精选新版2019七年级下册数学期中完整版考核题库(含标准答案)
2019-2020年七年级下学期期中考试数学试题 Word版含答案(II)

xx 学年度宜兴市周铁学区期中考试试卷 2019-2020年七年级下学期期中考试数学试题 Word 版含答案(II) 一、选择题:(本大题共有10小题,每小题3分,共30分.)1.下列计算正确的是 ( )A .a 2+a 2=2a 4B .a 2 • a 3=a 6C .(-3x) 3÷(-3x)=9x 2D .(-ab 2) 2=-a 2b 42. 如果一个多边形的内角和是外角和的3倍,那么这个多边形是 ( )A.八边形B.九边形C.十边形D.十二边形3.下列等式由左边到右边的变形中,属于因式分解的是 ( )A .(a +1)(a -1)=a 2-1B .a 2-6a +9=(a -3) 2C .x 2+2x +1=x(x +2)+1D .-18x 4y 3=-6x 2y 2•3x 2y4.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =35°,则∠BED 的度数是( )A .70°B .68°C . 60°D .72°5. 若x 、y 满足0)2(12=++++-y x y x ,则 ( )A .1B .2C .–1D .–26.如图,有以下四个条件:①∠B +∠BCD =180°,②∠1=∠2,③∠3=∠4,④∠B =∠5.其中能判定AB ∥CD 的条件的个数有… ( )A .1B .2C .3D .47. 如果a =(-xx) 0、b =(-110)-1、c =(-53)2,那么a 、b 、c 的大小关系为( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b8.如图,∠1,∠2,∠3,∠4是五边形ABCDE 的外角,且∠1=∠2=∠3=∠4=68°,则∠AED 的度数 ( )A .88°B .92°C .98°D .112°9. 若a m =2,a n =3,则a 2m-n 的值是 ( )A .1B .12C .34D .4310.为求1+2+22+23+…+2xx 的值,可令S =1+2+22+23+…+2xx ,则2S=2+22+23+24+…+2xx ,因此2S -S =2xx -1,所以1+2+22+23+…+2xx=2xx -1.仿照以上推理计算出1+3+32+33+…+3xx 的值是( )A .3xx -1B . 3xx -1C .D .二、填空题:(本大题共8小题,每空2分,共18分.)(第4题) (第8题)(第6题)第16题 第15题11.甲型H7N9流感病毒的直径大约为0.000 000 08米,用科学记数法表示 米.12. 因式分解:m 2-16= ;2x 2-8xy +8y 2= .13.一个三角形的两边长分别为3 cm 、5 cm ,且第三边为偶数,则这个三角形的周长为______________ cm .14.若,,则15. 如图,BC ⊥ED 于O ,∠A =45°,∠D =20°,则∠B =________°.16.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=23度,那么∠2= 度.17. 如图,将一个长方形纸条折成如图所示的形状,若已知∠2=65°,则∠1=__________。
济南市历下区2019-2020学年度七年级(下)期中考试数学试卷及答案

济南市历下区2019-2020学年度七年级(下)期中试卷数学一、选择题(本大题共12小题,共48.0分)1.如图所示,下列图案中是轴对称图形的共有()A. 2个B. 3个C. 4个D. 5个【答案】B【解析】解:第1,2,3个图形是轴对称图形,共3个.故选:B.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下面四个图形中,∠1与∠2是对顶角的图形是()A. B.C. D.【答案】D【解析】解:根据对顶角的定义可知:只有D选项中的是对顶角,其它都不是.故选:D.两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角,掌握对顶角的定义是解题的关键.3.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是()A. 金额B. 数量C. 单价D. 金额和数量【答案】D【解析】解:常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:D.