《用锐角三角函数解决问题(2)》导学案
7.6锐角三角函数的简单应用(2)(058)

响水县双语学校九(8)班数学导学案(058)课题:7.6锐角三角函数的简单应用第2课学生姓名教学目标:进一步掌握解直角三角形的方法,比较熟练的应用解直角三角形的知识解决与仰角、俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。
教学过程:一、自主探究1.给出仰角、俯角的定义如右图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角。
右图中的∠1就是仰角,∠2就是俯角。
二、自主合作1.为了测量停留在空中的气球的高度,小明先站在地面上某点观测气球,测得仰角为27°,然后他向气球方向前进了50m,此时观测气球,测得仰角为40°。
若小明的眼睛离地面1.6m ,小明如何计算气球的高度呢?三、自主展示3.大海中某小岛的周围10km 范围内有暗礁。
一艘海轮在该岛的南偏西55°方向的某处,由西向东行驶了20km 后到达该岛的南偏西25°方向的另一处。
如果该海轮继续向东行驶,会有触礁的危险吗?四、自主拓展1. 如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(精确到0.1).(参考数据:414.12≈ 732.13≈)2.如图,A 、B 是两幢地平高度相等、隔岸相望的建筑物,B 楼不能到达,由于建筑物密集,在A 楼的周围没有开阔地带,为测量B 楼的高度,只能充分利A 楼的空间,A 楼的各层都可到达且能看见B 楼,现仅有测量工具为皮尺和测角器(皮尺可用于测量长度,测角器可以测量仰角、俯角或两视线的夹角)。
(1)你设计一个测量B 楼高度的方法,要求写出测量步骤和必需的测量数据 (用字母表示),并画出测量图形。
(2)用你测量的数据(用字母表示)写出计算B 楼高度的表达式。
《锐角三角函数(2)》名师教案(人教版九年级下册数学)

28.1 锐角三角函数 第二课时(刘佳)一、教学目标 1.核心素养:通过锐角三角函数---余弦、正切的学习,初步形成基本的几何直观、运算能力、推理能力. 2.学习目标(1)1.1.1理解余弦、正切及锐角三角函数的概念 (2)1.1.2能熟练运用锐角三角函数的概念进行有关计算 (3)1.1.3理解并掌握互余两角三角函数间的关系 (4)1.1.4理解并掌握同角三角函数间关系 3.学习重点熟练运用锐角三角函数的概念进行有关计算4.学习难点互余两角和同角的三角函数关系 二、教学设计 (一)课前设计 1.预习任务任务1 阅读教材P64-P65,思考:什么是余弦? 任务2 阅读教材P64-P65,思考:什么是正切? 2.预习自测 一、选择题1.如图,在Rt△ABC 中,CD 是斜边AB 上的中线,若CD =5,AC =6,则cos B 的值是( ) A. 34 B.35 C.43 D. 45 答案: D解析:Rt△ABC 中,CD 是斜边AB 上的中线,所以CD =AD =BD =5,所以AB =10,因为AC =6,据勾股定理可得BC =8,所以cos B =45.故选D.2.在Rt△ABC 中,5sin 13C 90A ∠==,,则tan B 的值为( ) A.1213 B.512 C.1312 D.125答案:D解析:Rt△ABC 中,设a =x 5,则x c 13=,x b 12=,所以tan B 512=.故选D.3.在Rt△ABC 中,ACB 90∠=,CD 是斜边AB 上的高,8,15BC AC ==,设BCD α∠=,则cos α的值为( ) A.87B.78C.817D.1517答案:D解析:据勾股定理可知,AB 17=,ABC 111581722CD S ∆=⨯⨯=⨯⨯,所以17120=CD ,所以cos α1517=.故选D. (二)课堂设计 1.知识回顾(1)正弦的概念:在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,即ABBCA A =∠=斜边的对边sin .