第十二章 第1节 微分方程的基本概念

合集下载

微分方程的基本概念

微分方程的基本概念

第十二章 微分方程§12. 1 微分方程的基本概念函数是客观事物的内部联系在数量方面的反映, 利用函数关系又可以对客观事物的规律性进行研究. 因此如何寻找出所需要的函数关系, 在实践中具有重要意义. 在许多问题中, 往往不能直接找出所需要的函数关系, 但是根据问题所提供的情况, 有时可以列出含有要找的函数及其导数的关系式. 这样的关系就是所谓微分方程. 微分方程建立以后, 对它进行研究, 找出未知函数来, 这就是解微分方程.例1 一曲线通过点(1, 2), 且在该曲线上任一点M (x , y )处的切线的斜率为2x , 求这曲线的方程.解 设所求曲线的方程为y =y (x ). 根据导数的几何意义, 可知未知函数y =y (x )应满足关系式(称为微分方程)x dxdy 2=. (1) 此外, 未知函数y =y (x )还应满足下列条件:x =1时, y =2, 简记为y |x =1=2. (2)把(1)式两端积分, 得(称为微分方程的通解)⎰=xdx y 2, 即y =x 2+C , (3)其中C 是任意常数.把条件“x =1时, y =2”代入(3)式, 得2=12+C ,由此定出C =1. 把C =1代入(3)式, 得所求曲线方程(称为微分方程满足条件y |x =1=2的解): y =x 2+1.例2 列车在平直线路上以20m/s(相当于72km/h)的速度行驶; 当制动时列车获得加速度-0.4m/s 2. 问开始制动后多少时间列车才能停住, 以及列车在这段时间里行驶了多少路程?解 设列车在开始制动后t 秒时行驶了s 米. 根据题意, 反映制动阶段列车运动规律的函数s =s (t )应满足关系式 4.022-=dt s d . (4) 此外, 未知函数s =s (t )还应满足下列条件:t =0时, s =0, 20==dtds v . 简记为s |t =0=0, s '|t =0=20. (5) 把(4)式两端积分一次, 得14.0C t dtds v +-==; (6) 再积分一次, 得s =-0.2t 2 +C 1t +C 2, (7)这里C 1, C 2都是任意常数.把条件v |t =0=20代入(6)得20=C 1;把条件s |t =0=0代入(7)得0=C 2.把C 1, C 2的值代入(6)及(7)式得v =-0.4t +20, (8)s =-0.2t 2+20t . (9)在(8)式中令v =0, 得到列车从开始制动到完全停住所需的时间504.020==t (s ). 再把t =50代入(9), 得到列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).解 设列车在开始制动后t 秒时行驶了s 米,s ''=-0.4, 并且s |t =0=0, s '|t =0=20.把等式s ''=-0.4两端积分一次, 得s '=-0.4t +C 1, 即v =-0.4t +C 1(C 1是任意常数),再积分一次, 得s =-0.2t 2 +C 1t +C 2 (C 1, C 2都C 1是任意常数).由v |t =0=20得20=C 1, 于是v =-0.4t +20;由s |t =0=0得0=C 2, 于是s =-0.2t 2+20t .令v =0, 得t =50(s). 于是列车在制动阶段行驶的路程s =-0.2⨯502+20⨯50=500(m ).几个概念:微分方程: 表示未知函数、未知函数的导数与自变量之间的关系的方程, 叫微分方程. 常微分方程: 未知函数是一元函数的微分方程, 叫常微分方程.偏微分方程: 未知函数是多元函数的微分方程, 叫偏微分方程.微分方程的阶: 微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶. x 3 y '''+x 2 y ''-4xy '=3x 2 ,y (4) -4y '''+10y ''-12y '+5y =sin2x ,y (n ) +1=0,一般n 阶微分方程:F (x , y , y ', ⋅ ⋅ ⋅ , y (n ) )=0.y (n )=f (x , y , y ', ⋅ ⋅ ⋅ , y (n -1) ) .微分方程的解: 满足微分方程的函数(把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解. 确切地说, 设函数y =ϕ(x )在区间I 上有n 阶连续导数, 如果在区间I 上,F [x , ϕ(x ), ϕ'(x ), ⋅ ⋅ ⋅, ϕ(n ) (x )]=0,那么函数y =ϕ(x )就叫做微分方程F (x , y , y ', ⋅ ⋅ ⋅, y (n ) )=0在区间I 上的解.通解: 如果微分方程的解中含有任意常数, 且任意常数的个数与微分方程的阶数相同, 这样的解叫做微分方程的通解.初始条件: 用于确定通解中任意常数的条件, 称为初始条件. 如x =x 0 时, y =y 0 , y '= y '0 .一般写成00y y x x ==, 00y y x x '='=. 特解: 确定了通解中的任意常数以后, 就得到微分方程的特解. 即不含任意常数的解. 初值问题: 求微分方程满足初始条件的解的问题称为初值问题.如求微分方程y '=f (x , y )满足初始条件00y y x x ==的解的问题, 记为⎩⎨⎧=='=00),(y y y x f y x x .积分曲线: 微分方程的解的图形是一条曲线, 叫做微分方程的积分曲线. 例3 验证: 函数x =C 1cos kt +C 2 sin kt是微分方程0222=+x k dt x d 的解.解 求所给函数的导数:kt kC kt kC dtdx cos sin 21+-=, )sin cos (sin cos 212221222kt C kt C k kt C k kt C k dt x d +-=--=. 将22dtx d 及x 的表达式代入所给方程, 得 -k 2(C 1cos kt +C 2sin kt )+ k 2(C 1cos kt +C 2sin kt )≡0.这表明函数x =C 1cos kt +C 2sin kt 满足方程0222=+x k dtx d , 因此所给函数是所给方程的解. 例4 已知函数x =C 1cos kt +C 2sin kt (k ≠0)是微分方程0222=+x k dtx d 的通解, 求满足初始条件 x | t =0 =A , x '| t =0 =0的特解.解 由条件x | t =0 =A 及x =C 1 cos kt +C 2 sin kt , 得C 1=A .再由条件x '| t =0 =0, 及x '(t ) =-kC 1sin kt +kC 2cos kt , 得C 2=0.把C 1、C 2的值代入x =C 1cos kt +C 2sin kt 中, 得x =A cos kt .。

