的零点,∴ ω+ =2π,∴ω=2. ∴f (x )=2sin ⎝2x +6⎭. 的交点中,若相邻交点距离的最小值为 ,则 f (x )的最小正周期为.解析 f (x )= 3sin ωx +cos ωx =2sin(ωx + )(ω>0).由 2sin(ωx + )=1 得 sin(ωx + )= ,∴ωx + =2k π+ 或 ωx + =2k π+ π(k ∈Z ).故 f (x )的最小正周期 T = =π.13.已知函数 f (x )=cos ⎝3x +3⎭,其中 x ∈⎣6,m ⎦,若 f (x )的值域是⎣-1,- 答案 ⎣ 9 ,18⎦⎛ π⎫解析 观察图象可知:A =2 且点(0,1)在图象上,1 π π2 2 611 11π π12 12 6⎛ π⎫12.(2014· 天津改编)已知函数 f (x )= 3sin ωx +cos ωx (ω>0),x ∈R .在曲线 y =f (x )与直线 y =1π3答案 ππ6π π 16 6 2π π π 56 6 6 6π π π 5令 k =0,得 ωx 1+6=6,ωx 2+6=6π,2π∴x 1=0,x 2=3ω.π 2π π由|x 1-x 2|=3,得3ω=3,∴ω=2.2π2值范围是.⎡2π 5π⎤解析 画出函数的图象.⎛ π⎫ ⎡π ⎤ ⎡ 3⎤ 2 ⎦ ,则 m 的取由 x ∈⎣6,m ⎦,可知 ≤3x + ≤3m + ,且 f ⎝ 9 ⎭=cos π=-1,=- 要使 f (x )的值域是⎣-1,-2 ⎦ 所以 π≤3m + ≤ π,则 ≤m ≤ ,即 m ∈⎣ 9 ,18⎦.14.已知 f (x )=sin ⎝ωx +3⎭ (ω>0),f ⎝6⎭=f ⎝3⎭,且 f (x )在区间⎝6,3⎭上有最小值,无最大值, 答案 146 3 π解析 依题意,x = = 时,y 有最小值,∴sin ⎝4ω+3⎭=-1,∴ ω+ =2k π+ (k ∈Z ),∴ω=8k + (k ∈Z ),∵f (x )在区间⎝6,3⎭上有最小值,无最大值, 15.已知函数 f (x )= 3sin ωx cos ωx +cos 2ωx - (ω>0),其最小正周期为 . (2)将函数 f (x )的图象向右平移 个单位长度,再将图象上各点的横坐标伸长到原来的 2 倍(纵坐标不变),得到函数 y =g (x )的图象,若关于 x 的方程 g (x )+k =0 在区间[0, ]上有且只有一解 (1)f (x )= 3sin ωx cos ωx +cos 2ωx -⎡π ⎤ 5π π π 6 3 3⎛π⎫ 5π 3 因为 f ⎝6⎭=cos 6 2⎛2π⎫,⎡ 3⎤ ,π 7 2π 5π3 6 9 18⎡2π 5π⎤⎛ π⎫ ⎛π⎫ ⎛π⎫ ⎛π π⎫则 ω=.3π π + 2 4⎛π π⎫π π 3π4 3 2143⎛π π⎫π π π 14 ∴3-4<ω,即 ω<12,令 k =0,得 ω= 3 .1 π2 2(1)求 f (x )的表达式;π8π2个实数解,求实数 k 的取值范围.12=sin2ωx+-=sin(2ωx+),所以ω=2,所以f(x)=sin(4x+).(2)将f(x)的图象向右平移个单位长度后,得到y=sin(4x-)的图象;再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin(2x-)的图象,所以g(x)=sin(2x-),因为0≤x≤,所以-≤2x-≤,cos2ωx+11所以g(x)∈[-3又g(x)+k=0在区间[0,]上有且只有一个实数解,即函数y=g(x)与y=-k在区间[0,]上≤-k<或-k=1,解得-3<k≤或k=-1,,]∪{-1}.3π2226π2πππ由题意知f(x)的最小正周期T=2,T=2ω=ω=2,π6ππ83ππ33πππ2π23332,1].ππ22有且只有一个交点,由正弦函数的图象可知-32233 22所以实数k的取值范围是(-33 22。
