变压器知识点总结
变压器知识点全套

变压器知识点1.油浸变压器有哪些主要部件?答:变压器的主要部件有:铁芯、绕组、油箱、油枕、呼吸器、防爆管、散热器、绝缘套管、分接开关、气体继电器、温度计、净油等。
2.什么叫全绝缘变压器什么叫半绝缘变压器?答:半绝缘就是变压器的*近中性点部分绕组的主绝缘,其绝缘水平比端部绕组的绝缘水平低,而与此相反,一般变压器首端与尾端绕组绝缘水平一样叫全绝缘。
3、变压器在电力系统中的主要作用是什么?答:变压器中电力系统中的作用是变换电压,以利于功率的传输。
电压经升压变压器升压后,可以减少线路损耗,提高送电的经济性,达到远距离送电的目的。
而降压变压器则能把高电压变为用户所需要的各级使用电压,满足用户需要。
4.套管裂纹有什么危害性?答:套管出现裂纹会使绝缘强度降低,能造成绝缘的进一步损坏,直至全部击穿。
裂缝中的水结冰时也可能将套管胀裂。
可见套管裂纹对变压器的安全运行是很有威胁的。
5.中性点与零点、零线有何区别?答:凡三相绕组的首端(或尾端)连接在一起的共同连接点,称电源中性点。
当电源的中性点与接地装置有良好的连接时,该中性点便称为零点;而由零点引出的导线,则称为零线。
6、为什么室外母线接头易发热?答:室外母线要经常受到风、雨、雪、日晒、冰冻等侵蚀。
这些都可促使母线接头加速氧化、腐蚀,使得接头的接触电阻增大,温度升高。
7.SF6气体有哪些化学性质?答:SF6气体不溶于水和变压器油,在炽热的温度下,它与氧气、氧气、铝及其他许多物质不发生作用。
但在电弧和电晕的作用下,SF6气体会分解,产生低氟化合物,这些化合物会引起绝缘材料的损坏,且这些低氟化合物是剧毒气体。
SF6的分解反应与水分有很大关系,因此要有去潮措施。
8、变压器的油枕起什么作用?答:当变压器油的体积随着油温的变化而膨胀或缩小时,油枕起储油和补油作用,能保证油箱内充满油,同时由于装了油枕,使变压器与空气的接触面减小,减缓了油的劣化速度。
油枕的侧面还装有油位计,可以监视油位的变化。
物理变压器高中知识点总结

物理变压器高中知识点总结一、引言变压器是一种能够将交流电能转化为不同电压的电气设备。
在电力系统中,变压器被广泛应用于输电、配电和电能变换等领域。
高中阶段的物理课程中,学生们需要了解变压器的基本原理和工作原理,以及相关的计算方法和应用场景。
本文将对高中物理课程中关于变压器的知识点进行总结,包括变压器的原理、工作原理、性能参数、等效电路、变压器的损耗和效率、以及变压器的应用等方面。
二、变压器的原理1. 变压器的基本原理变压器是利用电磁感应的原理来实现电能的变换。
当交流电流通过一个绕组时,会在另一个绕组中感应出电磁力线,从而在另一个绕组中引起感应电流。
利用这种原理,可以将输入绕组的电压变换到输出绕组,并通过变比来实现不同电压的变换。
变压器主要由铁芯和两个绕组组成。
其中,铁芯用于传递磁场,绕组则用于传递电流。
2. 变压器的工作原理当变压器接通电源后,输入绕组中产生的交流电流会在铁芯中产生交变磁场。
这个交变磁场会穿过输出绕组,并在输出绕组中感应出交流电压。
根据电磁感应的原理,输出绕组中感应出的电压与输入绕组中的电压成正比,且与输入绕组和输出绕组的匝数比成正比。
三、变压器的性能参数1. 变压器的匝数比匝数比(N)是变压器的一个重要性能参数。
它表示了输入绕组与输出绕组的匝数之比。
变压器的匝数比决定了输入电压与输出电压的变换关系。
通常情况下,变压器的匝数比是根据输出电压与输入电压的比值来确定的。
2. 变压器的变比变比是变压器的另一个重要性能参数。
它表示了输出电压与输入电压之比。
变比可以直接反映出变压器的变压比例。
变压器的变比是由变压器的匝数比决定的。
3. 变压器的额定功率变压器的额定功率是指变压器在额定工作状态下所能传递的功率。
变压器的额定功率与其匝数、磁芯的性能以及冷却方式等参数有关。