高等数学 微分方程

高等数学   微分方程

第十二章 微分方程§ 1 微分方程的基本概念1、由方程x 2-xy+y 2=C 所确定的函数是方程( )的解。

A. (x-2y)y '=2-xy '=2x-y C.(x-2)dx=(2-xy)dy D.(x-2y)dx=(2x-y)dy2、曲线族y=Cx+C 2 (C 为任意常数) 所满足的微分方程 ( ) 4.微分方程y '=yx 21-写成以y 为自变量,x 为函数的形式为( )A.yx 21dxdy -=B.yx 21dydx -='=2x-y D. y '=2x-y §2 可分离变量的微分方程1.方程P(x,y)dx+Q(x,y)dy=0是( )A.可分离变量的微分方程 一阶微分方程的对称形式, C.不是微分方程 D.不能变成)y ,x (P )y ,x (Q dy dx -= 2、方程xy '-ylny=0的通解为( )A y=e x B. y=Ce x cx D.y=e x +C 3、方程满足初始条件:y '=e 2x-y , y|x=0=0的特解为( )A. e y=e 2x+1 21e ln x 2+= C. y=lne 2x +1-ln2 D. e y =21e 2x +C4、已知y=y(x)在任一点x 处的增量α+∆+=∆x x1yy 2,且当∆x →0时,α是∆x 高阶无穷小,y(0)=π,则y(1)=( )A. 2πB. πC. 4e π 4eππ5、求特解 cosx sinydy=cosy sinxdx , y|x=0=4π解:分离变量为tanydy=tanxdx ,即-ln(cosy)=-ln(cosx)-lnC ,cosy=ccosx 代入初始条件:y|x=0=4π得:22C =特解为:2cosy=cosx 6、求微分方程()2y x cos y x 21cos dxdy +=-+满足y(0)=π的特解。

高等数学教学大纲

高等数学教学大纲

高等数学教学大纲第一部分:使用说明一、课程编号:10113001二、课程性质与特点:高等数学是一门重要的基础课程。

它不仅有严谨的逻辑推理、论证的自身完美理论体系,又是其它学科(特别是理工科)广泛应用并推动其的最具活力的工具。

本课程学习的主要内容是:矢量代数和空间解析几何;单元、多元函数的微积分;曲线积分和曲面积分;矢量分析与场论;级数与傅立叶级数;微分方程等。

三、在专业教学计划中的地位和作用:高等数学是物理学专业的必修课程,是实行专业理论学习的基础工具,渗透了现代数学的思想、语言和方法,引用了一些数学记号,增加了在科学技术方面的应用,为培养学生的能力和研究素养奠定良好的基础,同时也为进一步深入的理论研究提供了基本的数学研究工具。

