《求曲线的方程》教学设计
人教版高中数学选修(2-1)-2.3《双曲线及其标准方程》教学设计

2.3 双曲线2.3.1 双曲线及其标准方程(杨军君)一、教学目标(一)学习目标1.理解并掌握双曲线的定义,了解双曲线的焦点、焦距;2.掌握双曲线的标准方程,能够根据双曲线的标准方程确定焦点的位置.(二)学习重点1.双曲线的定义;2.双曲线的标准方程.(三)学习难点1.由双曲线的标准方程确定焦点位置;2.根据条件求双曲线的标准方程.二、教学设计(一)预习任务设计1.预习任务写一写:(1)定义:平面内与两个定点12,F F 的距离差的绝对值 等于常数 2a ,小于|F 1F 2| 的点的轨迹叫做双曲线,这两个定点叫做双曲线的 焦点 ,两定点间距离叫做 焦距 .(2)双曲线的标准方程:焦点在x 轴上:22221(0,0)x y a b a b-=>>. 焦点在y 轴上:22221(0,0)y x a b a b-=>>. 2.预习自测1.下面语句正确的个数是( )①平面内到点12(0,4),(0,4)F F -的距离之差等于6的点的轨迹是双曲线. ②双曲线标准方程中,,a b c 的关系是222a b c +=.③双曲线2213y x -=的焦点在y 轴上. A .0B .1C .2D .3答案:B(二)课堂设计探究一:结合实例,认识双曲线●活动① 回顾旧知,实验探索 前面我们学习了椭圆,椭圆是如何定义的?平面内与两个定点12,F F 的距离的和等于常数122(2||)a a F F >的点的轨迹叫做椭圆.若将椭圆定义中的“距离之和”改为“距离之差”.即平面内与两个定点21,F F 的距离的差等于非零常数的点的轨迹是什么?我们不妨通过画图来探究,借助于拉链来说明作图方法.(如图)取一条拉链,拉开它的一部分,在拉链拉开的两边上各选择一点,分别固定在纸板上的点F 1 ,F 2处,取拉头处为M 点,由于拉链两段是等长的,则221FF MF MF =-,把笔尖放在点M 处,随着拉链的拉开或闭拢,M 点到F 1,F 2的距离的差为常数.这样的动点M 的轨迹是什么呢?【学生活动】请一位同学上黑板演示(用两段绳子来模拟拉链,进行作图),其他同学观察、思考.画出一条曲线(如图1),这条曲线就是满足下面条件的点的集合:12{|||||}P M MF MF =-=常数如果使点M 到F 2的距离减去到点F 1的距离所得的差等于同一个常数,就得到另一条曲线(图2).这条曲线是满足下面条件的点的集合:。
高中数学_抛物线及标准方程教学设计学情分析教材分析课后反思

《抛物线及其标准方程》教学设计一、设置情景,导入新课可由教师用预先制作的教具向学生演示这种画法(具体操作见课本第115页),给一定的时间让学生以四人小组为单位,合作完成曲线的作图,并请同学们解释这个画法的原理。
得到如下图形:这条曲线是什么?我们以前见过吗?【设计意图】引导学生求该曲线的方程,复习求曲线方程的步骤,强化解析几何“用方程研究曲线”的思想。
【学生活动设计】①请同学们增大点F 到直尺L 的距离,重复刚才的实验,比较一下,曲线有什么变化?再缩小这个距离试一试。
②这说明了什么?【设计意图】学生实验有了初步结论后,可利用几何画板演示随着距离逐渐增大,曲线的开口由小变大的过程,设KF P =,体会参数P 的重要性。
二、以下由学生自主建系,求出该曲线的方程。
【学生活动设计】以原来的四人小组为单位,讨论建系方案,一段时间后,各组交流,对可行的方案进行验证。
大致有如下几种建系方案,本着自愿的原则,由各小组选择一种进行方程的推导。
请三位同学上来板演。
①以K 为原点,定直线所在的直线为 Y 轴建立平面直角坐标系,此时可得 曲线方程为:222y pxp =- (p >0)②以F 为原点,过F 且垂直于定直线L 的直线为x 轴,此时可得方程:222y px p =+ (p >0)③以垂线段KF 的中点为原点,KF 所在的直线为x 轴,此时可得方程:22y px = (p >0)【探究结论】方案3所得出的方程比较简洁,把它叫做该曲线的标准方程。
再次明确参数P 的几何意义。
与椭圆、双曲线的标准方程对比,这种曲线并非椭圆、双曲线的一部份。
如果仍以KF 的中点为原点,KF 所在的直线为y 轴建立平面直角坐标系,求出该曲线的方程。
此时可得方程22xpy =【探究结论】此方程即为初中学过的二次函数2212y x ax p==,由此得出该曲线是抛物线。