额定功率是变压器的设计和使用的重要指标。
四、变压器的等效电路1. 变压器的等效电路模型变压器可以用等效电路模型来描述其电气特性。
变压器知识点总结

变压器知识点总结变压器知识点总结变压器知识点总结1.1什么是变压器?答:变压器是借助电磁感应,以相同的频率,在两个或更多的绕组之间,变换交流电压和电流而传输交流电能的一种静止电器。
1.2什么是局部放电?答:局部放电是指高压电器中的绝缘介质在高压电的作用下,发生在电极之间但未贯通的放电。
1.3局放试验的目的是什么?答:发现设备结构和制造工艺的缺陷,例如:绝缘内部局放电场过高,金属部件有尖角;绝缘混入杂质或局部带有缺陷,防止局部放电对绝缘造成损坏。
1.4什么是铁损?答:变压器的铁损又叫空载损耗,它属于励磁损耗而与负载无关,它不随负载大小而变化,只要加上励磁电压后就存在,它的大小仅随电压波动而略有变化。
包括铁心材料的磁滞损耗、涡流损耗以及附加损耗三部分。
1.5什么是铜损?答:负载损耗又称铜损,它是指在变压器一对绕组中,一个绕组流经额定电流,另一个绕组短路,其他绕组开路时,在额定频率及参考温度下,所汲取的功率。
1.6什么是高压首端?答:与高压中部出头连接的2至3个饼,及附近的纸板、相间隔板等叫做高压首端(强调电气连接)。
1.7什么是高压首头?答:普通220kV变压器高压线圈中部出头一直到高压佛手叫做高压首头(强调空间位置)。
1.8什么是主绝缘它包括哪些内容答:主绝缘是指绕组(或引线)对地(如对铁轭及芯柱)、对其他绕组(或引线)之间的绝缘。
它包括:同柱各线圈间绝缘、距铁心柱和铁轭的绝缘、各相之间的绝缘、线圈与油箱的绝缘、引线距接地部分的绝缘、引线与其他线圈的绝缘、分接开关距地或其他线圈的绝缘、异相触头间的绝缘。
1.9什么是纵绝缘它包括哪些内容答:纵绝缘是指同一绕组上各点(线匝、线饼、层间)之间或其相应引线之间以及分接开关各部分之间的.绝缘。
它包括:桶式线圈的层间绝缘、饼式线圈的段间绝缘、导线线匝的匝间绝缘、同线圈引线间的绝缘、分接开关同触头间的绝缘。
1.10高压试验有哪些分别考核重点是什么答:高压试验包含空载试验、负载试验、外施耐压试验、感应耐压试验、局部放电试验、雷电冲击试验。
电力变压器知识点总结大全

电力变压器知识点总结大全一、电力变压器的基本原理1. 电力变压器的定义电力变压器是一种用于改变交流电压大小的电气设备,它通过电磁感应原理来实现输入和输出电压之间的变换。
2. 电力变压器的基本结构电力变压器由铁芯、初级绕组和次级绕组组成。
铁芯通常由硅钢片堆叠而成,以提高磁路的磁导率,从而减小损耗。
3. 电力变压器的工作原理当交流电流通过初级绕组时,产生的磁场会在铁芯中感应出次级绕组中的电动势,从而实现电压的变换。
4. 电压变比电力变压器的变比是指次级侧电压与初级侧电压之比,通常用K表示。
变比K=U2/U1,其中U2为次级侧电压,U1为初级侧电压。
5. 变压器的损耗电力变压器的损耗主要包括铁芯损耗和铜损耗。
铁芯损耗是由于铁芯在磁化和去磁化过程中产生的能量损失,而铜损耗是由于绕组中电流通过导线产生的焦耳热引起的损耗。
6. 电力变压器的额定容量电力变压器的额定容量是指其能够持续运行的最大功率,通常用千伏安(kVA)为单位。
二、电力变压器的分类1. 按变压器结构分类(1)壳式变压器:铁芯和绕组都装在金属壳体中,适用于较小的变压器。
(2)油浸式变压器:铁芯和绕组浸泡在绝缘油中,主要用于大型变压器。
(3)干式变压器:铁芯和绕组使用绝缘材料进行绝缘,不需要使用绝缘油,适用于一些特殊场合。
2. 按变压器用途分类(1)配电变压器:用于改变配电系统中的电压大小,将高压电流降压到低压电流。
(2)整流变压器:用于整流设备中,将交流电压变为直流电压。
(3)隔离变压器:用于隔离电路,起到电气绝缘和电流传输作用。