四、教学目的:1、使学生既能系统地学习高等数学的基础理论知识,又能使学生具有较强的计算技能,以及解决问题分析问题的能力。

2、培养学生具有认真、严谨的学习科学态度,良好的学习方法和学风。

3、培养学生具有辩证的、科学的思维方法和能力。

五、学时与学分本课程总计137学时,8学分,每周4/5学时。

六、教学方法:1、课堂讲授应着重概念、思维逻辑方法的讲述,定理、公式的提出着重讲解意义,论证的思路及其几何解译和应用.要精讲多练,侧重培养学生的计算技能和解决问题的能力。

2、教材中的某些内容,教师可以根据实际情况组织学生自学或进行讨论式教学.3、注意各教学环节间的衔接,加强批改和辅导答疑。

七、考核方式考试课程。

平时考核与期末考试相结合。

平时考核:作业和出勤占10%,期中闭卷考试占10%期末考试:闭卷笔答,成绩占80%。

八、教材及主要参考书目(一)教材同济大学应用数学系主编《高等数学》上、下册(第五版)高等教育出版社, 2002年7月(二)参考书目李文主编,《高等数学辅导及教材习题解析》,朝华出版社2005年8月第二部分:课程内容第一章函数与极限教学目的与要求:正确理解函数、反函数、复合函数,基本初等函数概念;会求函数的定义域,能判别函数的单调性、奇偶性;掌握数列、函数极限的概念及其性质;会求各种函数的极限;明确极限和无穷小的关系、无穷小的阶及无穷大的概念;掌握函数连续性概念及闭区间上连续函数的性质;会求函数的间断点及连续区间。

高等数学(上册)第12章(1)习题答案_吴赣昌_人民大学出版社_高数_

高等数学(上册)第12章(1)习题答案_吴赣昌_人民大学出版社_高数_

高等数学(上册)第12章(1)习题答案_吴赣昌_人民大学出版社_高数_第十二章微分方程内容概要§12.1微分方程的基本概念内容概要课后习题全解1.指出下列微分方程的阶数:知识点:微分方程阶的定义★(1)某(y)24yy3某y0;解:出现的未知函数y的最高阶导数的阶数为1,∴方程的阶数为1。

注:通常会有同学误解成未知函数y的幂或y的导数的幂。

例:(错解)方程的阶数为2。

((y))★(2)2某y2y某2y0;解:出现的未知函数y的最高阶导数的阶数为2,∴方程的阶数为2。

★(3)某y5y2某y0;解:出现的未知函数y的最高阶导数的阶数为3,∴方程的阶数为3。

★(4)(7某6y)d某(某y)dy0。

(n)思路:先化成形如F(某,y,y,,y解:化简得)0的形式,可根据题意选某或y作为因变量。

dy6y7某,出现的未知函数y的最高阶导数的阶数为1,∴方程的阶数为1。

d某某y2指出下列各题中的函数是否为所给微分方程的解:知识点:微分方程的解的定义思路:将所给函数及其相应阶导数代入方程验证方程是否成立。

★(1)某y2y,y5某2;2解:将y10某,y5某代入原方程得左边所以某10某25某22y右边,y5某2是所给微分方程的解。

y2y0,yC1co某C2in某;解:yC1in某C2co某,将y2C1co某2C2in某,yC1co某C2in某,代入原方程得:左边所以★(3)y2y2C1co某2C2in某2(C1co某C2in某)右边,yC1co某C2in某是所给微分方程的解。

y22yy20,yC1某C2某2;某某2解:将yC1某C2某,yC12C2某,y2C2,代入原方程得:2C14C2某2(C1某C2某2)22y左边=yy22C20右边2某某某某所以yC1某C2某2是所给微分方程的解。

y(12)y12y0yC1e1某C2e2某;1某解:将yC1eC2e2某,yC11e1某C22e2某,yC112e1某C222e2某,代入原方程得:左边y(12)y12y22C11e1某C22e2某(12)(C11e1某C22e2某)12(C1e1某C2e2某) 0所以右边,yC1e1某C2e2某是所给微分方程的解。