(2)函数的概念:设在某变化过程中有两个变量x 、y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫做自变量. (3)勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方. 2.问题探究问题探究一●活动一 类比正弦,得出结论复习思考:在Rt△ABC 中,∠C=90o ,当锐角A 确定时,不管三角形的大小如何,∠A 的对边与斜边的比就随之确定.此时,其他边之间的比是否也确定了呢?如图:Rt △ABC 与Rt △A ´B ´C ´,∠C=∠C ´=90o,∠A=∠A ´=α,那么AC AB 与''''AC A B 、BCAC与''''B C AC 有什么关系?分析:由于∠C=∠C´=90o ,∠A=∠A´=α,所以Rt△ABC∽Rt△A´B ´C ´,则''''AC ABAC A B=,即''''AC AC AB A B =同理,''''BC B C AC AC=结论:在直角三角形中,当锐角A 的大小确定时,∠A 的邻边与斜边的比、∠A 的对边与邻C ´´ C BB ´A边的比也分别是确定的.我们把锐角A的邻边与斜边的比叫做∠A的余弦,记作 cosA,即cosA==b c把∠A的对边与邻边的比叫做∠A的正切.记作tanA,即tanA==a b●活动二函数思想,理论提升思考:sinA是A的函数吗?分析:对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数.同理,cosA、tanA也是A的函数.定义:锐角A的正弦,余弦,正切都叫做∠A的锐角三角函数.问题探究二●活动一初步运用,简单求值例1.如图,在Rt△ABC中,∠C=90°,BC=6,sinA=35,求cosA、tanB的值.【知识点:三角函数概念,勾股定理;数学思想:数形结合】详解:sinA=BCAB =35,BC=6,∴AB=5610sin3BCA=⨯=又,∴cosA=ACAB =45,tanB=ACBC=43.点拨:在直角三角形中,只要已知任意两条边、或者一边和一锐角三角函数,都可根据勾股定理求出第三边,进而求出所有锐角三角函数值.例2.如图,在△ABC中,AD⊥BC,垂足是D,BC=14,AD=12,tan∠BAD=34,求sinC的值.【知识点:三角函数概念,勾股定理;数学思想:数形结合】详解:∵AD⊥BC,∴tan∠BAD=BD AD .∵tan∠BAD=34,AD=12,∴34=BD12.∴BD=9.∴CD=BC-BD=14-9=5.∴在Rt△ADC中,AC=AD2+CD2=122+52=13.∴sin C=ADAC=1213.点拨:在求解直角三角形的问题中,三角函数是解题的突破口,由已知三角函数求得相应线段长,进而求出未知三角函数.问题探究三 互余两角的三角函数之间有什么关系?重点、难点知识★▲●活动一观察思考,归纳总结互余两角之间的三角函数有怎样的关系呢?如图,在Rt △ABC 中,∠C =90°.=A sin ()(),()()=B cos ,则B A cos ____sin ; B sin =()(),=A cos ()(),则A cos ____B sin ; A tan =()(),B tan =()(),则____tan tan =⋅B A . 归纳结论:若βα、为锐角,且090=+βα,则___sin =α,___sin =β,___tan tan =⋅βα. 问题探究四 同角的三角函数之间有什么关系?重点、难点知识★▲●活动一观察思考,归纳总结 同角三角函数间有怎样的关系呢? 如图,在Rt △ABC 中,∠C =90°.归纳结论:若0°<α<90°,则①平方关系:1cos sin 22=+αα;②弦切关系:αααcos sin tan =. 3.课堂总结【知识梳理】(1)在Rt △ABC 中,∠C=90°,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA=b c ;把锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA=ab.