3. 按变压器的配置分类(1)三相变压器:包括三相三线及三相四线变压器。
(2)单相变压器:只有一个次级绕组的变压器。
三、电力变压器的性能指标1. 额定容量:变压器能够持续运行的最大功率,通常以kVA为单位。
2. 额定电压:变压器的额定电压是指其标称电压,通常包括初级和次级两个数值。
3. 短路阻抗:变压器的短路阻抗是指其在短路条件下的阻抗大小,通常用百分比表示。
高中物理变压器知识点

高中物理变压器知识点
1. 变压器的基本构造:变压器主要由两个线圈组成,一个是输入线圈(初级线圈),另一个是输出线圈(次级线圈)。
两个线圈之间通过磁铁或铁芯进行磁耦合。
2. 变压器的原理:根据法拉第电磁感应定律,变压器通过交变电流在初级线圈中产生磁场,这个磁场会穿过次级线圈并在其中产生感应电动势,从而使电压在次级线圈中产生改变。
3. 变压器的工作原理:变压器通过改变输入线圈和输出线圈的匝数比来实现电压的升降。
当输入线圈的匝数大于输出线圈的匝数时,输出线圈的电压就会降低;反之,当输入线圈的匝数小于输出线圈的匝数时,输出线圈的电压就会升高。
4. 变压器的电压关系:根据电压守恒定律,变压器的输入功率等于输出功率。
因此,电流的大小和电压的比例是有关系的,即输入电压和输出电压的比例等于输入电流和输出电流的比例。
5. 变压器的效率:变压器的效率是指输出功率与输入功率之比,通常用η来表示。
理想情况下,变压器的效率接近于100%,
但实际变压器由于存在一些能量损耗,效率会略低于100%。
6. 变压器的类型:常见的变压器有两种类型,即升压变压器和降压变压器。
升压变压器用于将输入电压升高,降压变压器则用于将输入电压降低。
7. 变压器的应用:变压器广泛应用于电力系统中,用于在输电
过程中升降电压。
此外,变压器还用于电子设备、电炉、充电器等。
以上是关于高中物理变压器的一些基本知识点,希望对你有所帮助。
物理变压器知识点公式总结

物理变压器知识点公式总结1. 变压器的基本原理变压器的基本原理是利用电磁感应的原理,当交流电通过主线圈时,产生一个交变的磁场。
副线圈就会受到这个磁场的影响,从而导致在副线圈中感应出一个交变的电动势,从而变压器的电压得以升降。
2. 变压器的工作原理变压器的工作原理基于弗拉第定律和雷诺定律。
当主线圈中有变化的电流时,就会产生变化的磁通量,从而在副线圈中感应出电动势。
根据雷诺定律,电动势的大小与磁通量的变化率成正比。
因此,通过控制主线圈的电流变化,可以实现对副线圈的电压升降。
3. 变压器的功率和效率公式根据能量守恒定律,变压器的输入功率等于输出功率,即:P1 = P2变压器的功率公式为:P = VI = I²R = V²/R其中,P为功率,V为电压,I为电流,R为电阻。
变压器的效率公式为:η = P2 / P1 = (V2I2) / (V1I1)其中,η为效率,P1和P2分别为变压器的输入功率和输出功率,V1和V2分别为主线圈和副线圈的电压,I1和I2分别为主线圈和副线圈的电流。
4. 变压器的变压比和变比变压器的变压比(turns ratio)是指主线圈和副线圈的匝数比,可以用以下公式表示:n = N2 / N1其中,n为变压比,N1为主线圈的匝数,N2为副线圈的匝数。
变压器的变比(voltage ratio)是指主线圈和副线圈的电压比,可以用以下公式表示:v = V2 / V1 = n其中,v为变比,V1为主线圈的电压,V2为副线圈的电压。
5. 变压器的磁通密度和铁损耗变压器的磁通密度(magnetic flux density)是指单位面积上的磁通量,可以用以下公式表示:B = Φ / A其中,B为磁通密度,Φ为磁通量,A为面积。
变压器的铁损耗(iron loss)是指在铁心中产生的损耗,可以用以下公式表示:Piron = kfBm²fV其中,Piron为铁损耗,kf为铁损耗系数,Bm为磁通密度峰值,f为频率,V为铁心的体积。