三角函数的图像与性质

三角函数的图像与性质三角函数是数学中的重要概念,它们的图像和性质对于初中数学学习者来说是必须掌握的内容。
在本文中,我将详细介绍三角函数的图像与性质,并给出一些例子和说明,帮助中学生和他们的父母更好地理解和应用这些知识。
一、正弦函数的图像与性质正弦函数是最基本的三角函数之一,它的图像是一条连续的曲线,呈现出周期性变化。
正弦函数的性质包括:1. 周期性:正弦函数的周期是2π,即在每个2π的区间内,正弦函数的图像重复出现。
2. 幅度:正弦函数的幅度表示波峰和波谷的最大差值,通常记为A。
幅度越大,波峰和波谷的差值越大。
3. 对称性:正弦函数的图像关于y轴对称,即f(x) = -f(-x)。
4. 奇偶性:正弦函数是奇函数,即f(x) = -f(x)。
举例说明:假设有一条正弦函数的图像,周期为2π,幅度为1。
在区间[0, 2π]内,正弦函数的图像先从0逐渐上升到1,然后下降到0,再下降到-1,最后又上升到0。
这样的周期性变化会一直重复下去。
根据正弦函数的性质,可以得出该图像关于y轴对称,且是奇函数。
二、余弦函数的图像与性质余弦函数也是一种常见的三角函数,它的图像和正弦函数有些相似,但也有一些不同之处。
余弦函数的性质包括:1. 周期性:余弦函数的周期也是2π,与正弦函数相同。
2. 幅度:余弦函数的幅度也表示波峰和波谷的最大差值,通常记为A。
与正弦函数不同的是,余弦函数的幅度表示波峰和波谷的绝对值最大差值。
3. 对称性:余弦函数的图像关于y轴对称,即f(x) = f(-x)。
4. 奇偶性:余弦函数是偶函数,即f(x) = f(x)。
举例说明:假设有一条余弦函数的图像,周期为2π,幅度为1。
在区间[0, 2π]内,余弦函数的图像先从1逐渐下降到0,然后下降到-1,再上升到0,最后又上升到1。
这样的周期性变化会一直重复下去。
根据余弦函数的性质,可以得出该图像关于y轴对称,且是偶函数。
三、正切函数的图像与性质正切函数是三角函数中的另一种重要函数,它的图像与正弦函数和余弦函数有很大的不同。
专题 三角函数与渐近线-渐近线中三角形函数的综合运用

专题三角函数与渐近线-渐近线中三角形函数的综合运用在数学中,三角函数和渐近线是两个重要的概念。
三角函数是描述角度和三角形之间关系的函数,而渐近线是曲线的特殊直线。
本文将讨论在渐近线中综合运用三角函数的问题。
三角函数简介三角函数是数学中一类常见的函数,包括正弦函数、余弦函数和正切函数等。
它们可以描述角度和三角形的各种关系。
例如,正弦函数可以用来计算一个角的对边与斜边的比值,余弦函数可以计算一个角的邻边与斜边的比值。
三角函数在几何、物理和工程等领域中有广泛的应用。
渐近线简介渐近线是曲线的一种特殊直线,具有特定的性质。
当曲线的函数值在趋于无穷大或负无穷大时,渐近线可以用来描述函数的趋势。
常见的渐近线包括水平渐近线和垂直渐近线。
水平渐近线表示函数在某个特定的水平高度趋于无穷大或负无穷大,垂直渐近线表示函数在某个特定的垂直位置无限接近某一值。
渐近线中三角函数的综合运用在渐近线的研究中,可以综合运用三角函数来描述曲线的性质。
例如,在一条曲线的渐近线方程中出现三角函数,可以通过求解方程来确定曲线与渐近线的交点。
这对于分析曲线的形态和特征十分重要。
此外,三角函数还可以用来描述曲线的周期性和周期函数的一些性质。
例如,正弦函数和余弦函数在图像上呈现周期性变化,通过计算周期和振幅,可以推导出曲线的周期性特征。
综合运用三角函数和渐近线的分析方法,可以帮助我们更好地理解曲线的性质,推导出更多的数学结论。
这对于数学领域中的研究和应用具有重要的意义。