(2)锐角A 的正弦,余弦,正切都叫做∠A 的锐角三角函数. (3)若90A B ∠+∠=,则sin A =cos B ,sin B =cos A (4)22sin cos 1A A +=,sin tan cos AA A=【重难点突破】(1)求解三角函数基本计算,找准角的对边、邻边是关键.(2)在求解三角函数问题时,要灵活运用公式,将求一个锐角的三角函数问题转化成求另外一个角的三角函数或这个角的其他三角函数. 4.随堂检测 一、选择题1.在直角三角形中,各边的长度都扩大5倍,则锐角A 的三角函数值( )A.也扩大3倍B.缩小为原来的15C.都不变D.有的扩大,有的缩小 答案: C解析:∠A 、∠B 、∠C 所对应的边分别为a 、b 、c,sinB=b/a,当该直角三角形的各边长都扩大5倍后,sinB=5b/5a=b/a ,所以答案为C. 【知识点:三角函数概念】2.在ABC ∆Rt 中,︒=∠90C ,如果4=AB ,2=BC ,则B cos 等于( )A .12 B .2 C D .1 答案:A解析:在ABC ∆Rt 中,B cos 21==AB BC .故选A. 【知识点:三角函数概念,勾股定理;数学思想:数形结合】3.在△ABC 中,AB=5,BC=6,B 为锐角且sinB=35,则∠C 的正切值等于( )A .56B .32C 答案:B解析:过A 作AD ⊥BC 于D ,在Rt △ABD 中,因为B 为锐角且sinB=35,所以AD=3,据勾股定理可得:BD=4,所以DC=2,tanC 23==DC AD .故选B. 【知识点:三角函数概念,勾股定理;数学思想:数形结合】 二、填空题4.sin 259°+sin 231°的值是_______. 答案:1解析:sin 259°+sin 231°= sin 259°+cos 259°=1 【知识点:同角与互余两角的三角函数】5.在ABC ∆中,90C ∠=,2sin 5A =,则cos A =______,sin B =______,tan A =______.答案:521 、521 、21212 解析:设AB 2125===AC CB ,,则,所以cos A =521,sin B =521,tan A =21212.【知识点:三角函数概念,勾股定理】。
锐角三角函数的应用导学案

锐角三角函数的应用二中 张梅学习目标:1.进一步认识直角三角形边、角之间的关系.2.在综合运用直角三角形边角关系解决有关斜三角形,四边形等图形问题的过程中,感悟方程,转化,形结合等数学思想方法,归纳总结解题的基本方法,积累活动经验。
学习过程:一、知识梳理:对于直角三角形,我们学过哪些相关知识?二、基础练习:1.解直角三角形.盘点收获:解直角三角形至少知道_____个元素,其中至少一个是三、综合训练:A 组:1. 如图(1),,中,和DE AC DEF ABC =∆∆将DEF ∆向左平移,使DE 与AC重合,可得ABF ∆,如图(2)..的长BFA B CD FE 12 60° (2) ABC 66 36 (1) F2.将上题图(1)中的DEF ∆翻折,使DE 与AC 重合,点F 落在BC 边上,可得如图(3)所示的ABF ∆.若ABF ∆中,BF=,.,120,45的长求AB F B =∠=∠分享经验:“化斜为直”做辅助线的技巧:_______________________设未知数的技巧:运用的数学思想:即时检测:1. ABF ∆中,AF =12,75,60,.B F BF ∠=∠= 求的长2. ABF ∆中,AF =2150,.BF BFA AB =∠= ,求的长A BFA B F(3)B 组:1.如图(4),,中,和DF AB DEF ABC =∆∆将DEF ∆绕点A 旋转,使DF 与AB 重合,可得AEBC 四边形,如图(5).若四边形AEBC 中,∠E =∠C =90°,∠EAC =60°,AE= ,BC=求AC 的长.反思提高:将四边形转化为三角形的方法是:即时检测:四边形AEBC 中,AE=50m ,EB=30m ,BC=30m ,AC =40m ,∠A =45°,∠B =60°.求四边形的面积.四、畅谈收获通过本课的学习,你对直角三角形边角关系的作用又有哪些新的认识?在解决问题过程中有哪些思想、方法、经验与大家分享?(5) (4) B A C E。