根据常量与变量的定义即可判断.4.以长分别为3,4,5,6的四段木棒为边摆三角形,可摆出几种不同的三角形()A. 1种B. 2种C. 3种D. 4种【答案】D【解析】解:①3,4,5时,能摆成三角形;②3,4,6时,能摆成三角形;③3,5,6时,能摆成三角形;④4,5,6时,能摆成三角形;所以,可以摆出不同的三角形的个数为4个.故选:D.确定出摆法,再根据三角形的任意两边之和大于第三边进行判断.本题考查了三角形的三边关系,难点在于按照一定的顺序确定出摆放的方法,方能做到不重不漏.5.下列图形中,线段AD的长表示点A到直线BC距离的是()A. B.C. D.【答案】D【解析】解:线段AD的长表示点A到直线BC距离,则AD⊥BC,符合题意的是图D,故选D.点到直线的距离是指垂线段的长度.本题考查了点到直线的距离的定义,注意是垂线段的长度,不是垂线段.6.计算(−a)3÷(−a)2的结果是()A. aB. −aC. a5 D. −a5【答案】B【解析】解:(−a)3÷(−a)2=−a;故选:B.根据同底数幂相除,底数不变,指数相减计算即可.本题主要考查同底数幂的除法,熟练掌握运算性质是解题的关键.7.等腰三角形的两边长分别是7cm和12cm,则它的周长是()A. 19 cmB. 26 cmC. 31 cmD. 26 cm或31 cm 【答案】D【解析】解:①当腰是7cm,底边是12cm时,能构成三角形,则其周长=7+12+7=26cm;②当底边是7cm,腰长是12cm时,能构成三角形,则其周长=12+12+7=31cm.故选:D.等腰三角形两边的长为7cm和12cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.应向学生特别强调.8、为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.6元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按0.6元/度计算).现假设某户居民某月用电量是x(度),电费为y(元),则y与x之间的关系用图象表示正确的是(C)A B C D9、如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A. ∠B=∠CB. BE=CDC. BD=CED. AD=AE【答案】B【解析】【分析】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添AD=AE,利用SAS即可证明△ABE≌△ACD.故选:B.10、AF是∠BAC的平分线,DF//AC,若∠BAC=70°,则∠1的度数为()A. 175°B. 35°C. 55°D. 70°【答案】B【解析】解:∵∠BAC=70°,AF平分∠BAC,∴∠FAC=1∠BAC=35°,2∵DF//AC,∴∠1=∠FAC=35°,故选:B.根据角平分线的性质得出∠FAC度数,再利用平行线的性质可得答案.本题主要考查平行线的性质,解题的关键是掌握角平分线的性质和平行线的性质.11.如图,把一张长方形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠1=115°,则图中∠2的度数为()A. 40°B. 45°C. 50°D. 60°【答案】A【解析】解:∵∠1=115°,∴∠EFB′=∠1=115°,∠EFC=65°,∴∠CFB′=50°,又∵∠B=∠B′=90°,∴∠2=90°−∠CFB′=40°,故选:A.由邻补角概念和翻折变换性质得出∠EFB′=∠1=115°,∠EFC=65°,据此知∠CFB′= 50°,结合∠B=∠B′=90°知∠2=90°−∠CFB′,从而得出答案.本题主要考查翻折变换的性质,解题的关键是掌握翻折变换的对应边、对应角相等的性质及直角三角形两锐角互余、对顶角相等的性质.12.如图1,已知△ABD和△ACD关于直线AD对称;在射线AD上取点E,连接BE,CE,如图2:在射线AD上取点F连接BF,CF,如图3,依此规律,第n个图形中全等三角形的对数是()A. nB. 2n −1C. n(n+1)2D. 3(n +1)【答案】C【解析】解:∵△ABD 和△ACD 关于直线AD 对称,∴∠BAD =∠CAD .在△ABD 与△ACD 中{AB =AC∠BAD =∠CAD AD =AD,∴△ABD≌△ACD(SAS).∴图1中有1对三角形全等;同理图2中,△ABE≌△ACE(SAS),∴BE =EC ,∵△ABD≌△ACD .