结论三角函数和渐近线是数学中重要的概念,它们在数学研究和应用中具有广泛的应用价值。
在渐近线中综合运用三角函数可以帮助我们更好地理解曲线的性质和特征。
通过深入研究三角函数和渐近线的关系,可以推导出更多的数学结论,为数学的发展做出贡献。
以上是关于专题"三角函数与渐近线-渐近线中三角形函数的综合运用"的简要介绍。
希望对您的研究和学习有所帮助!。
三角函数的图像与性质复习教案

三角函数的图像与性质复习教案第一章:引言1.1 三角函数的概念复习三角函数的定义和基本概念,如正弦、余弦、正切等。
引导学生理解三角函数的周期性和奇偶性。
1.2 三角函数的图像复习三角函数的图像特点,如正弦函数的波浪形状、余弦函数的波动形状等。
引导学生理解图像的平移、伸缩等变换。
第二章:正弦函数的图像与性质2.1 正弦函数的图像复习正弦函数的图像特点,如周期性、振幅等。
引导学生理解图像的平移、伸缩等变换。
2.2 正弦函数的性质复习正弦函数的性质,如单调性、奇偶性等。
引导学生理解函数的极值和拐点。
第三章:余弦函数的图像与性质3.1 余弦函数的图像复习余弦函数的图像特点,如周期性、振幅等。
引导学生理解图像的平移、伸缩等变换。
3.2 余弦函数的性质复习余弦函数的性质,如单调性、奇偶性等。
引导学生理解函数的极值和拐点。
第四章:正切函数的图像与性质4.1 正切函数的图像复习正切函数的图像特点,如周期性、振幅等。
引导学生理解图像的平移、伸缩等变换。
4.2 正切函数的性质复习正切函数的性质,如单调性、奇偶性等。
引导学生理解函数的极值和拐点。
第五章:三角函数的图像与性质的综合应用5.1 三角函数的图像与性质的综合应用引导学生理解三角函数图像与性质之间的关系,如周期性、奇偶性等。
举例讲解如何利用三角函数的图像与性质解决实际问题。
第六章:三角函数图像的变换6.1 图像的平移讲解如何通过平移变换得到不同三角函数的图像。
引导学生理解平移的方向和距离对图像的影响。
6.2 图像的伸缩讲解如何通过伸缩变换得到不同三角函数的图像。
引导学生理解伸缩的比例和对称性对图像的影响。
第七章:三角函数的周期性和对称性7.1 周期性复习三角函数的周期性,包括基本周期和周期函数的性质。
引导学生理解周期性在图像上的表现。
7.2 对称性复习三角函数的对称性,包括奇偶性和对称轴。
引导学生理解对称性在图像上的表现。
第八章:三角函数的极值和拐点8.1 极值讲解如何确定三角函数的极大值和极小值。
三角函数的图像和常用公式

三角函数的图像和常用公式三角函数是高中数学中的重要部分,主要分为正弦函数、余弦函数和正切函数。
它们的图像和常用公式是学习三角函数的基础,掌握了它们,才能更好地理解三角函数的应用。
一、正弦函数的图像和常用公式正弦函数的图像是一条周期为2π的波形,它的顶峰在(π/2, 1)处,谷底在(3π/2, -1)处。
通过观察正弦函数的图像可以看出,正弦函数是一条奇函数,即关于原点对称的函数。
正弦函数的常用公式有:1. sin(-x) = -sinx2. sin(x + 2πk) = sinx (k∈Z)3. sin(π - x) = sinx4. sin(π + x) = -sinx5. sin(2π - x) = sinx其中,公式1表明正弦函数是一条奇函数,即如果把正弦函数的自变量取相反数,那么正弦函数的函数值也会取相反数。
公式2表明正弦函数具有周期性,即在每隔2π的距离上,正弦函数的函数值重复。
公式3至5则是正弦函数对于特定角度的值的变化规律,这些公式的掌握对于计算三角函数的值很有帮助。
二、余弦函数的图像和常用公式余弦函数的图像也是一条周期为2π的波形,但是它的顶峰在(0,1)处,谷底在(π,-1)处。
与正弦函数不同的是,余弦函数是一条偶函数,即关于y轴对称的函数。