《用锐角三角函数解决问题》教案(20200722174313)

《用锐角三角函数解决问题》教案1教学目标1、了解测量中坡度、坡角的概念.2、掌握坡度与坡角的关系,能利用解直角三角形的知识,解决与坡度有关的实际问题.3、进一步培养学生把实际问题转化为数学问题的能力.重点难点重点:有关坡度的计算.难点:构造直角三角形的思路.教学设计一、引入新课如下图所示,斜坡AB 和斜坡A 1B 1哪一个倾斜程度比较大?显然,斜坡A 1B l 的倾斜程度比较大,说明∠A 1>∠A .从图形可以看出,1111B C BC AC AC,即tanA 1>tanA .在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.二、新课1.坡度的概念,坡度与坡角的关系.如图,这是一张水库拦水坝的横断面的设计图,坡面的铅垂高度与水平宽度的比叫做坡度(或坡比),记作i ,即i =AC BC,坡度通常用l :m 的形式,例如上图中的1:2的形式.坡面与水平面的夹角叫做坡角.从三角函数的概念可以知道,坡度与坡角的关系是i =tanB ,显然,坡度越大,坡角越大,坡面就越陡.2.习题讲解.1.如图,一段路基的横断面是梯形,高为4.2米,上底的宽是12.51米,路基的坡面与地面的倾角分别是32°和28°,求路基下底的宽.(精确到0.1米)分析:四边形ABCD是梯形,通常的辅助线是过上底的两个顶点引下底的垂线,这样,就把梯形分割成直角三角形和矩形,从题目来看,下底AB=AE+EF+BF,EF=CD=12.51米.AE在直角三角形AED中求得,而BF可以在直角三角形BFC中求得,问题得到解决.2.如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角.和坝底宽AD.(i =CE:ED,单位米,结果保留根号)三、练习课本第114页课内练习.四、小结会知道坡度、坡角的概念能利用解直角三角形的知识,解决与坡度、坡角有关的实际问题,特别是与梯形有关的实际问题,懂得通过添加辅助线把梯形问题转化为直角三角形来解决.五、作业课本117页习题7.6的1、2题.《用锐角三角函数解决问题》教案2教学目标知识与技能1.通过具体的一些实例,能将实际问题中的数量关系,归结为直角三角形中元素之间的关系.2.把实际问题转化为数学问题,同时借助计算器进行有关三角函数的计算,并能对结果的意义进行说明.数学思考与问题解决经历实际问题数学化的过程,进一步体会三角函数在解决问题中的作用,不断探索解决实际问题的方法和规律.情感与态度在独立思考探索解决问题方法的过程中,培养学生不断克服困难,增强应用数学的意识和解决实际问题的能力.重点难点重点:将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系.难点:把实际问题抽象为数学问题.教学设计一、创设情境,引入新知晴朗的天气到游乐园玩耍是一件很开心的事情,游乐园有大型的摩天轮、翻滚列车.我们在玩耍的同时还可以学习到很多数学知识.下面就让我们一起来看看摩天轮中的数学问题.教师提出问题,引起学生思考,然后小组内讨论回答.二、自主探究,合作交流1.问题探究.“五一”节,小明和同学一起到游乐场游玩.游乐场的大型摩天轮的半径为20m,旋转1周需要12min.小明从摩天轮底部的点A(与地面相距0.3m)处开始观光.2min后到达B,求此时小明离地面的高度.教师提出问題,学生思考,小组交流讨论,尝试解答.分析:求小明离地面髙度AD,关键是求出OC的髙度.在Rt△COB中,OB是20m,需求出∠BOA的度数.因为2min旋转了一周的16,即360°÷6=60°.根据∠BOA的余弦就可求得OC的长.