第一节微分方程的基本概念

第一节微分方程的基本概念

第十二章 微分方程一、 学时分配:讲课学时:14 习题学时:2 共 16 学时二、 基本内容:1.微分方程的基本概念 2.可分离变量的微分方程 3.齐次方程 4.一阶线性微分方程 5.全微分方程 6.可降阶的高阶微分方程 7.高阶线性微分方程 8.一阶常系数齐次线性微分方程 9. 一阶常系数非齐次线性微分方程三、 教学要求:1.理解并掌握微分方程的基本概念,主要包括微分方程的阶,微分方程 的通解、特解及微分方程的初始条件等.2.熟练掌握可分离变量的微分方程的解法.3.熟练掌握齐次微分方程的解法4.掌握一阶线性微分方程的形式,熟练掌握其解法;掌握利用变量代换解微分方程的方法;了解贝努利方程的形式及解法5.掌握全微分方程成立的充要条件,掌握全微分方程的解法,会用观察法找积分因子6.掌握)()(x f y n =、),(///y x f y =、),(///y y f y =三种高阶微分方程的解法,即降阶法,理解降阶法的思想7.掌握二阶线性方程解的结构,齐次线性方程的通解,非齐线性方程的特解及通解的形式8.掌握二阶常系数齐次线性微分方程的特征方程,特征根,及对应于特征根的三种情况,通解的三种不同形式9.掌握自由项为x m e x P x f λ)()(=和x m m e x x Q x x P x f λωω]sin )(cos )([)(+=的二阶常系数非齐次线性微分方程特解的方法四、重点难点:1.重点:2.难点:第一节 微分方程的基本概念教学目的:理解并掌握微分方程的基本概念,主要包括微分方程的阶,微分方程 的通解、特解及微分方程的初始条件等.教学重点:常微分方程的基本概念,常微分方程的通解、特解及初始条件教学难点:微分方程的通解概念的理解教学内容:一、 两个实例1.一条曲线通过点(1,2),且在该曲线上任一点),(y x M 处的切线的斜率为2x ,求这条曲线的方程。

解:设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足x dxdy 2= (1) 同时还满足以下条件:1=x 时,2=y (2)把(1)式两端积分,得⎰=xdx y 2 即 C x y +=2 (3)其中C 是任意常数。

高数第一、二节 基本概念、分离变量

高数第一、二节 基本概念、分离变量

二、 齐次微分方程
形如
dy f( y) dx x
(1)
的微分方程,称为齐次微分方程。
例如:
dy dx
y2 xy x2
dy
( y)2 x
d x y 1
x
(xy x2)dx ( x2 2xy) d y0
dy dx
xy y2 x2 2x y
dy dx
( y)( y)2 xx 12( y)
x
对方程 d y f ( y ) 作变量变换 v y
y '' C1k 2 cos k x C 2 k 2 sin k x k 2 ( C1 cos k x C 2 sin k x ) k 2 y y '' k 2 y 0
即 y C1 cos k x C 2 sin k x 是所给方程的解。 又此解中含有两个独立任意常数,故为通解。
dx x
x
则有 y v x , d y d ( v x ) v x d v
dx dx
dx
v x dv f(v) dx
x dv f (v )v dx
dx dv , x f (v)v
dx
x
dv f (v)v
c1
ln | x |
dv f (v)v
c1
|x| e
dv f (v) v
c1
d y f( x) g( y) dx
(6 )
d y f (x) d x g( y)
(变量已分离)
M1( x) M 2 ( y) d y N 1( x) N 2 ( y) d x (7 )
M 2 ( y) d y N 1( x) d x (变量已分离)
N 2 ( y)

人大微积分课件12-1微分方程的基本概念


x
C 2e
2x
是微分方程
y 3 y 2 y 0 的 解 . 并 求 满 足 初 始 条 件 y
x0
0, y
x0
1的 特 解 .
C 1 e x 2 C 2 e 2 x , y C 1 e x 4 C 2 e 2 x , 解 y
将 y , y , y 代入原方程.
求解微分方程 求积分
(通解可用初等函数或积分表示出来)
例4 求 y C 1
C2 x
2
( C 1 , C 2 为任意常数
)
所满足的二阶微分方程.