三、【定义】平面内与一个定点F 和一条定直线L 的距离相等的点的轨迹叫做抛物线。
求曲线的方程教案

求曲线的方程教案教案名称:求曲线的方程课时安排:2课时教学目标:1.理解曲线方程的概念,掌握求曲线方程的基本方法。
2.能够根据给定的条件或图形,求出曲线的方程。
3.培养学生的观察能力、逻辑思维能力和解决问题的能力。
教学重点:1.曲线方程的概念和求法。
2.如何根据条件或图形确定曲线的方程。
教学难点:1.对曲线方程概念的理解。
2.求曲线方程的方法和技巧。
教学准备:1.教学课件或黑板。
2.练习题。
教学过程:第一课时一、导入(5分钟)1.引导学生回顾已学的直线方程、圆的方程等,为引入曲线方程的概念做铺垫。
2.提问:除了直线和圆,还有哪些常见的曲线?它们有什么特点?二、新课讲解(25分钟)1.讲解曲线方程的概念:曲线方程是描述曲线形状和位置关系的数学表达式。
2.介绍求曲线方程的基本方法:a.直接法:根据曲线的定义或性质,直接列出方程。
b.转换法:将曲线转换为已知类型的曲线,求出方程后再转换回去。
c.几何法:利用几何图形的性质和关系,推导出曲线的方程。
3.示例讲解:a.求抛物线y=ax^2+bx+c的方程。
b.求椭圆x^2/a^2+y^2/b^2=1的方程。
三、课堂练习(15分钟)1.让学生独立完成练习题,巩固求曲线方程的方法。
2.老师巡回指导,解答学生疑问。
四、总结与拓展(5分钟)1.总结求曲线方程的方法和步骤。
2.提问:在实际问题中,如何确定曲线的类型和方程?第二课时一、复习导入(5分钟)1.复习上节课的内容,让学生回顾求曲线方程的方法。
2.提问:在实际问题中,如何确定曲线的类型和方程?二、新课讲解(25分钟)1.讲解如何根据条件或图形确定曲线的方程:a.观察图形,找出曲线的特点和规律。
b.利用已知条件,列出方程。
c.利用曲线的性质,推导出方程。
2.示例讲解:a.已知抛物线过点(1,2)且焦点为(0,1),求抛物线的方程。
b.已知椭圆的长轴为10,短轴为6,求椭圆的方程。
三、课堂练习(15分钟)1.让学生独立完成练习题,巩固根据条件或图形求曲线方程的方法。
全国高中青年数学教师优质课大赛一等奖《曲线与方程》教学设计

课题:2.1.1曲线与方程(第1课时)(人教A版普通高中课程标准实验教科书数学选修2—1第二章第一节)一、内容和内容解析1.教学内容《曲线与方程》共分两小节,第一小节主要内容是曲线的方程、方程的曲线的概念;第二小节内容是如何求曲线的方程.本课时为第一小节内容.2.地位与作用本小节内容揭示了几何中的“形”与代数中的“数”相统一的关系,体现了解析几何这门课的基本思想——数形结合思想,对解析几何教学有着指导性的意义.其中,对曲线的方程和方程的曲线从概念上进行明确界定,是解析几何中数与形互化的理论基础和操作依据.《曲线与方程》作为《圆锥曲线与方程》的第一节,一方面,该部分内容是建立在学生学习了直线的方程和圆的方程的基础上对曲线与方程关系认识的一次飞跃;另一方面,它也为下一步学习圆锥曲线方程奠定了模型的基础.因此,它在高中解析几何学习中起着承前启后的关键作用.二、目标和目标解析本课时的教学目标是结合已学曲线及其方程的实例,了解曲线与方程的对应关系,进一步理解数形结合的基本思想.具体目标如下:1.通过探究“以方程的解为坐标的点”汇集的图形,感知并归纳概括曲线与方程的对应关系;2.初步理解方程的曲线与曲线的方程的含义;3.通过经历曲线与方程的对应关系的探究过程,发展抽象概括的能力;4.能使用曲线的方程(方程的曲线)的概念判断曲线与方程的对应关系,继续理解数形结合思想.三、教学问题诊断分析1.问题诊断学生已经对“用方程表示直线、圆”有着感性的认知基础,能够根据直线的方程、圆的方程作对应的图形,并对数形结合思想有初步的了解.但是从直线与方程、圆与方程到曲线与方程的对应关系是一次从感性认识到理性认识的“飞跃”,由于大多数学生对“生活中其他的曲线是否能用、如何使用方程表示”这些问题还未曾有过思考,加之曲线的方程(方程的曲线)这一组概念有着较高的抽象性,所以预计在本课的学习中,学生可能出现以下困难:(1)作图探究结束后,学生独立地归纳概括并写出曲线的方程(方程的曲线)的概念时不规范,不全面;(2)难以理解“曲线上的点的坐标都是方程的解”和“以方程的解为坐标的点都在曲线上”这两句话在揭示“曲线与方程”的关系时各自所起的作用.2.