(完整版)高中物理之变压器知识点

高中物理之变压器知识点理想变压器是高中物理中的一个理想模型,它指的是忽略原副线圈的电阻和各种电磁能量损失的变压器。
实际生活中,利用各种各样的变压器,可以方便的把电能输送到较远的地区,实现能量的优化配置。
在电能输送过程中,为了达到可靠、保质、经济的目的,变压器起到了重要的作用。
变压器理想变压器的构造、作用、原理及特征构造:两组线圈(原、副线圈)绕在同一个闭合铁芯上构成变压器。
作用:在输送电能的过程中改变电压。
原理:其工作原理是利用了电磁感应现象。
特征:正因为是利用电磁感应现象来工作的,所以变压器只能在输送交变电流的电能过程中改变交变电压。
理想变压器的理想化条件及其规律在理想变压器的原线圈两端加交变电压U1后,由于电磁感应的原因,原、副线圈中都将产生感应电动势,根据法拉第电磁感应定律有:忽略原、副线圈内阻,有U1=E1,U2=E2另外,考虑到铁心的导磁作用而且忽略漏磁,即认为在任意时刻穿过原、副线圈的磁感线条数都相等,于是又有,由此便可得理想变压器的电压变化规律为。
在此基础上再忽略变压器自身的能量损失(一般包括线圈内能量损失和铁芯内能量损失这两部分,分别俗称为“铜损”和“铁损”),有P1=P2 而P1=I1U1,P2=I2U2,于是又得理想变压器的电流变化规律为由此可见:(1)理想变压器的理想化条件一般指的是:忽略原、副线圈内阻上的分压,忽略原、副线圈磁通量的差别,忽略变压器自身的能量损耗(实际上还忽略了变压器原、副线圈电路的功率因数的差别。
)(2)理想变压器的规律实质上就是法拉第电磁感应定律和能的转化与守恒定律在上述理想条件下的新的表现形式。
规律小结(1)熟记两个基本公式即对同一变压器的任意两个线圈,都有电压和匝数成正比。
②P入=P出,即无论有几个副线圈在工作,变压器的输入功率总等于所有输出功率之和。
(2)原副线圈中过每匝线圈通量的变化率相等(3)原副线圈中电流变化规律一样,电流的周期频率一样(4)公式中,原线圈中U1、I1代入有效值时,副线圈对应的U2、I2也是有效值,当原线圈中U1、I1为最大值或瞬时值时,副线圈中的U2、I2也对应最大值或瞬时值(5)需要特别引起注意的是:①只有当变压器只有一个副线圈工作时,才有:②变压器的输入功率由输出功率决定,往往用到:即在输入电压确定以后,输入功率和原线圈电压与副线圈匝数的平方成正比,与原线圈匝数的平方成反比,与副线圈电路的电阻值成反比。
三相变压器知识点总结大全

三相变压器知识点总结大全一、三相变压器的基本概念1. 定义:三相变压器是一种通过变压器原理对三相电压进行变换的设备,用于将高压的三相电压变换成低压的三相电压,或者将低压的三相电压变换成高压的三相电压。
2. 结构:三相变压器由铁芯和三个绕组组成。
铁芯用于传输磁场,三个绕组分别用于连接高压侧、低压侧和中性点。
3. 原理:三相变压器工作的基本原理是利用电磁感应的原理,在高压绕组中产生的磁场与低压绕组中的导体感应产生感应电动势,从而实现三相电压的变换。
4. 规格参数:三相变压器的规格参数包括额定容量、额定电压、绕组连接组态、短路阻抗等。
二、三相变压器的分类1. 按用途分类:主要包括配电变压器、整流变压器、焊接变压器、驱动变压器等。
2. 按冷却方式分类:主要包括自然冷却变压器、强迫冷却变压器等。
3. 按相数分类:主要包括三相变压器和单相变压器。
4. 按使用场合分类:主要包括户外变压器、干式变压器、油浸式变压器等。
5. 按绕组连接方式分类:主要包括星形连接和三角形连接。
三、三相变压器的工作原理1. 磁通链:当在高压绕组通入三相电源后,产生的磁通链会通过铁芯传导到低压绕组,从而在低压绕组中感应出三相电压。
2. 电磁感应:根据法拉第电磁感应定律,当磁场的磁通量发生变化时,会在导体中感应出感应电动势,从而产生感应电流。