余弦函数的常用公式有:1. cos(-x) = cosx2. cos(x + 2πk) = cosx (k∈Z)3. cos(π - x) = -cosx4. cos(π + x) = -cosx5. cos(2π - x) = cosx与正弦函数相似,余弦函数的公式1和公式2表明了余弦函数的对称性和周期性。
不同的是,余弦函数的公式3至5反映了余弦函数对于特定角度值的变化规律。
三、正切函数的图像和常用公式正切函数的图像是一条周期为π的波形,它的极值在(π/2, 正无穷)和(3π/2, 负无穷)处。
正切函数与前两个三角函数不同的是,它是一条奇函数且是无界的。
三角函数的图像性质及应用

三角函数的图像性质及应用三角函数是数学中的重要概念之一,主要包括正弦函数、余弦函数和正切函数等。
它们的图像性质及应用广泛存在于物理、工程、计算机图形学等领域,下面将对其进行详细介绍。
首先介绍正弦函数的图像性质及应用。
正弦函数的图像是一条连续、周期为2π的曲线,其形状为振荡在y轴上下的波浪线。
正弦函数的最大值为1,最小值为-1,中心线为y=0,对称轴为中心线。
在一单位周期内,正弦函数从最小值经过中心线到最大值,再回到中心线。
正弦函数的周期性质与弧度相关,其周期公式为T=2π,其中T为周期。
正弦函数的应用非常广泛,比如在物理学中可以用来描述波动的运动状态,如光波、声波等。
在工程学中,正弦函数可以用来描述交流电的变化规律,同时在信号处理中也有重要作用。
接着介绍余弦函数的图像性质及应用。
余弦函数的图像也是一条连续、周期为2π的曲线,与正弦函数非常相似,但其图像在y轴向左移动了π/2。
余弦函数的最大值为1,最小值为-1,中心线为y=0,对称轴为中心线。
在一单位周期内,余弦函数从最大值经过中心线到最小值,再回到中心线。
余弦函数与正弦函数的周期、相位存在关系,其中余弦函数的相位比正弦函数的相位延迟π/2。
余弦函数的应用也非常广泛,在物理学中可以用来描述振动的运动状态,如弹簧振子、机械波等。
在工程学中,余弦函数可以用来描述交流电的变化规律,同时在图像处理中也常常用到。
最后介绍正切函数的图像性质及应用。
正切函数的图像是一条周期为π的曲线,其形状具有对称性,在每个周期内从负无穷大变到正无穷大,同时具有垂直渐近线和周期渐近线。
正切函数的应用主要体现在三角解析中,可以用于求解各种三角方程以及解决各种与角度有关的问题,如航空飞行、旗杆倾斜、测高仪等。
除了上述的图像性质和应用之外,三角函数还与解析几何、微积分等数学分支紧密相关。
在解析几何中,三角函数可以用来描述平面和空间中点的位置关系、角的大小以及各种几何形状的性质。
在微积分中,三角函数是常见的函数类型,与指数、对数函数一样,具有重要的微分和积分性质,经常被用于求导、积分、级数展开等。
三角函数的图像与性质

三角函数的图像与性质引言三角函数在数学中起着非常重要的作用,它们的图像与性质也是数学学习过程中的基础内容。
本文将介绍三角函数的图像和常见性质,包括正弦函数、余弦函数和正切函数。
正弦函数的图像与性质正弦函数是三角函数中最常见的函数之一,它的图像呈现周期性的波动。
正弦函数的定义域为实数集,值域为[-1, 1]。
正弦函数的图像可以用下面的公式表示:$$y = \\sin(x)$$正弦函数的图像在周期范围内呈现上升和下降的特点,其中最高点和最低点的纵坐标分别为1和-1。
正弦函数的图像以曲线方式连续无间断地进行。
正弦函数的性质包括: - 正弦函数的周期为$2\\pi$,即在每个周期内,正弦函数的图像完整地重复一次。
- 正弦函数的对称轴为x轴。
- 正弦函数的图像在$[\frac{\pi}{2},\frac{3\pi}{2}] $ 上是增函数,在$[0, \frac{\pi}{2}] $ 和$[\frac{3\pi}{2}, 2\pi] $ 上是减函数。