重难点重点:曲线的方程(方程的曲线)的概念难点:曲线的方程(方程的曲线)概念的生成和理解3.突出重点、突破难点的策略本节课的教学,根据“问题引导,任务驱动”的设计思路,遵循概念学习的规律,使学生在过程中感受数形结合,从特殊到一般,化归与转化的数学思想.具体表现在:(1)用蕴含数学文化的广告创设情境,并将“章头图”、“章导言”融入其中,产生认知冲突,感悟学习曲线与方程的必要性;(2)让学生经历“作图—存异—质疑—寻因”的探究过程,感知方程的变化带来曲线的变化,曲线的差异导致方程的差异,再通过“独立书写—交流讨论—互动修正”生成概念;(3)学生自主举例,辨析概念,联系已学知识,完成对概念的“结构化”.四、教学支持条件分析1.学情分析本课授课对象是成都石室中学高二理科实验班的学生,数学基础扎实,思维较活跃,具有较为丰富的探究活动经验,但在抽象概括能力和语言的规范表达上还有待进一步提升.2.教学策略与教法、学法本课采取“探究—发现”教学模式.教师的教法注重活动的安排和问题的引导,通过问题引导学生从特殊到一般进行探索发现,并归纳概括.学生的学法注重独立探究、合作交流、归纳建构.教具:多媒体PPT课件,平板电脑,三角板,彩色粉笔学具:教材、草稿本、三角板、圆规、铅笔五、教学过程设计结合教材知识内容和教学目标,本课的教学环节及时间分配如下:教学内容师生活动(预设)设计说明一、创设情景,引入概念师:不知大家有没有看过下面【阶段小结】教师引导下,学生交流自己对定义的认识.台上给大家讲解.生14:错误.两条都不满足.师:进一步分析不符合要求的点或者是方程的解,请你举例说明.生14:通过图象我们发现曲线是分布在第一、三象限,而方程的曲线在第一、二象限.师:能否用定义加以说明?生14:如点(-4,-1)在曲线上,但不是方程F的解;(-4,1)的坐标是方程的解,以它为坐标的点不在曲线上.师:其实,要解决曲线与方程的关系的判断,除了教材上定义之外,还有其他的一些表述,请你在学习定义的基础上谈谈自己对曲线与方程关系的判断方法.生15:(预设)检查曲线上的点和方程的解之间的关系.师:不错,但注意准确性.应该是曲线上的每一个点和方程的每一个解的关系.生16:(预设)看曲线上是否有不是方程的解为坐标的点,看曲线是否包括了方程的所有解为坐标的点.师:很好,这种判断方法相当于是看曲线是否纯粹地列出了方程的解为坐标的点,无多余的点,而方程的解是否完备地通过曲线体现了,没有漏掉解.通过对概念的应用,将学生对曲线的方程(方程的曲线)这一概念的多角度理解进行梳理,引导学生在说出自己对曲线与方程关系的理解的基础上对概念再认识.四、课堂检测,课外延伸【课堂检测】请将以下四个方程和右边的图形用连段连接起来:||0x y-=师:接下来请看课堂检测.请将以下四个方程和四个曲线配对,并简要说明理由.生17:观察方程中解的正负和曲线上点的坐标的正负,可以筛选答案.师:不错.如果我们要用概念检验曲线和方程之间的关系,该如何分析呢?比如第一个方程和第一幅图.课堂检测的作用是检测学生在对定义的理解是否深入,应用是否灵活.||0x y-=220x y-=x y-=【课外延伸】1.查阅资料了解数学家对圆锥曲线的研究历史,并了解笛卡尔在其中所做出的贡献.2.广告创意使用到的笛卡尔的爱情传说中,关于(1sin)r aθ=-与心形曲线的关系涉及到了极坐标系,我们将会在《选修4-4》中学习.生17:第一支曲线上的部分点的坐标不是第一个方程的解,所以方程不是曲线的方程.师:大家想知道本课之初视频背后的故事吗?生(齐):想.(播放视频)师:广告创意使用到的笛卡尔的爱情传说中,关于(1sin)r aθ=-与心形曲线的关系涉及到了极坐标系,我们将会在《选修4-4》中学习.学生根据范围直接进行配对,体现了其对曲线与方程关系掌握的灵活性.《曲线与方程》衔接了直线、圆与圆锥曲线,了解圆锥曲线的发展历史,更有利于激发学生使用方程研究圆锥曲线的兴趣,更加积极地学习解析几何一眼就问题的方法.对于笛卡尔的爱情传说,学生一定是很有兴趣的,其中涉及到的极坐标系作为本课最后的一个说明即拓展了学生视野,也将高中解析几何的直线与方程、圆与方程、圆锥曲线与方程、坐标系与参数方程四个部分都出现在了本课中.附:板书设计六、目标检测设计在本节课的教学中,为了达成教学目标,我注意了教学环节的设计与教学目标的达成相呼应,做到目标确定环节,在环节中实现目标,具体如下:本课的教学目标达成情况如下:此外,课堂中我还设计了以下目标检测环节: 1.