∴BD =CD ,在△BDE 和△CDE 中{EB =ECBD =CD DE =DE,∴△BDE≌△CDE(SSS),∴图2中有1+2=3对三角形全等;同理:图3中有1+2+3=6对三角形全等;由此发现:第n 个图形中全等三角形的对数是n(n+1)2.故选:C .根据条件可得图1中△ABD≌△ACD 有1对三角形全等;图2中可证出△ABD≌△ACD ,△BDE≌△CDE ,△ABE≌△ACE 有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第n 个图形中全等三角形的对数.此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.13填空题(本大题共8小题,共34.0分)(1)赵师傅在做完门框后,为防止变形,如图中所示的那样在门上钉上两条斜拉的木条(即图中的AB ,CD 两根木条),这其中的数学原理是______.【答案】三角形的稳定性【解析】解:赵师傅这样做是运用了三角形的稳定性.故答案为:三角形的稳定性.三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.(2)一个三角形两边上的高线交于一点,这个点正好是三角形的一个顶点,则这个三角形的形状是______三角形.【答案】直角【解析】解:∵三角形两边上的高线交于一点,这个点正好是三角形的一个顶点,∴这个三角形一定是直角三角形.故答案为:直角.根据三种三角形的高的特点解答.本题考查了三角形,关键是掌握直角三角形的特点.(3)地铁一号线的列车匀速通过某隧道时,列车在隧道内的长度y(米)与列车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①列车的长度为120米;②列车的速度为30米/秒;③列车整体在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是______ (填正确结论的序号).【答案】②③【解析】解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故②正确;列车的长度是150米,故①错误;整个列车都在隧道内的时间是:35−5−5=25秒,故③正确;隧道长是:35×30−150=1050−150=900米,故④错误.故正确的是:②③.故答案是:②③.根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.(4)如图,直线AB和CD交于点O,∠AOC=70°,∠BOC=2∠EOB,则∠AOE的度数为______.【答案】125°【解析】解:∵∠AOC=70°,∴∠BOC=180°−70°=110°,∵∠BOC=2∠EOB,∴∠EOB=55°,∴∠AOE−180°−55°=125°,故答案为:125°.根据邻补角的性质可得∠BOC的度数,然后可得∠BOE的度数,再利用邻补角的性质可得∠AOE的度数.此题主要考查了邻补角,关键是掌握邻补角互补.(5)在九个相同的小正方形拼成的正方形网格中,其中两个小正方形涂成黑色,若再涂黑一个,使黑色部分组成一个轴对称图形,则共有______种不同的涂法.【答案】5【解析】解:如图所示:故答案为:5先根据网格特点确定对称轴,然后根据轴对称图形的性质选择涂黑的正方形即可.本题考查了利用轴对称变换作图,(1)中找出对称点是解题的关键,(2)中确定对称轴是解题的关键.(6)如图,正方形ABCD的边长为a,P为正方形边上一动点,运动路线是A−D−C−B−A,设P点经过的路程为x,以点A,P,D为顶点的三角形的面积是y,图象反映了y与x的关系,当S△ADP=14S正方形ABCD时,x=______.【答案】6或14【解析】解:当点P由点A向点D运动,即0≤x≤4时,y的值为0,可得a=4,∵S△ADP=14S正方形ABCD,∴当点P在DC上时,DP=12a=2;当P的AB上时,∵AP=12a=2,∴BP=4−2=2,∴当S△ADP=14S正方形ABCD时,x=4+2或4×3+2,解得x =6或14.故答案为:6或14根据动点从点A 出发,首先向点D 运动,此时y 不随x 的增加而增大,可得a =4,当点P 在DC 上运动时,y 随着x 的增大而增大,当点P 在CB 上运动时,y 不变,据此解答即可.本题考查了动点问题的函数图象,解决动点问题的函数图象问题关键是发现y 随x 的变化而变化的趋势.三、计算题(本大题共1小题,共8.0分)14、计算:(−4xy)3÷(−2xy)【答案】解:(−4xy)3÷(−2xy)=−64x 3y 3÷(−2xy)=32x 2y 2.