3. 变压器原理:三相变压器根据电磁感应定律,实现了从高压侧到低压侧的电压变换,通过绕组的匝数比可以实现电压的变换比例。
4. 传导作用:铁芯起到了磁场传导的作用,有效地将高压绕组产生的磁场传导到低压绕组中,从而实现了电压的变换。
四、三相变压器的特点1. 高效率:三相变压器的铁芯和绕组都经过精心设计,以确保最小的功率损耗,从而提高了变压器的工作效率。
2. 变压比固定:由于三相变压器中绕组匝数和磁场的传导等因素都是确定的,因此变压器的变压比是固定的。
3. 传导性好:由于采用了铁芯传导磁场的方式,因此三相变压器具有较好的磁场传导性,可以有效地将高压侧的磁场传导到低压侧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器知识点总结一、自耦变压器1.自耦变压器有哪些缺点?自耦变压器的缺点:1)自耦变压器的中性点必须接地或经小电抗接地。
当自耦变压器高压侧网络发生单相接地故障时,若中性点不接地,则在其中压绕组上将出现过电压,自耦变压器变比KA 越大,中压绕组的过电压倍数越高。
为了防止这种情况发生,其中性点必须接地。
中性点接地后,高压侧发生单相接地时,中压绕组的过电压便不会升高到危险的程度。
2)引起系统短路电流增加。
由于自耦变压器有自耦联系,其电抗为同容量双绕组变压器的(1-1/KA),漏阻抗的标么值是等效的双绕组变压器的(1-1/KA)。
所以自耦变压器电压变动小而短路电流较同容量双绕组变压器大。
这就是自耦变压器使系统短路电流显著增加的原因。
两侧过电压的相互影响。
自耦变压器因其绕组有电的连接,当某一侧出现大气过电压或操作过电压时,另一侧的过电压可能超过其绝缘水平。
3)两侧过电压的相互影响。
4)使继电保护复杂。
5)调压困难。
2.变比选择自耦变压器的变比通常接近于23.运行自耦变压器的共用绕组导体流过的电流较小(公用绕组的电流比二次绕组电流小,二次电流有一部分直接流到了一次)自耦变压器运行时,中性点必须接地。
自耦变压器一般用以联系两个中性点直接接地的电力系统。
二、呼吸器1.更换变压器呼吸器内的吸潮剂时应注意什么?(1)应将气体保护改接信号。
(2)取下呼吸器时应将连管堵住,防止回吸空气。
(3)换上干燥的吸潮剂后,应使油封内的油没有呼气嘴并将呼吸器密封。
2.引起呼吸器硅胶变色的原因主要有哪些?正常干燥时呼吸器硅胶为蓝色。
当硅胶颜色变为粉红色时,表明硅胶已受潮而且失效。
一般已变色硅胶达2/3时,值班人员应通知检修人员更换。
硅胶变色过快的原因主要有:(1)长时期天气阴雨,空气湿度较大,因吸湿量大而过快变色。
(2)呼吸器容量过小。
(3)硅胶玻璃罩罐有裂纹、破损。
(4)呼吸器下部油封罩内无油或油位太低,起不到良好的油封作用,使湿空气未经油封过滤而直接进入硅胶罐内。
(5)呼吸器安装不当。
如胶垫龟裂不合格、螺丝松动、安装不密封而受潮。
3.变压器的呼吸器中的硅胶受潮后影变成粉红色。
4.变压器呼吸器的作用是用以清除吸入空气中的杂质和水分。
5.运行中的变压器呼吸器上层硅胶先变色,说明密封不好。
三、油1.变压器的净油器是根据什么原理工作的?答:运行中的变压器因上层油温与下层油温的温差,使油在净油器内循环。
油中的有害物质如:水分、游离碳、氧化物等随油的循环被净油器内的硅胶吸收,使油净化而保持良好的电气及化学性能,起到对变压器油再生的作用。
2.油浸变压器有哪些主要部件?答:油浸变压器的主要部件有:铁心、绕组、油箱、油枕、呼吸器、防爆管、散热器、绝缘套管、分接开关、气体继电器、温度计、净油器等。
3.运行中的变压器缺油有何危害?答:(1)变压器油面过低会使轻瓦斯保护动作;甚至还会造成重瓦斯保护跳闸。
(2)变压器严重缺油时,铁心和绕组暴露在空气中会使其绝缘降低、散热不良而引起损坏事故。