课堂检测请将以下四个方程和图形用连段连接起来:||0x y -= ||0x y -= 220x y -=0x y -=2.课外延伸(1)查阅资料了解数学家对圆锥曲线的研究历史,并了解笛卡尔和坐标系在其中所做出的贡献.(2)广告创意使用到的笛卡尔的爱情传说中关于(1sin)=-与心形曲线的关r aθ系,便是曲线与方程对应关系的体现,它涉及到了极坐标系,我们将会在《选修4-4》坐标系与参数方程中学习.设计意图:课堂检测的目的是检测教学效果.再次感受方程的不同导致曲线的不同之间,曲线的差异对应方程的差异,理解数形结合思想.学会使用概念对曲线与方程的关系进行界定.《中国学生发展核心素养》总体框架中谈到,“文化是人存在的根和魂”,文化基础包括“人文底蕴”、“科学精神”,本课内容承载着这两个要素,曲线与方程的关系体现了解析几何核心思想,而解析几何是近代数学的里程碑.课外延伸旨在通过让学生自主查阅资料拓展视野,了解数学史,感受数学文化,发展数学核心素养.结尾部分让学生了解笛卡尔的信件便使用了“曲线与方程的对应关系”这一知识,激发学生兴趣,并不经意地提及了坐标系及参数方程这一解析几何的板块.《曲线与方程》教学设计说明本课时作为《圆锥曲线与方程》的第一节课,主要内容是曲线的方程(方程的曲线)的概念.学生已经对“用方程表示直线、圆”有着感性的认知基础,能够根据直线的方程、圆的方程作对应的图形,并对数形结合思想有初步的了解.结合以上情况,我制定了本堂课的目标就是结合实例了解曲线与方程的对应关系,感悟数形结合思想.对本课的设计,我作以下说明:1.关于设计定位.如果将曲线的方程(方程的曲线)这一概念直接呈现给学生,然后进行对应练习,学生很可能只会机械记忆判断曲线与方程对应关系的两个条件,无法理解他们在揭示这种关系时各自所起的作用.我在设计这堂课时始终坚持两条思路.一条是以曲线的方程(方程的曲线)这一组概念的知识技能为目标的“明线”,一条是以经历一个完整的“从典型事例中抽象出新的数学概念”体验过程为目标的“暗线”.让数学思想方法似甘露一样浸润学生心田.2.遵循概念学习的规律.曲线与方程的概念的获得应该符合学生的认知规律,在情景中认识到研究“曲线与方程的关系”的必要性,在对典型丰富的事例的探究过程中,归纳概括出特征、性质,并将自然语言逐步转化为数学语言.因此遵循概念教学的规律,设计了“感知概念——形成概念——辨析概念——应用概念”的教学过程.3.实现教材中本章“章头图”、“章导言”的教育价值和作用.作为《圆锥曲线与方程》的第一课时,适当对本章学习内容进行展望是很有必要的,本课的创设情境部分很好的整合了“章头图”、“章导言”与本节内容,产生认知冲动,很好的实现了“章头图”、“章导言”的教育价值和作用.4.浸润数学文化、渗透数学思想、鼓励数学阅读、发展核心素养.文化基础是核心素养的重要内容,包括“人文底蕴”和“科学精神”两个方面,如何在数学学习过程中根据恰当素材进行人文情怀的塑造,是每一位数学教育工作者应该重视的内容.本课的内容体现了解析几何的基本数学思想——数形结合思想,是解析几何的核心概念,课堂中适度安排数学史、数学文化相关内容能够让学生体会数学发展的过程,发展数学素养.5.关于多媒体技术的使用教学中平板电脑充当投影仪的作用,但较传统投影仪有着记录学生活动过程,节约展示时间的优势.因此,根据需要适当选择媒体辅助可以更好的实现教学目的.。
中职教育二年级下学期数学《双曲线的标准方程》教学设计

年级
高二
课题
双曲线的定义
主讲人
学科
时长
教
学
目
标
一、知识与技能
1.了解双曲线标准方程的推导过程;
2.掌握双曲线的标准方程。
二、过程与方法
1.加强用待定系数法求方程的方法;
2.强化数形结合、等价转化的思想以及分类讨论的思想在解题时的运用。
三、情感态度与价值观
1.培养学生交流的意识和团队协作的精神;
PPT展示
有中文配音
找出椭圆和双曲线的区别与联系
画面七
A:知道了双曲线的标准方程,那就来解决问题。
例1、已知双曲线两个焦点的坐标为
, ,双曲线上一点M到 的距离的差的绝对值等于6,求双曲线的标准方程。
A:本题由焦点坐标可以知道焦点在x 轴上,所以设它的标准方程为 ,由焦点坐标还可以知道半焦距c=5,再由双曲线定义可知2a=6,再由a、b、c的的关系
这节课到此结束,谢谢!