【解析】根据幂的乘方与积的乘方法则先求出(−4xy)3的值,再根据整式的除法法则进行计算即可得出答案.此题考查了整式的除法以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.1,1),21()213()6(\1522-==-÷+-y x xy xy xy y x 其中先化简,再求值:分 9-12-61,1126-)21()213(22=-+-=-==-+=-÷+-)(时,原式当解:y x y x xy xy xy y x 16、一个角的补角比它的余角的2倍多10°,求这个角.【答案】解:设这个角为x°,∵一个角的补角比它的余角的2倍多10°,∴180−x =2(90−x)+10,解得:x =10,答:这个角为10°.【解析】首先设这个角为x°,由一个角的补角比它的余角的2倍多10°,可得方程180−x =2(90−x)+10,解此方程即可求得答案.此题考查了余角与补角的性质.此题难度不大,注意掌握方程思想的应用.17、填空(请补全下列证明过程及括号内的依据)已知:如图,∠1=∠2,∠B =∠C .求证:∠B +∠BFC =180°证明:∵∠1=∠2(已知),且∠1=∠CGD(______),∴∠2=∠CGD(______),∴CE//BF(______),∴∠______=∠C(______),又∵∠B =∠C(已知)∴∠______=∠B(等量代换),∴AB//CD(______),∴∠B +∠BFC =180°(______).【答案】对顶角相等 等量代换 同位角相等,两直线平行 BFD 两直线平行,同位角相等 BFD 内错角相等,两直线平行 两直线平行,同旁内角互补18,已知AB=DC,AC=DB.(1)求证:△ABC≌△DCB;(2)求证:∠1=∠2.【答案】(1)证明:在△ABC和△DCB中,{AB=DC AC=DB BC=CB,∴△ABC≌△DCB(SSS);(2)由(1)知△ABC≌△DCB,∴∠1=∠2.【解析】(1)根据题意和图形,利用边边边判定定理可以证明结论成立;(2)根据(1)中的结论可以解答本题.本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19在如图所示的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点).(1)标出格点D,使线段AB//CD;(2)标出格点E,使CE是△ABC中AB边上的高;(3)B到AC的距离为______.(4)求△ABC的面积.【答案】2【解析】解:如图,(1)格点D(或D′)即为所求;(2)格点E即为所求;(3)B到AC的距离为BF的长为2;故答案为2.(4)△ABC的面积为:12AC⋅BF=12×5×2=5.(1)标出格点D,使线段AB//CD即可;(2)标出格点E,使CE是△ABC中AB边上的高即可;(3)根据网格即可得B到AC的距离;(4)根据三角形面积公式即可求△ABC的面积.本题考查了作图−应用与设计作图,解决本题的关键是掌握平行线的判定与性质、勾股定理.20一辆汽车油箱内有油a升,从某地出发,每行驶1小时耗油6升,若设剩余油量为Q 升,行驶时间为t/小时,根据以上信息回答下列问题:(1)开始时,汽车的油量a=______升;(2)在______小时汽车加油,加了______升,写出加油前Q与t之间的关系式______;(3)这辆汽车行驶8小时,剩余油量多少升?【答案】42 5 24 Q=42−6t(0≤t≤5)【解析】解:(1)开始时,汽车的油量a=42升;故答案为:42.(2)在5小时汽车加油,加了:36−12=24(升),机动车每小时的耗油量为(42−12)÷5=6(升),∴加油前油箱剩余油量Q与行驶时间t的函数关系为Q=42−6t(0≤t≤5).故答案为:5;24;Q=42−6t(0≤t≤5).(3)36−6×(8−5)=18(升),答:这辆汽车行驶8小时,剩余油量18升.(1)观察函数图象,即可得出结论;(2)察函数图象即可得加油时的时间和加油数量,出再根据加油前油箱剩余油量=42−每小时耗油量×行驶时间,即可得出结论;(3)根据题意列式计算即可解答.本题考查了一次函数的应用,解题的关键是:(1)观察函数图象找出结论;(2)根据数量关系,列出函数关系式.21已知,AB//ED,BF平分∠ABC,DF平分∠EDC.(1)若∠ABC=130°,∠EDC=110°,求∠C的度数和∠BFD的度数;(2)请直接写出∠BFD与∠C的关系.