教师出示题目,分析解题过程,明确要求的问题在图中的表示.学生写出解题过程,最后教师板书解题过程.2.拓展延伸.在上面的问题中,(1)摩天轮转动多长时间后,小明离地面的高度将首次达到15.3m?(2)摩天轮转动一周,办明在离地面30.3m以上的空中有多长的时间?教师引导学生讨论、交流,得出(1)就是在图中OC=20.3-15.3=5时,∠AOB的度数,然后再求时间.(2)仿(1)求出首次到达离地面30.3m的时间和第二次离地面30.3m的时间,二者相减就是离地面30.3m以上的空中时间.学生独立完成.3.巩固练习.教材第115页练习第1、2题.学生独立完成,老师巡回检査,指导,最后归纳.三、总结提高1.师生总结.本节学习了哪些内容?你有哪些收获和本明白的地方?师生一起回顾总结,重点总结用锐角三角函数解决实际问题的一般方法.2.作业.教材第120页复习巩固第10题.《用锐角三角函数解决问题》教案3教学目标1、进一步掌握解直角三角形的方法;2、比较熟练的应用解直角三角形的知识解决与仰角、俯角有关的实际问题;3、培养学生把实际问题转化为数学问题的能力.重点难点重点:解直角三角形在测量方面的应用;难点:选用恰当的直角三角形,解题思路分析.教学设计我们曾经用自制的测角仪测出视线(眼睛与旗杆顶端的连线)与水平线的夹角,那么把这个角称为什么角呢?如图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角.右图中的∠1就是仰角,∠2就是俯角.二、习题讲解1.如图,为了测量电线杆的高度AB,在离电线杆22.7米的C处,用1.20米的测角仪CD测得电线杆顶端B的仰角a=22°,求电线杆AB的高度.分析:因为AB=AE+BE,AE=CD=1.20米,所以只要求出BE的长度,问题就得到解决,在△BDE中,已知DE=CA=22.7米,∠BDE=22°,那么用哪个三角函数可解决这个问题呢?显然正切或余切都能解决这个问题.2.如图,A、B是两幢地平高度相等、隔岸相望的建筑物,B楼不能到达,由于建筑物密集,在A楼的周围没有开阔地带,为测量B楼的高度,只能充分利用A楼的空间,A楼的各层都可到达且能看见B楼,现仅有测量工具为皮尺和测角器(皮尺可用于测量长度,测角器可以测量仰角、俯角或两视线的夹角).(1)你设计一个测量B楼高度的方法,要求写出测量步骤和必需的测量数据(用字母表示),并画出测量图形.(2)用你测量的数据(用字母表示)写出计算B楼高度的表达式.分析:如图,由于楼的各层都能到达,所以A楼的高度可以测量,我们不妨站在A楼的顶层测B楼的顶端的仰角,再测B楼的底端的俯角,这样在Rt△ABD中就可以求出BD的长度,因为AE=BD,而后Rt△ACE中求得CE的长度,这样CD的长度就可以求出.请同学们想一想,是否还能用其他的方法测量出B楼的高度.三、练习课本第116页练习.四、小结本节课我们学习了有关仰角、俯角的解直角三角形的应用题,对于这些问题,一方面要把它们转化为解直角三角形的数学问题,另一方面,针对转化而来的数学问题选用适当的数学知识加以解决.五、作业课本117页习题7.6的3、4、5、6题.。
《锐角三角函数》导学案

第七章锐角三角函数〔 1〕正切函数学习目标1、认识锐角的正切的看法。
2、会求一个锐角的正切值。
3、经历操作观察思虑求解等过程,感觉数形结合的数学思想方法。
学习要点:锐角的正切的看法学习难点:锐角的正切的看法,感觉数形结合的数学思想方法知识要点在 Rt △ABC中,∠C=90°,∠A的对边与邻边的比值是∠ A 的正切,记作一、情境创立问题 1.我们从家到学校,免不了要爬坡,有些坡好爬,有些坡爬起来很累,这是为什么?观察斜坡的倾斜程度,你有什么发现?如何刻画斜坡的倾斜程度?如上图,这两个直角三角形中,∠ C=∠ C′ =90°,且有一条直角边相等,但斜边不相等,哪个坡更陡?①本节课我们研究两直角边的比值与锐角的关系,因此同学们第一应思虑:当锐角固准时,两直角边的比值可否也固定?②给出正切看法:如图,在Rt △ABC中,,把∠ A 的对边与邻边的比叫做∠ A 的正切,记作:tan A .二、典型例题例 1.依照以以下图中所给条件分别求出以以下图中∠A、∠ B 的正切值。