PPT展示
有中文配音
总结本课并布置课后练习
即可求出双曲线的标准方程为
变式:双曲线上一点M, | |=10,求| |=______
A:变式题主要考察双曲线的定义, ,绝对值一定不能丢,绝对值方程一般有两个解,还要看看是否都符合题意!
PPT展示
有中文配音
如何用待定系数法求标准方程
画面八
A:下面的时间就交给同学们练习。(下面不用读)
练习:判断下列方程是否表示双曲线?若是,求出 及其焦点坐标.
我们很容易看出第一个双曲线焦点在X轴上,第二个双曲线焦点在Y轴上。
学习过程中注意和椭圆焦点位置的判断方法区分开。椭圆的焦点由分母大的决定,双曲线的焦点由系数为正的决定。
高中数学_双曲线的标准方程教学设计学情分析教材分析课后反思

《双曲线的标准方程》-教学设计课题:《双曲线的标准方程》一、教学目标【知识与技能】(1)通过画双曲线和分析具体实例,使学生认识双曲线,理解双曲线的定义;(2)会推导双曲线的标准方程, 能根据条件,求双曲线的标准方程.【过程与方法】学生在自主探究、合作交流等活动中提高分析解决问题的能力,提高运算能力,培养观察、类比、分类讨论等数学思想方法.【情感、态度与价值观】通过运用所学知识分析和解决实际问题,体会数学的应用价值.二、教学过程1 以课前思维导学为基础,感悟概念【课前自主学习任务单】【学习目标】(1)通过实例,认识双曲线,并理解双曲线的定义;(2)会推导双曲线的标准方程, 能根据条件,求双曲线的标准方程;(3)在自主探究、合作交流等活动中提高分析解决问题的能力,增强主动学习的意识.【学法指导】圆、椭圆、双曲线、抛物线等各种美妙线方程息息相关,特别是椭圆和双曲线,有人称之为“情侣曲线”,有很多相似之处,我们可类比椭圆的研究方法研究双曲线. 特别要重视椭圆和双曲线的相同点和不同点.【自主学习任务】动手实践:双曲线是常见的图形,怎样可以得到双曲线呢?小组合作,探寻画出双曲线的方法.自主探索: 导航定位技术在军事、科技、民生等领域有重要作用.有一种定位原理是:F 1、F 2 是两个导航台, 一辆汽车M 上装有定位仪,能接收从导航台发来的无线电信号,因为车M 到导航台的距离不等,因此两处同时发出的信号到达车M 上的时间就有先后,于是定位仪可读出从F 1、F 2发来的信号到达M 上的时间差,就可以知道M 离开各导航台的距离差.假设两个导航台F 1、F 2 距离为10km ,车M 在行驶中,定位仪显示,F 1发来的信号到达时间始终比F 2发来的信号晚5210s -⨯,已知无线电波在空气中传播的速度是5310/km s ⨯.(1)在这个过程中,哪些量是定量?(2)动点M 满足什么条件?思考: 若令F 1、F 2距离为2c ,点P 到F 1、F 2的距离差为2(022)a a c <<,请你求出点P 所在的曲线方程.(提示:类比椭圆标准方程的推导过程)设计意图:课前思维导学任务单包含了两个具体任务。
高中物理曲线运动方程教案

高中物理曲线运动方程教案
主题:高中物理曲线运动方程
目标:通过本节课的学习,学生将能够理解曲线运动的概念并掌握相关的方程。
一、引入:
1. 展示一个曲线运动的视频,并让学生描述视频中物体的运动轨迹。
2. 引导学生思考,曲线运动与直线运动有何区别?
二、概念讲解:
1. 定义曲线运动:指物体在运动过程中,其轨迹不是直线而是曲线的运动。
2. 讲解曲线运动的相关概念:速度、加速度、曲率等。
3. 引入曲线运动的方程:曲线运动的速度和加速度的关系。
三、方程推导:
1. 推导出曲线运动的速度方程:v(t) = v₀ + at
2. 推导出曲线运动的位移方程:s(t) = s₀ + v₀t + 1/2at²
3. 推导出曲线运动的加速度方程:a(t) = dv/dt = d²s/dt²
四、实例演练:
1. 给出一个曲线运动的实例,让学生带入方程计算速度、加速度和位移。
2. 让学生分组进行讨论,共同解决问题。
五、思考问题:
1. 如何根据已知的速度方程,推导出加速度方程?