【答案】解:(1)如图所示,过点F作FM//AB,过点C作CN//AB,∵BF平分∠ABC,DF平分∠EDC,∴∠ABF=12∠ABC=65°,∠EDF=12∠EDC=55°,∵AB//ED,∴AB//FM//CN//DE,∴∠BFM=∠ABF=65°,∠DFM=∠EDF=55°,∠ABC+∠BCN=180°,∠EDC+∠DCN=180°,∴∠BFD=∠BFM+∠DFM=120°,∠BCN=50°,∠DCN=70°,∴∠BCD=∠BCN+∠DCN=120°;(2)由(1)知AB//FM//CN//DE,∴∠BFM=∠ABF=12∠ABC,∠DFM=∠EDF=12∠EDC,∠ABC+∠BCN=180°,∠EDC+∠DCN=180°,∴∠BFD=∠BFM+∠DFM=12∠ABC+12∠EDC=12(∠ABC+∠EDC),∠ABC+∠BCN=180°,∠EDC+∠DCN=180°,∴∠BCN=180°−∠ABC,∠DCN=180°−∠EDC,∠ABC+∠EDC=2∠BFD①,∴∠BCD=∠BCN+∠EDC=360°−(∠ABC+∠EDC)②,将①代入②,得:∠BCD=360°−2∠BFD,即∠BCD+2∠BFD=360°.【解析】(1)作FM//AB,CN//AB,由角平分线知∠ABF=12∠ABC=65°,∠EDF=12∠EDC=55°,结合AB//ED知AB//FM//CN//DE,从而得∠BFM=∠ABF=65°,∠DFM=∠EDF=55°,∠ABC+∠BCN=180°,∠EDC+∠DCN=180°,据此知∠BFD=∠BFM+∠DFM=120°,∠BCN=50°,∠DCN=70°,从而得出答案;(2)与(1)同理得出∠BFD=∠BFM+∠DFM=12∠ABC+12∠EDC=12(∠ABC+∠EDC),∠BCN=180°−∠ABC,∠DCN=180°−∠EDC,∠ABC+∠EDC=2∠BFD①,从而知∠BCD=∠BCN+∠EDC=360°−(∠ABC+∠EDC)②,将①代入②即可得出答案.本题主要考查平行线的判定与性质,解题的关键是掌握角平分线的性质、平行线的判定与性质等知识点.22如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠2,∠C=∠E,AE=AC.(1)求证:△ABC≌△ADE;(2)求证:∠2=∠3;(3)当∠2=90°时,判断△ABD的形状,并说明理由.【答案】(1)证明:∵∠1=∠2,∴∠BAC=∠DAE,在△BAC和△DAE中,{∠BAC=∠DAE AC=AE∠C=∠E,∴△ABC≌△ADE(ASA).(2)证明:∵∠E=∠C,∠AFE=∠CFD,又∵∠2+∠E+∠AFE=180°,∠3+∠C+∠DFC=180°,∴∠2=∠3.(3)如图,结论:△ABD是等腰直角三角形.理由:∵∠1=∠2,∠2=90°,∴∠1=90°,∵△ABC≌△ADE,∴AB=AD,∴△ABD是等腰直角三角形.【解析】(1)根据ASA证明三角形全等即可.(2)利用“8字型”基本图形解决问题即可.(3)△ABD是等腰直角三角形.利用全等三角形的性质解决问题即可.本题考查全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.附加题1如图,点G为△ABC三边的重心,若S△ABC=12,则图中阴影部分的面积是______.【答案】42【解析】解:∵点G为△ABC三边的重心,S△ABC=6,∴AD是△ABC的中线,CF是△ABC的中线,AG=2GD,∴S△ABD=12∴S△ABG=2S△CBD=4,∴S△BGF=2,同理,S△CGE=2,∴图中阴影部分的面积是4,故答案为:4.根据重心的概念和性质分别求出S△BGF和S△CGE,计算即可.本题考查的是重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点如图,a,b,c三根木棒钉在一起,∠1=70°,∠2=100°,现将木棒a、b同时顺时针旋转一周,速度分别为17度/秒和2度/秒,则______秒后木棒a,b平行.【答案】2huo14【解析】解:设t秒后木棒a,b平行,依题意有100°−17°t=70°−2°t,解得t=2.故2秒后木棒a,b平行.故答案为:2.可设t秒后木棒a,b平行,根据同位角相等,两直线平行得到关于t的方程,解方程即可求解.本题考查了旋转的性质,平行线的判定,根据同位角相等,两直线平行得到方程是解题的关键.的距离是它到对边中点的距离的2倍.8.已知射线AC是∠MAN的角平分线,∠NAC=60°,B,D分别是射线AN.AM上的点,连接BD.