B A C1133A2CC1B B5A经过上述计算,你有什么发现?互余两角的正切值.例 2.如图,在 Rt △ ABC中,∠ ACB=90°, CD是 AB 边上的高, AC=3,AB=5,求∠ ACD 、∠ BCD的正切值。
文档结论:等角的正切值.例 3.如图〔 1〕,∠ A=30°,∠ C=90°,依照三角函数定义求出30°、 45°、 60°的正切值.BA C〔1〕〔2〕〔3〕例 4.如图,∠ A=15°,∠ C=90°,求出 15°正切值.BA C随堂演练1. 〔 1〕在直角三角形中,∠ =90°, =9,a =12, 那么tan A =, tan B=。
ABC C b〔 2〕如图,△ ABC的三个极点分别在正方形网格的格点上,那么tan A 的=.〔 3〕在 Rt △ ABC中 , ∠ C=90° ,AC=12,tanA=2 ,那么 BC长为。
初中数学教学课例《锐角三角函数(第二课时正弦与余弦)》教学设计及总结反思

据三角形中已知的边和角求出未知的边和角。
1.知识与技能:理解正弦与余弦的概念,能用 sin、
cos 表示直角三角形中的两边之比,并能解决三角函数
相关问题。
2.过程与方法:通过引导法、自主探究法和交流法,
教学目标 让学生自己动脑动手去猜想去发现,然后通过讨论交流
得出结论。
3.性感态度价值观:积极参与数学活动,对数学产
生好奇心和求知欲,形成合作交流的意识以及独立思考
的习惯。
学生学习能
学生必须主动思考,在教师的引导下及时地进行相
力分析 关操作,比如在教师在板书时自己也应该很快地在草稿
纸上画出相应的直角三角形,并且标出各顶点、各角; 在得到明确指令后要迅速思考、交流,能有条理地、清 晰地阐述自己的观点,最重要的一点是再次提醒学生目 前所讲的三角函数是在直角三角形中进行讨论的
教师通过课件展示后提出问题:如图,(1)直角 教学过程
三角形 AB1C1 和直角三角形 AB2C2 有什么关系?(2) AC1B1A 和 AC2B2A 有什么关系 B1C1B1A 和 B2C2B2A 呢? (3)如果改变 AB 倾斜角大小呢?由此可以得出什么结
论,请同学们讨论会回答。学生们开始在自己的草稿纸 上画出教师所展示图形的草图,借以学习正切时的方 法,逐一解决教师提出的问题。首先是探索两个三角形 的关系,经过简单的思考不难发现两个三角形是相似 的,那么就有同学会回答这两个三角形是相似的,教师 便继续引导:既然是相似三角形,那么赶快回顾一下相 似三角形都具有什么性质,学生回忆:相似三角形对应 角相等,对应边成比例、相似三角形的周长比等于相似 比、相似三角形的面积比等于相似比的平方等,教师继 续提问:既然这样,那么第(2)小问中的比值有什么 样的关系,学生可以很快得出答案:相等。教师立马板 书出来,并且在板书过程中要求学生共同书写,最后一 问:如果改变倾斜角大小,以上结论还成立吗?学生又 开始讨论,很快有学生回答:改变倾斜角大小,两个三 角形仍然是相似三角形。教师追问:那倾斜角对边与斜 边的比值有变化吗?学生又开始计算、讨论,回答:倾 斜角变化,倾斜角的对边与斜边的比值也会随之变化。 教师继续引导:如果刚才你是用图中小三角形来计算的 比值,那么现在计算一下大三角形的比值,反之亦然。 学生在引导下又进行计算,然后发现比值居然一样,积 极讨论,随后教师带领学生归纳总结:只要倾斜角确定, 倾斜角的对边与斜边的角有关,而与直角
锐角三角函数导学案