余弦函数的图像与性质余弦函数也是三角函数中常见的函数,它的图像与正弦函数非常相似,但是相位不同。
余弦函数的定义域为实数集,值域为[-1, 1]。
余弦函数的图像可以用下面的公式表示:$$y = \\cos(x)$$余弦函数的图像在周期范围内呈现上升和下降的特点,其中最高点和最低点的纵坐标分别为1和-1。
余弦函数的图像以曲线方式连续无间断地进行。
余弦函数的性质包括: - 余弦函数的周期为$2\\pi$,即在每个周期内,余弦函数的图像完整地重复一次。
- 余弦函数的对称轴为y轴。
- 余弦函数的图像在$[\pi, 2\pi] $ 上是增函数,在$[0, \pi] $ 上是减函数。
正切函数的图像与性质正切函数是另一个重要的三角函数,它的图像在不同的区间内有不同的特点。
正切函数的定义域是除了$\\frac{\\pi}{2} + k\\pi$(其中k是整数)的所有实数,值域是整个实数集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数的图象与性质一、基础知识:1.三角函数的图象和性质2.正弦函数y =sin x 当x =2k π+π2(k ∈Z ),取最大值1;当x =2k π-π2(k ∈Z )时,取最小值-1.3余弦函数y =cos x 当x =2k π(k ∈Z )时,取最大值1;当x =2k π+π(k ∈Z )时,取最小值-1.4.y =sin x 、y =cos x 、y =tan x 的对称中心分别为(k π,0)(k ∈Z )、 ⎝ ⎛⎭⎪⎫k π+π2,0(k ∈Z ) ⎝ ⎛⎭⎪⎫k π2,0(k ∈Z ).5.y =sin x 、y =cos x 的对称轴分别为 x =k π+π2(k ∈Z )和_ x =k π(k ∈Z ),y =tan x 没有对称轴.二、综合运用:1、五点法绘y =A sin(ωx +φ)或y=A + 的图像:依据:以 = + 为例; =0,=1, = ,=-1, =0在实际画图中,要分别令 + =0、、 、 、 ,再求出x 与y 的值,确定对应的五点坐标。
例:“五点法”绘出y=2图像。
例:“五点法”绘出y= ()的图像,其中x 图像。
注:正切函数的图像采用三点两线的办法。
2、解有关三角函数的方程。
思路:在一个周期内,利用原始函数的图像求出对应的x 的值,然后使用整体替代的思路,解出方程中的x. 例1: -例2:=-例3:2 ()=1 例4:︱ ()︱=例5︱ ()︱=注:在解有关三解函数的非常规方程时,需要使用数形结合的思想,用图像交点的个数来代表方程的解的个数。
例:分析方程 - =0的解的个数。
(2个)例:分析方程x- =0的解的个数。
(1个)提示:利用三角函数线的性质, α时, α α tan α。
例设关于θ的方程3cos θ+sin θ+a =0在区间(0,2π)内有相异的两个实根α、β.(1)求实数a 的取值范围;(2)求α+β的值.【答题模板】解 (1)原方程可化为sin(θ+π3)=-a2,作出函数y =sin(x +π3)(x ∈(0,2π))的图象]由图知,方程在(0,2π)内有相异实根α,β的充要条件是⎩⎪⎨⎪⎧-1<-a2<1-a 2≠32.即-2<a <-3或-3<a <2.(2)由图知:当-3<a <2,即-a 2∈(-1,32)时,直线y =-a2与三角函数y =sin(x +π3)的图象交于C 、D两点,它们中点的横坐标为76π,∴α+β2=7π6,∴α+β=7π3.当-2<a <-3,即-a 2∈(32,1)时,直线y =-a2与三角函数y =sin(x +π3)的图象有两交点A 、B ,由对称性知,α+β2=π6,∴α+β=π3. 综上所述,α+β=π3或α+β=73π.3、解有关三角函数的不等式。