2. 曲线运动的加速度是如何影响速度和位移的?
六、课堂小结:
1. 总结本节课所学内容,强调曲线运动方程的重要性。
2. 鼓励学生多多练习,深化对曲线运动方程的理解。
以上是一份高中物理曲线运动方程教案范本,希望对您有所帮助。
祝您教学顺利!。
2.1曲线与方程 教学设计 教案

2.1曲线与方程教学设计教案第一篇:2.1曲线与方程教学设计教案教学准备1. 教学目标[1]了解曲线上的点与方程的解之间的一一对应关系 [2]初步领会“曲线的方程”与“方程的曲线”的涵义 [3]强化“形”与“数”一致并相互转化的思想2. 教学重点/难点教学重点:理解“曲线的方程”与“方程的曲线”的涵义教学难点:利用定义验证曲线是方程的曲线,方程式曲线的方程3. 教学用具多媒体设备4. 标签教学过程教学过程设计1 复习引入【师】在本节课之前,我们研究过直线的各种方程,建立了二元一次方程与直线的对应关系:在平面直角坐标系中,任何一条直线都可以用一个二元一次方程表示,同时任何一个二元一次方程也表示着一条直线,请思考下面问题:【板演/PPT】思考1 直线y=x上任一点M到两坐标轴距离相等吗?思考2 到两坐标轴距离相等的点都在直线y=x上,对吗?思考3 到两坐标轴距离相等的点的轨迹方程是什么?为什么?【生】学生思考交流 2 新知介绍[1]结合具体实例,引入曲线方程和方程曲线概念【师】:引导学生发言总结【板演/PPT】答 y=±x. 理由:在直角坐标系中,到两坐标轴距离相等的点M的坐标(x0,y0)满足y0=x0或y0=-x0,即(x0,y0)是方程y=±x的解;反之,如果(x0,y0)是方程y=x或y=-x的解,那么以(x0,y0)为坐标的点到两坐标轴距离相等.【师】思考下面问题:思考4 曲线C上的点的坐标都是方程f(x,y)=0的解,能否说f(x,y)=0是曲线C的方程?思考5 判断下列命题是否正确.(1)以坐标原点为圆心,半径为r的圆的方程是y=(2)过点A(2,0)平行于y轴的直线l的方程为|x|=2. 【生】思考总结【板演/PPT】解 (1)不正确.设(x0,y0)是方程y=x02+y02=r2.两边开平方取算术平方根,得的解,则y0=,即;=r即点(x0,y0)到原点的距离等于r,点(x0,y0)是这个圆上的点.因此满足以方程的解为坐标的点都是曲线上的点.但是,以原点为圆心、半径为r的圆上的一点如点在圆上,却不是y=的解,这就不满足曲线上的点的坐标都,是方程的解.所以,以原点为圆心,半径为r的圆的方程不是y=而应是y=±. (2)①、直线上的点的坐标都满足方程︱x︱=2②、满足方程︱x︱=2的点不一定在直线上结论:过A(2,0)平行于y轴的直线的方程不是︱x︱=2 【师】引导学生交流思想总结曲线方程的概念【板演/PPT】曲线的方程、方程的曲线一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.【师】引导学生深入理解定义,从充要条件来理解这个定义【板演/PPT】定义中的两个条件是判定一个方程是否为所定曲线的方程,一条曲线是否为所定方程的曲线的依据,缺一不可.从逻辑知识来看:第一个条件表示f(x,y)=0是曲线C的方程的必要条件,第二个条件表示f(x,y)=0是曲线C的方程的充分条件.因此,在判断或证明f(x,y)=0为曲线C的方程时,必须注意两个条件同时成立.【板演/PPT】从集合角度理解为:定义的实质是平面曲线的点集{M|p(M)}和方程f(x,y)=0的解集{(x,y)|f(x,y)=0}之间的一一对应关系.由曲线和方程的这一对应关系,既可以通过方程研究曲线的性质,又可以求曲线的方程 [2]概念应用【师】下面我们看屏幕上的例题【板演/PPT】例1:若命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是正确的,则下列命题为真命题的是( ).A.不是曲线C上的点的坐标,一定不满足方程f(x,y)=0 B.坐标满足方程f(x,y)=0的点均在曲线C上 C.曲线C是方程f(x,y)=0的曲线D.不是方程f(x,y)=0的解,一定不是曲线C上的点. 【师】从定义入手,考虑充要条件【生】思考回答【板书/PPT】解析∵题设命题只说明“曲线C上的点的坐标都是方程f(x,y)=0的解”,并未指出“以方程f(x,y)=0的解为坐标的点都是曲线C上的点”,∴A,B,C都是假命题,如曲线C:平面直角坐标系一、三象限角平分线上的点,与方程f(x,y)=x2-y2=0,满足题设条件,但却不满足选项A,B,C的结论,根据逆否命题是原命题的等价命题知,D是正确的.