28.1.2锐角三角函数导学设计杜庄中学王春梅28.1.2锐角三角函数导学设计【学习目标】1.掌握余弦、正切的概念;能较正确地用sin A 、cos A 、tan A 表示直角三角形中两边长的比.2.能够综合运用sin A 、cos A 、tan A 解决简单的实际问题. 【学习重点】 理解余弦、正切的概念.【学习难点】 熟练运用锐角三角函数的概念进行有关计算. 一、自学提纲1.我们是怎样定义直角三角形中一个锐角的正弦的? 2.在Rt △ABC 中,∠ACB =90°,AC =1,AB =2,那么sin∠ABC =2.3.如图28-1-52,在Rt △ABC 中,∠ACB =90°,CD ⊥AB于点D .已知AC =5,BC =2,那么sin ∠ACD =( A )图28-1-52 A .53 B .23 C .2 55 D .52 4.(1)如图28-1-53,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且AB =5,BC =3.则sin ∠BAC =__35__;sin ∠ADC =__45__;图28-1-53 图28-1-54(2)如图28-1-54,在Rt △ABC 中,∠C =90°,当锐角A 确定时,∠A 的对边与斜边的比是__正切__,二、合作交流如图28-1-55,Rt △ABC 与Rt △A ′B ′C ′中,∠C =∠C ′=90°,∠B =∠B ′=α,图28-1-55那么BC AB 与B ′C ′A ′B ′有什么关系?AC AB 与A ′C ′A ′B ′有什么关系?BC AC 与B ′C ′A ′C ′有什么关系?例1 在Rt △ABC 中,∠C =90°,AC =6,BC =8, 求sin A, cos A ,tan B 的值.例2 如图28-1-56,在Rt △ABC 中,∠C =90°,BC =6,sin A =35,求cos A ,tan B 的值.图28-1-56四、学生展示1.在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,a =3,b =4,则cos A =__45__,tan B =__43__.(提高:如把条件中∠C =90°去掉,你会求吗?)2. 在Rt △ABC 中,∠C =90°,如果cos A =45,那么tan B 的值为( D )A .35B .54C .34D .433.如图28-1-57,P 是∠α的边OA 上的一点,且点P 的坐标为(3,4),则cos α= __35__.课后作业:1.在Rt △ABC 中,∠C =90°,a =2,b =3,则cos A =13__,sin B =13,tan B =__32__.2.已知∠α是锐角,tan α=512,则sin α=__513__.3.Rt △ABC 的面积为24 cm 2,直角边AB 为6 cm ,∠A 是锐角,则cos A =__35__.4.等腰三角形底边长10 cm ,周长为36 cm ,则一底角的正切值为__125__.5.在Rt △ABC 中,锐角A 的邻边和斜边同时扩大100倍,则tan A 的值( C )A .扩大100倍B .缩小100倍C .不变D .不能确定6.在Rt △ABC 中,∠C =90°,若tan A =34,则sin A =( C ) A .43 B .34 C .53 D .357.如图28-1-58,在△ABC 中,∠C =90°,AC =8 cm ,AB 的垂直平分线MN 交AC 于D ,连接BD .若cos ∠BDC =35,则BC 的长是( A )图28-1-58A .4 cmB .6 cmC .8 cmD .10 cm8.在正方形网格中,△ABC 的位置如图28-1-59所示,则cos B 的值为( B )A .12B .22C .32D .33图28-1-59。
《锐角三角函数》第二课时导学案

28.1《锐角三角函数》第二课时 ——余弦、正切主备:任江涛 审核:九年级数学备课组 授课时间: 年 月 日 【学习目标】1: 感知当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实。
【学习重点】2:逐步培养学生观察、比较、分析、概括的思维能力;熟练运用锐角三角函数的概念进行有关计算。
【学习难点】 【学习过程】 一、课堂导入: 二、自主学习:(一)自学指导:认真阅读课本77---78页内容,完成下列问题 1、我们是怎样定义直角三角形中一个锐角的正弦的?2、如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D 。