y C1 C2 x
2
, y
1 2
2C 2 x
3
解得 : C 1 y
x y , C 2
1 2
x y .
微分方程的解: 指代入微分方程能使方程成为恒等式的函数.
设 y ( x ) 在区间 I 上有 n 阶导数 ,
F ( x , ( x ), ( x ), ,
则y
(n)
( x )) 0 .
( x )为方程的解 .
微分方程的解的分类:
(1)通解: 微分方程的解中含有任意常数,且独 立任意常数的个数与微分方程的阶数相同.
微分方程的阶:指微分方程中出现的未知函数的最
高阶导数的阶数. 分类2: 一阶微分方程
F ( x , y , y ) 0 , y f ( x , y );
高阶(n>2)微分方程
y
(n)
, , y ( n ) ) 0 , F ( x, y, y
, , y ( n 1 ) ). f ( x, y, y

微分方程的基本概念

微分方程的基本概念第一章常微分方程微分方程是数学理论(尤其是微积分)与实践相结合的重要途径之一。

它是研究许多自然科学、工程技术、生物技术、农业、经济和许多其他问题的有力工具。

因此,微分方程具有重要的应用价值。

本章主要介绍常微分方程的一些基本概念和几种常见微分方程的一些基本解。

下面我们通过两个具体例题来说明微分方程的基本概念。

示例一曲线通过点(1,2),曲线任意点m(x,y)的切线斜率为2x。

求出曲线方程。

解设所求的曲线方程为y=y(x),则根据导数的几何意义可知,未知函数y=y(x)应满足下面的关系:阿迪?2X,(1)DX,当x=1,y=2,也就是说,y(1)=2(2)到(1)dy?2x两端积分,得dx2y=2xdx?x?c(3)其中c是任意常数。

如果y(1)=2代,C=1代(3),即得所求曲线方程y?x?1(4)例2质量为M的粒子只有在重力的作用下才能从静止状态自由下落。

试着找到它的运动方程解在中学阶段就已经知道,从高度为h处下落的自由落体,离地面高度s的变化规律为s=h-程.二百一十二gt,其中g为重力加速度.这个规律是怎么得到的呢?下面我们给出推导过2m?取质点下落的铅垂线为s轴,它与地面的交点为原点,并规定正?h向朝上.设质点在时刻t的位置在s(t)(如图1-1).因为质点只受方向向下的重s(t)力的作用(空气阻力忽略不计),由牛顿第二定律f=ma,得D2S(T)M=-mg。

参见图1-11D2S(T),即=G(5)2dt根据质点由静止状态自由下降的假设,初始速度为0,所以s=s(t)还应满足下列条件s|t=0=h,Ds | t=0=0,(6)DT积分方程(6)的两边,和ds(t)=-g?dt=-gt+c1,(7)dt两边再积分,得s(t)=?(?gt?c1)dt=-12gt+c1t+c2,(8)2其中c1,c2均为任意常数.将条件(7)代入方程(8)和(9)中,得到C1=0和C2=h。

然后运动方程为s(t)=-十二gt+h.(9)2上述两个例子中的关系式(1)和(5)中,都含有未知函数的导数,自变量也都只有一个,且方程都附加有一定的条件。

大学课件高等数学微分方程

rx
将 y , y , y 代入微分方程中, 得
r 3r 2 0
2
( r 2 )( r 1 ) 0
r1 2 , r2 1
得两个解 y1 e 2 x , y 2 e x .
15
微分方程的基本概念
最后,看一个相反的问题
例 求含有两个任意常数C1, C2的曲线族
一般的n阶微分方程为
, , y ( n ) ) 0 , F ( x, y, y
已解出最高阶导数的微分方程 今后讨论
y
(n)
f ( x , y , y , , y
( n 1 )
).
y f ( x, y ) 一阶 几何意义 是过定点的积分曲线; y x x0 y 0 y f ( x , y , y ) 二阶 y x x0 y 0 , y x x0 y 0
微分方程的基本概念
问题的提出 基本概念
(differential equation)
小结
思考题
作业
第十二章
微分方程
4
微分方程的基本概念
一、问题的提出
例 一曲线通过点 (1 , 2 ), 且在该曲线上任一点
M ( x , y ) 处的切线的斜率为 2 x , 求这曲线的方程.
解 设所求曲线为 y y ( x )
第十二章
微分方程
2
本章主要介绍微分方程的一些基本概念和几 种常用的微分方程的解法,讨论如下几个问题: 1. 微分方程的基本概念; 2. 一阶微分方程; 3. 几种可积的高阶微分方程; 4. 线性微分方程及其通解的结构; 5. 常系数齐次线性方程;
6. 常系数非齐次线性方程.