110kV变压器在投产5年以内,油色谱检测周期宜为6个月1次,投产5年以后按DL/T596—1996《电力设备预防性试验规程》规定执行25号变压器油中25号表示油的凝固点是-25℃.变压器油闪点指油加热到某一温度油蒸气与空气混合物用火一点就闪火的温度。
变压器油箱中应放25号油。
电力变压器中油的作用时绝缘和散热。
四、冷却器油浸风冷变压器,当风扇故障时,变压器允许带负荷为额定容量的70%强迫油循环风冷变压器当负荷超过75%时辅助冷却器投入。
强油风冷变压器冷却器全停保护动作后报信号。
运行中的变压器在切换潜油泵时应逐台进行,每次间隔时间不少于3分钟。
用钳形电流表测量变电站主变压器风冷油泵电流时导线应放在中央。
强迫油循环主变全部油泵损坏时要及时停运的原因是:铁芯结构设计制造间隙较小而散热差;线圈结构设计制造紧凑而散热差;外壳是平的,冷却面积小而散热差;油浸自冷变压器的热量是通过变压器油以对流和幅射的方式散到周围空气中去的。
强迫油循环风冷变压器冷却装置投入的数量应根据变压器温度负荷来决定。
强油循环的冷却系统必须配置两个相互独立的电源,并采用自动切换装置,应定期进行切换试验,有关信号装置应齐全可靠。
变压器的冷却方式有自然空气冷却、风冷冷却、强迫油循环冷却。
强迫油循环风冷变压器在冷却装置全停后,带负荷或空载运行,一般是允许20min:如必须运行,最长不超过1h。
因为这种变压器内部冷却是导向油路,而且变压器本身冷却向较小,平时只能靠油泵来完成散热,把变压器热量散发出去,因此强油风冷变压器在风冷装置全停时继续运行是很危险的。
五、温度强迫油循环风冷变压器的最高上层油温一般不得超过(85)°c油浸风冷变压器上层油温55℃时开启风扇,45℃时停止,当冷却系统故障停风扇后,顶层油温不超过(65)℃时,允许带额定负荷运行。
顶层油温达到((80)度时,值班调度员视变压器为过温,应立即采取倒负荷措施。
六、有载调压220kV及以下变压器有载分接开关一般应装在变压器的(高压侧)当有载调压变压器过负荷(1.2)倍运行时,禁止分接开关变换操作并闭锁通过调整有载调压变压器分接头进行调整电压时,对系统来说(改善了无功分布,但补偿不了无功不足的情况)。
有载调压变压器的有载调压开关在切换(5000)次后,应将切换部分吊出检查。
有载调压级进行程开关的作用是(保证逐级调压)。
有载调压开关变换次数一般不超过以下范围:220kV_10_ 次/天,110kV_20__次/天。
主变压器有载调压宜采用逆调压方式:负荷增大时电网电压向高调;负荷减小时电网电压向低调。
变电站内长期不调压或有一部分分接头位置长期不用的有载分接开关,有停电机会时,应在最高和最低分接间操作几个循环,试验后将分头调整到原运行位置。
变压器调压方式有有载调压和无载调压两种。
(无载调压只能在不带电时调压)两台有载调压变压器并联运行时,允许在85%变压器额定负荷电流及以下情况下进行分接头变换操作,不得在单台变压器连续进行2个分接头变换操作。
(过负荷时不允许操作)根据现场运行规程的规定,变压器运行电压一般不得超过其相应分接头电压的正负5%。
七、并列变压器并列运行的条件是什么?不符合并列运行条件的变压器并列运行会引起什么后果?答:变压器并列运行的条件是:变比相同;百分阻抗相同;接线组别相同。
如果两台变比不相同的变压器并列运行将会在变压器之间产生环流,该环流叠加在负荷电流上,使得一台变压器的负荷增大而有可能过载,一台变压器的负荷减小而欠载。
(输出电压变比小的升,大的降)如果是百分阻抗不相等,各变压器所带的负荷就不能与变压器容量成比例来进行分配,百分阻抗小的变压器带的负荷大,百分阻抗大的变压器带的负荷小。
(影响变压器的输出功率;不能按变压器的容量比例分配负荷)接线组别不相同的变压器并列运行则会造成短路(造成变压器绕组严重过热;使变压器短路)。
八、连接组别变压器一、二次绕组的(连接方式)连同一、二次线电压的(相位关系)总称为变压器的(连接组别)。