【师】规律方法(1)判断方程是否是曲线的方程,要从两个方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上.从而建立方程的解与曲线上点的坐标的一一对应关系.(2)定义中的两个条件是判定一个方程是否为指定曲线的方程,一条曲线是否为所给定方程的曲线的准则,缺一不可.因此,在证明f(x,y)=0为曲线C的方程时,必须证明两个条件同时成立.【师】为了深刻的理解方程与曲线,我们来看下列一个问题【板书/PPT】[例2] 下列方程表示如图所示的直线,对吗?为什么?不对请改正.【生】分析各个方程所表示的曲线是否与图中图象符合【板书/PPT】解:不对,应为y=x 【师】引导学生反思总结【板书/PPT】反思与感悟判断方程表示什么曲线,必要时要对方程适当变形,变形过程中一定要注意与原方程等价,否则变形后的方程表示的曲线就不是原方程的曲线.【板书/PPT】【师】引导学生思考【板书/PPT】方法点拨 (1)判断点是否在某个方程表示的曲线上,就是检验该点的坐标是否是方程的解,是否适合方程.若适合方程,就说明点在曲线上;若不适合,就说明点不在曲线上.解:带入验证知P点在此方程所表示的曲线上,Q点不在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求曲线的方程
四川省成都石室中学蒋富扬
一、教材分析
1.教材背景
作为曲线内容学习的开始,“曲线与方程”这一小节思想性较强,约需三课时,第一课时介绍曲线与方程的概念;第二课时讲曲线方程的求法;第三课时侧重对所求方程的检验.
主要内容有:解析几何与坐标法;求曲线方程的方法(直译法)、步骤及例题探求.
2.本课地位和作用
承前启后,数形结合
曲线和方程,既是直线与方程的自然延伸,又是圆锥曲线学习的必备,是后面平面曲线学习的理论基础,是解几中承上启下的关键章节.
“曲线”与“方程”是点的轨迹的两种表现形式.“曲线”是轨迹的几何形式,“方程”是轨迹的代数形式;求曲线方程是用方程研究曲线的先导,是解析几何所要解决的两大类问题的首要问题.体现了坐标法的本质——代数化处理几何问题,是数形结合的典范.
后继性、可探究性
求曲线方程实质上就是求曲线上任意一点(x,y)横纵坐标间的等量关系,但曲线轨迹常无法事先预知类型,通过多媒体演示可以生动展现运动变化特点,但如何获得曲线的方程呢?通过创设情景,激发学生兴趣,充分发挥其主体地位的作用,学习过程具有较强的探究性.
同时,本课内容又为后面的轨迹探求提供方法的准备,并且以后还会继续完善轨迹方程的求解方法.
数学建模与示范性作用
曲线的方程是解析几何的核心.求曲线方程的过程类似于数学建模的过程,它贯穿于解析几何的始终,通过本课例题与变式,要总结规律,掌握方法,为后面圆锥曲线等的轨迹探求提供示范.
数学的文化价值
解析几何的发明是变量数学的第一个里程碑,也是近代数学崛起的两大标志之一,是较为完整和典型的重大数学创新史例.解析几何创始人特别是笛卡儿的事迹和精神——对科学真理和方法的追求、质疑的科学精神等都是富有启发性和激励性的教育材料.可以根据学生实际情况,条件允许时指导学生课后收集相关资料,通过分析、整理,写出研究报告.
3.学情分析
我所授课班级的学生数学基础比较好,思维活跃,在刚刚学习了“曲线的方程和方程的曲线”后,学生对这种必须同时具备纯粹性和完备性的概念有了初步的认识,对用代数方法研究几何问题的科学性、准确性和优越性等已有了初步了
解,对具体(平面)图形与方程间能否对应、怎样对应的学习已经有了自然的求知欲望.
二、目标分析
1.教学目标
知识技能目标
理解坐标法的作用及意义.
掌握求曲线方程的一般方法和步骤,能根据所给条件,选择适当坐标系求曲线方程.
过程性目标
通过学生积极参与,亲身经历曲线方程的获得过程,体验坐标法在处理几何问题中的优越性,渗透数形结合的数学思想.
通过自主探索、合作交流,学生历经从“特殊——一般——特殊”的认知模式,完善认知结构.
通过层层深入,培养学生发散思维的能力,深化对求曲线方程本质的理解. 情感、态度与价值观目标
通过合作学习,学生间、师生间的相互交流,感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,逐步养成质疑的科学精神.