高数第十二章 微分方程

27
可分离 变量的 微分方程
内容小结
1.通解不一定是方程的全部解 例如, 方程
( x y) y 0 有解
y=–x 及 y=C
后者是通解 , 但不包含前一个解 . 2. 可分离变量方程的求解方法: 分离变量后积分; 根据定解条件(初始条件)定常数 .
28
3. 解微分方程应用题的方法和步骤
d2x 程 2 k 2 x 0的解. 当 k≠0 时,求满足初始条 dt dx 0的特解. 件 x t 0 A, dt t 0 dx 解 kC1 sin kt kC 2 cos kt , dt d2x 2 2 k C cos kt k C 2 sin kt , 1 2 dt d2x 将 2 和x的表达式代入原方程 , dt 13
y '' f ( x , y , y ') y | y , y ' | y ' x x 0 x x 0 0 0
几何意义:求过定点 ( x0 , y0 ) 且在定点的切线的斜 率为定值 y '0 的积分曲线.
12
例 3 验证:函数 x C1 cos kt C 2 sin kt 是微分方
(1) 找出事物的共性及可贯穿于全过程的规律列方程. 常用的方法: 1) 根据几何关系列方程 ( 如: P263,5(2) ) 2) 根据物理规律列方程 ( 如: 例 3)
3) 根据微量分析平衡关系列方程 ( 如: 例4 )
积分
y 2 xdx 即 y x 2 C ,
将 x 1时, y 2代入上式, 求得C 1,
故所求曲线方程为 y x 2 1 .
3
例 2 列车在平直的线路上以 20 米/秒的速度行驶, 当制动时列车获得加速度 0.4米/秒 2,问开始制动 后多少时间列车才能停住?以及列车在这段时间内 行驶了多少路程?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

, , y (n 1) ( x0 ) y0(n 1) y( x0 ) y0 , y( x0 ) y0
6、微分方程解的图形称为方程的积分曲线 .
通解的图形就是积分曲 线族,
特解的图形就是积分曲 线族中的一条确定 的曲线 ,
4
d 2x 是微分方程 2 k 2 x 0 的解 , 并求满足初始条件 dt dx 0 的特解 . x t 0 A , d t t 0 dx C1k sin k t C2 k cos k t 解: dt 2 d x 2 2 C k cos k t C k sin k t 1 2 2 dt
利用初始条件易得 C1 A , C2 0 , 故所求特解为
x A cos k t
6
例2. 已知曲线上点 P(x,y) 处的法线与 x 轴交点为Q , 且线段PQ 被 y 轴平分, 求该曲线满足的微分方程 .
解: 如图所示, 点 P(x,y) 处的法线方程为
y P
x x
1 Y y ( X x) y
2 k x k ( C1 sin k t os k t C2 sin k t ( C1 , C2 为常数)
这说明
x C1 cos k t C2 sin k t 是方程的解 .
显然 C1 , C 2是两个独立的任意常数 , 故它是方程的通解 5
第一节 微分方程的基本概念
几个基本概念 :
1、含未知函数及其导数或微分的方程叫做微分方程 ,
如 y xy2 ,
xdy ydx 0
2、只有一个自变量的微 分方程称为常微分方程 。
3、方程中所含未知函数导数的最高阶数叫做微分方 程的阶. 2 2 x ( y) xy y 0 二 阶
4 y ( y ) xy 0
三阶
2
4、若函数代入方程能使方程成为恒等式 , 则称此函数为
微分方程的解。 (1)解中所含独立的任意常数的个数与方程 的阶数相同 , 这样的解称为微分方程的通解 ;
(2)不含任意常数的解称为 特解 .
5、用来确定 特解的条件称为初始条件;
3
对 n 阶方程有n个初始条件
令 Y = 0 , 得 Q 点的横坐标
Q o
X x y y

x y y x y y 2 x 0
7
相关文档
最新文档