变压器的接线组别表示是变压器的高压,低压侧(线电压)间的相位关系。
YNyn0d11是常见的三绕组接线方式。
Y表示高压侧为星形接线,N表示有中性点引出,yn表示中压侧为引出中性线的星形接线,0表示高中压侧对应线电压同相位。
d表示低压侧为三角形接线,11表示低压侧线电压超前高压侧线电压30℃。
九、励磁电流拉开空载变压器时,可能产生操作过电压;带电合上空载变压器时会产生(励磁涌流)。
变压器励磁涌流中包含有很大成分的非周期分量,往往使涌流偏于时间轴的一侧;包含有大量的高次谐波分量,并以(二次)谐波为主;励磁涌流波形之间出现间断;持续时间小容量变压器0.5-1s,大容量2-3s。
变压器电源电压升高,空载时其励磁电流(增大较多)。
影响变压器励磁涌流的主要原因有:①变压器剩磁的存在;②电压合闸角。
当变压器电压升高或频率下降时都将造成工作磁通密度增加,变压器的铁芯饱和,这种现象称为(变压器过励磁)。
过励磁主要原因有:系统频率降低;系统500kV过电压;主变甩负荷等。
十、瓦斯1、重瓦斯遇有下列工作或情况时,运行中的变压器的重瓦斯保护应由“跳闸”位置切换为“信号”位置:1)变压器在运行中滤油、补油、换潜油泵或更换净油器的吸附剂。
2)变压器油路进行处理缺陷工作。
3)变压器除采油样和瓦斯继电器上部放气阀门放气外,在其它所有地方打开放气和放油阀门。
4)开闭瓦斯继电器连接管上的阀门。
5)用探针试验时。
运行中发现变压器大量漏油而使油面下降时,重瓦斯不得改投信号。
变压器加油、滤油、换潜油泵、更换油再生装置的硅胶作业完成后,运行48小时后检查无气体,才允许将重瓦斯保护投入跳闸。
新安装、长期备用状态和检修后变压器,在充电前应将重瓦斯投入跳闸;充电正常后,退出本体重瓦斯跳闸压板。
经48小时运行,并进行气体检查,确认没有气体,方可投入跳闸压板。
如果二次回路故障导致重瓦斯保护误动作变压器跳闸,应将重瓦斯保护(退出)变压器恢复运行。
变压器进行检修时,必须先将重瓦斯保护改接动作于(信号)。
变压器检修工作完成24小时后,将重瓦斯保护切换至(跳闸)位置。
2、气体继电器变压器气体继电器内有气体,信号回路动作,取油样化验,油的闪点降低,且油色变黑并有一种特殊的气味;这表明变压器(铁芯片局部短路与铁芯局部熔毁)。
800kVA及以上油浸式变压器、车间内400kVA及以上油浸式变压器应装设气体继电器。
油浸式变压器装有气体继电器时,顶盖应沿气体继电器方向的升高坡度为(1%-1.5%)。
新安装变压器投运后,气体继电器动作频繁,应综合分析,取气体点燃试验。
十一、保护1、差动保护通常变压器差动保护范围是(变压器高压侧cT与中性点套管cT之间)。
变压器比率制动的差动继电器,设置比率制动的主要原因是(当区外故障不平衡电流增加时,为了保护动作电流随不平衡电流增加而增加)。
稳态不平衡电流产生的主要原因:变压器各侧电流互感器的饱和特性和励磁电流不同;电流互感器实际变比和计算变比不同;变压器调压分接头调整。
暂态不平衡电流产生的主要原因:励磁涌流。
变压器差动保护中,差动速断保护的动作条件是(不经任何制动,只要差流达到整定值即能动作)谐波制动的变压器纵联差动保护中,设置差动速断元件的主要原因是(为了防止在区内故障,较高的短路水平时,由于电流互感器的饱和产生高次谐波量增加,导致差动元件拒动)。
(作为差动保护的辅助保护)。
变压器差动保护投入前要(带负荷)测相量、差电压对变压器差动保护进行相量图分析时,应在变压器(带有一定负荷)时进行。
投入主变压器差动出口连接片前应(用高内阻电压表测量连接片两端对地无电压后)再投变压器重瓦斯保护作用于跳闸的变压器,差动保护允许在设备带电后短时解除,进行带负荷检查回路接线等工作,解除时间一般不超过两小时,在处理差动保护回路故障时,差动保护解除时间不超过(四小时)。