已知AC= 5 ,BC=2,那么sin ∠ACD =( )AB .23CD3、如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上, 且AB =5,BC =3.则sin ∠BAC= ;sin ∠ADC= .4、•在Rt △ABC 中,∠C=90°,当锐角A 确定时, ∠A 的对边与斜边的比是 ,•现在我们要问:∠A 的邻边与斜边的比呢? ∠A 的对边与邻边的比呢?锐角A 的 都叫做角A 的锐角三角函数。
(二)自学检测:三、合作探究:探究:一般地,当∠A 取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值? 如图:Rt △ABC 与Rt △A`B`C`,∠C=∠C` =90o,∠B=∠B`=α,AB CDABC∠A的邻边b∠A的对边a 斜边c CBA斜边c 对边abCB四、达标训练: 1.在中,∠C =90°,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则有()A .B .C .D .2. 在中,∠C =90°,如果cos A=45那么的值为()A .35B .54C .34D .433、如图:P 是∠的边OA 上一点,且P点的坐标为(3,4), 则cos α=_____________. 五、课堂小结:在Rt △BC 中,∠C=90°,我们把∠A 的邻边与斜边的比叫做∠A 的余弦, 记作 ,即 把∠A 的对边与邻边的比叫做∠A 的正切,记作 ,即 六、堂清检测:七、自我反思:本节课我的收获: 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.6 用锐角三角函数解决问题(2)学案
学习目标:
1.能把实际问题抽象为几何问题,借助直角三角形、锐角三角函数把已知量
与未知量联系在一起解决实际问题。
2.构造直角三角形是解决这类问题重要辅助线。
学习过程:
【典型例题】
1. “五一”节,小明和同学一起到游乐场游玩. 游乐场的大型摩天轮的半径为20m,旋转1周需要12min.小明乘坐最底部的车厢(离地面约0.5m)开始1周的观光,经过2min 后,小明离地面的高度是多少?
(1).摩天轮启动多长时间后,小明离地面的高度将首次达到10m?
(2).小明将有多长时间连续保持在 离地面10m 以上的空中?
2.单摆的摆长AB 为90cm,当它摆动到AB 的位置时, ∠BAB =11°,问这时摆球B 较最低点B 升高了多少(精确到1cm)?
sin110.191︒≈cos110.982︒≈tan110.194
︒≈sin110.191︒≈cos110.982︒≈tan110.194
︒≈
3.已知跷跷板长4m,当跷跷板的一端碰到地面时,另一端离地面1.5m.求此时跷跷板与地面的夹角(精确到0.1°).
4.如图所示,电工李师傅借助梯子安装天花板上距地面2 .90m的顶灯.已知梯子由两个相同的矩形面组成,每个矩形面的长都被六条踏板七等分,使用时梯脚的固定跨度为1m.矩形面与地面所成的角α为78°.李师傅的身高为l.78m,当他攀升到头顶距天花板0.05~0.20m时,安装起来比较方便.他现在竖直站立在梯子的第三级踏板上,请你通过计算判断他安装是否比较方便?
课后练习:
1.如图,秋千链子的长度为3m ,当秋千向两边摆动时,两边的摆动角度均为30º。
求它摆动至最高位置与最低位置的高度之差(结果保留根号).
2.某商场门前的台阶截面如图所示.已知每级台阶的宽度(如CD)均为30cm ,高度(如BE)均为20cm .为了方便残疾人行走,商场决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角为9°.请计算从斜坡起点A
到台阶前的点B 的水平距离.(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)
60º O A B
C D B
E
A。