展现人文数学精神,体现数学文化价值及其在在社会进步、人类文明发展中的重要作用.
2.教学重点和难点
重点:求曲线方程的方法、步骤
难点:几何条件的代数化
依据:求曲线方程是解几研究的两大类问题之一,既是重点也是难点,是高考解答题取材的源泉.主要包括两种类型求曲线的方程:一是已知曲线形状时常用待定系数法;二是动点轨迹方程探求,本课的重点主要是探索动点的曲线方程.
曲线与方程是贯穿平面解几的知识,是解析几何的核心.求曲线方程是几何问题得以代数研究的先决,求曲线方程的过程类似数学建模的过程,是课堂上必须突破的难点.
三、教学方法及教材处理
1.教学方法:探究发现教学法.
遵循以学生为主体,教师为主导,发展为主旨的现代教育原则,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,通过学生主动探索、积极参与、共同交流与协作,在教师的引导和合作下,学生“跳一跳”就能摘得果实,于问题的分析和解决中实现知识的建构和发展,通过不断探究、发现,让学习过程成为心灵愉悦的主动认知过程,使师生的生命活力在课堂上得到充分的发挥.
2.学法指导
学生学法:互相讨论、探索发现
由于学生在尝试问题解决的过程中常会在新旧知识联系、策略选择、思想方法运用等方面遇到一定的困难,需要教师指导.作为学生活动的组织者、引导者、参与者,教师要帮助学生重温与问题解决有关的旧知,给予学生思考的时间和表达的机会,共同对(解题)过程进行反思等,在师生(生生)互动中,给予学生启发和鼓励,在心理上、认知上予以帮助.
这样,在学法上确立的教法,能帮助学生更好地获得完整的认知结构,使学生思维、能力等得到和谐发展.
3.设计理念:
求曲线方程就是将曲线上点的几何表示形式转化为代数表示形式。
在这转化过程中,学生通过积极参与、勇于探索的学习方式,让学生的学习过程成为教师指导下的再创造,这也正是建构主义理论的本质要求;遵循学生认知规律,尊重学生个体差异,立足教材,通过对例题的再创造,体现理论联系实际、循序渐进和因材施教的教学原则,让不同层次的学生得到不同层度的发展;通过激发兴趣,强调自主探索与合作交流,让学生逐步地从学会走向会学,由被动走向主动,由课堂走向社会,为学生的终身学习和终身发展奠定良好的基础,也是当前新课程所追求的基本理念.
四、教学过程(教学设计)
根据本课教学内容几何特性外化的特点,抓住形成轨迹的动点具备的几何条件,运用坐标化的手段及等价转化与数形结合的思想方法,突破难点,突出重点.本课的教学设计思路是:
创设情景——从感性的轨迹(图形)认识,到解决生活上的实例,激发学生的求知欲望,抓住学生迫切一试的认知心理,自然引入坐标法的意义及曲线方程的求法.
例题探求——例题一体现知识的承前启后.通过例题一的呈现,学生借助已有的知识经验,自主探求获得问题的求解,在教师的引导下,让学生感受求曲线方程的含义及求解步骤;例题二及变式解决建系难点,建系的开放性,对学生是一种挑战,也是一种创造;两个例题由浅入深,循序渐进,体现因材施教.至此,学生已能初步了解求曲线方程的一般方法和步骤了.
归纳步骤——学生亲身经历求曲线方程的过程,让学生归纳(用自己的语言)、表述求解的步骤,体现从“特殊——一般”认知规律,逐步实现教学目标.
变式练习——通过对例题的变式,由学生求解、回答变式后的含义,深化对认知结构的理解,初步体会数学的理性与严谨,逐步养成质疑与反思的习惯.
反馈练习——利用学生探索而发展来的认知水平,运用获得的知识解决情景创设中的实际问题,一方面可以考察学生运用所学数学知识解决实际问题的意识和能力;另一方面是学生思维的自然顺应,自然释放,是“一般——特殊”的过程.
五、说明或评价
关于教学设想: 以学生的“数学活动”为主线,以问题的解决为目的,让学生自主探索(直译法)求曲线方程的思路,以积极的情感态度、用亲身体验与创造的
方法来学习数学,获得广泛的数学活动经验,进而掌握曲线方程的求法.
关于本课指导思想
在教师的引导下,让学生经历“数学化”、“再创造”的活动过程,为学生发展数学思维能力提供有效的途径. 渗透数学思想方法贵在平时的每一节课堂中,发展能力优于对知识的掌握.
关于学生活动
一切的教育理念都需要通过学生的主体活动来实现.本着以学生知识的“最近发展区”为基础,围绕教学目标,层层设置例题及变式,在问题的(提出)解决过程中,应尽量由学生合作讨论、自主探索得出,让全体学生都能得到发展.
教学流程图。