思路:在原始函数的一个周期内,标出有效范围(符合不等式条件的图像),再利用整体替代法求出x 的范围。
例1:例2: ()例3:例4: ()注:在求解三角函数的不等式中,若有效图像为2段,可以通过平移的办法把2段图像合并为一段,而端点的横坐标遵循右移+2 左移 的法则。
例:求函数y =2+log 12x +tan x 的定义域.则⎩⎪⎨⎪⎧2+log 12x ≥0,x >0,tan x ≥0,x ≠k π+π2 (k ∈Z ),得⎩⎪⎨⎪⎧0<x ≤4,k π≤x <k π+π2(k ∈Z ).所以函数的定义域为⎩⎨⎧⎭⎬⎫x |0<x <π2或π≤x ≤4.例:函数y =1-2cos x +lg(2sin x -1)的定义域为__⎣⎢⎡⎭⎪⎫π3+2k π,5π6+2k π.⎩⎪⎨⎪⎧1-2cos x ≥02sin x -1>0⇒⎩⎪⎨⎪⎧cos x ≤12sin x >12得⎩⎪⎨⎪⎧π3+2k π≤x ≤5π3+2k π,k ∈Z π6+2k π<x <5π6+2k π,k ∈Z,x ∈⎣⎢⎡⎭⎪⎫π3+2k π,5π6+2k π4、求有关三角函数的值域。
①“纯”三角函数:求出有效角度的取值范围,并画出有效图像,确定最高点和最低点,它们的纵坐标分别为函数的最大值和最小值。
例:y= ,其中,分析值域。
例:y= ( ),其中,分析值域。
例:y= , 其中, 分析值域。
②结合一次函数、二次函数、分式函数求值域。
例:y=2+1,,分析值域。
例:y=a +b,值域为[- , ,求a 和b. { a=,b=或a=,b=例:函数F(x)=-2a+2a+b,当x时,F(x) [-5,1],求a 和b 。
{a=2,b=-5或a=-2,b=1 例:已知函数f (x )=2a sin(2x -π3)+b 的定义域为[0,π2],函数的最大值为1,最小值为-5,求a 和b 的值.解 ∵0≤x ≤π2,∴-π3≤2x -π3≤23π,∴-32≤sin(2x -π3)≤1,若a >0,则⎩⎪⎨⎪⎧2a +b =1-3a +b =-5,解得⎩⎪⎨⎪⎧a =12-63b =-23+123;若a <0,则⎩⎪⎨⎪⎧2a +b =-5-3a +b =1,解得⎩⎪⎨⎪⎧a =-12+63b =19-123.综上可知,a =12-63,b =-23+123或a =-12+63,b =19-12 3.例求下列函数的值域:(1)y =-2sin 2x +2cos x +2; (2)y =sin x +cos x +sin x cos x . 解(1)y =-2sin 2x +2cos x +2=2cos 2x +2cos x =2(cos x +12)2-12,cos x ∈[-1,1]. 当cos x =1时,y max =4,当cos x =-12时,y min =-12,故函数值域为[-12,4](2)令t =sin x +cos x ,则sin x cos x =t 2-12,且|t |≤2.∴y =t +t 2-12=12(t +1)2-1,∴当t =-1时,y min =-1;当t =2时,y max =12+2.∴函数值域为[-1,12+2].例:求y=的值域。
例:求y=的值域。
5、有关三角函数的奇偶性研究:依据: ( )=- , ,故y= 为奇函数,y= 为偶函数。
推广:y= 为奇函数,y=A 为偶函数。
注:(1)若f(x)= + 或g(x)= A 为奇函数,由于三角函数图像的特殊性,则图像过原点。
例:已知f(x)=2 ( )为奇函数,则 =k +(2)若f(x)= + 或g(x)= A 为偶函数,则图像与Y 轴的交点为最高点或者最低点,这样才能保证图像关于Y 轴对称,即x=0时, + = 或 = 。
例:f(x)=2 ( )为偶函数,则 =k +例:f(x)= ( ) ( )的奇偶性。
[偶函数] 例:f(x)=a +b +7,若f(3)=8,则f(-3)= 6 6、三角函数图像平移、伸缩及对称与翻折:一、图像概念:当函数y =A sin(ωx +φ) (A >0,ω>0),x ∈(-∞,+∞)表示一个振动量时,则A 叫做振幅,T =2πω叫做周期,f =1T_叫做频率,ωx +φ叫做相位,φ叫做初相.二.图象变换基本法则:函数y =A sin(ωx +φ) (A >0,ω>0)的图象可由函数y =sin x 的图象作如下变换得到: (1)相位变换[左右平移]:y =sin x →y =sin(x +φ),把y =sin x 图象上所有的点向左(φ>0)或向右(φ<0)平行移动|φ|个单位.(2)周期变换[伸缩变化]:y =sin (x +φ)→y =sin(ωx +φ),把y =sin(x +φ)图象上各点的横坐标伸长(0<ω<1)或缩短(ω>1)到原来的1ω倍(纵坐标不变).(3)振幅变换:y =sin (ωx +φ)→y =A sin(ωx +φ),把y =sin(ωx +φ)图象上各点的纵坐标伸长(A >1)或缩短(0<A <1)到原来的 A 倍(横坐标不变).例:说明y=2 π+5是由y= 的图像经过怎样的变化得到的。
例:说明y= 的图像经过怎样的变化可以得到y=的图像?例:.(2011·池州月考)要得到函数y =sin ⎝⎛⎭⎪⎫2x -π4的图象,可以把函数y =sin 2x 的图象( B )A .向左平移π8个单位B .向右平移π8个单位C .向左平移π4个单位D .向右平移π4个单位例:.已知函数f(x)=sin ⎝⎛⎭⎪⎫ωx +π4 (x ∈R ,ω>0)的最小正周期为π.将y =f(x)的图象向左平移|φ|个单位长度,所得图象关于y 轴对称,则φ的一个值是 (D ) A.π2B.3π8C.π4D.π8例:已知函数f(x)=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g(x)=cos ωx 的图象,只要将y=f(x)的图象 ( A )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度(3)、图像的对称与翻折:①y= 相同时, 互为相反数,故两函数图像关于 轴对称y=- y= 沿 轴上下翻转y=-结论:y= 沿 轴上下翻转y= 或者 y=A 沿 轴上下翻转y=-A ②y= 相同时, 互为相反数,故两函数图像关于 轴对称y= ( ) y= 沿 轴左右翻转y= ( )结论:y= ( )沿 轴左右翻转y= ( )或者 y=A ( ) 沿 轴左右翻转y=A ( ) ③y= 轴上方图像不变,下方翻至上方y=| |结论:y= ( ) 轴上方图像不变,下方翻至上方y=| ( )| ④y= 轴右方图像不变,左方图像由右方图像对称得到y= | | 注:含绝对值符号的三角函数,可以用分段函数的意义进行分析。
7、三角函数单调性的研究:思路:以y= 和y= 的单调区间为依据,使用整体替代的思路,求出x 的取值范围,在实际应用中,要注意负号和绝对值符号对单调区间的影响。
主要体现在负号可能使得单调区间的相互调换,而绝对值符号影响了原始函数和周期。
例:求函数的y =sin ⎝ ⎛⎭⎪⎫2x -π4的单调区间。
例:求函数y =2sin ⎝ ⎛⎭⎪⎫π4-x 的单调区间.例:求函数y =sin ⎝ ⎛⎭⎪⎫π3-2x ,x ∈[-π,π]的单调递减区间;例:求函数y =3tan ⎝ ⎛⎭⎪⎫π6-x 4的周期及单调区间.例:求函数y=| sin ⎝⎛⎭⎪⎫2x -π4|单调递增区间。
8、三角函数对称轴的求法及应用:依据:y= 图像中对称轴为:x=k;y= 图像中对称轴为:x=k例:求y =-2sin ⎝⎛⎭⎪⎫2x -π4的对称轴。