(1)在图①中,若∠ABC=∠ADC=90°,求∠CDB的大小;(2)在图②中,若∠ABC+∠ADC=180°,求证:四边形ABCD的面积是个定值.【答案】解:(1)∵射线AC是∠MAN的角平分线,∠NAC=60°,∴∠MAN=120°,∵∠ABC=∠ADC=90°,根据四边形的内角和得,∠BCD=360°−(∠ABC+∠ADC+∠MAN)=60°,∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,∴CD=CB(角平分线的性质定理),∴△BCD是等边三角形,∴∠CDB=60°;(2)如图②,同(1)得出,∠BCD=60°(根据三角形的内角和定理),过点C作CE⊥AM于E,CF⊥AN于F,∵AC是∠MAN的平分线,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,在△CDE和△CFB中,{∠CDE=∠ABC∠CED=∠CFB=90°CE=CE,∴△CDE≌△CFB(AAS),∴S四边形ABCD =S四边形AFCE,设线段AC=a,∴AF=AE=12a,CE=CF=√32a,∴S四边形ABCD =S四边形AFCE=2×12×12a×√32a=√34a2,∴四边形ABCD的面积是个定值.【解析】(1)利用四边形的内角和即可得出∠BCD的度数,再利用角平分线的性质定理即可得出CB,即可证得△BCD是等边三角形,从而求得∠CDB=60°;(2)先判断出∠CDE=∠ABC,进而得出△CDE≌△CFB(AAS),即可得出结论.本题考查了全等三角形的判定和性质,角平分线的定义和角平分线的性质,等边三角形的判定,构造出全等三角形是解本题的关键.。
2019年春季学期七年级下册期中教学质量检测数学试题(有答案和解析)

2019年春季学期七年级下册期中教学质量检测数学试题一、选择题(本大题共14小题,共28.0分)1.下列哪个图形是由如图平移得到的()A. B. C. D.2.下列命题中,是真命题的是()A. 同位角相等B. 有且只有一条直线与已知直线垂直C. 相等的角是对顶角D. 邻补角一定互补3.在实数,,0.121221221…,3.1415926,,-中,无理数有()A. 2个B. 3个C. 4个D. 5个4.在平面直角坐标系中,点P(-1,3)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.已知点P位于第二象限,且距离x轴4个单位长度,距离y轴3个单位长度,则点P的坐标是()A. B. C. D.6.下列各式正确的是()A. B. C. D.7.若方程(a-2)x|a|-1+y=1是关于x、y的二元一次方程,则a的值是()A. B. C. 1 D. 28.下列图形中,∠1与∠2是对顶角的是()A. B.C. D.9.下列方程组中,是二元一次方程组的有()①②③④⑤⑥A. ①③⑤B. ①③④C. ①②③D. ③④10.介于()之间.A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间11.如图,a1∥a2,∠1=56°,则∠2的度数是()A.B.C.D.12.如图,把一块直角三角形的直角顶点放在直尺的一边上,如果∠1=67°,那么∠2等于()A.B.C.D.13.如图,AB∥CD,PF⊥CD于F,∠AEP=40°,则∠EPF的度数是()A.B.C.D.14.如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC的周长为16cm,则四边形ABFD的周长为()A. 22cmB. 20cmC. 18cmD. 16cm二、填空题(本大题共6小题,共18.0分)15.把命题“邻补角互补”写成如果…那么…的形式为______,它是一个______(填“真”或“假”)命题.16.到原点距离等于的数是______,的相反数是______,它的绝对值是______.17.把点P(1,1)向右平移3个单位长度,再向上平移2个单位长度后的坐标为______.18.一个数的平方根是a+4和2a+5,则a=______,这个正数是______.19.如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是______.20.我们用符号[x]表示一个不大于实数x的最大整数,如:[3.69]=3,[-0.56]=-1,则按这个规律[-]=______.三、计算题(本大题共2小题,共26.0分)21.计算:(1)(2)(3)4y2-36=0(4)+-()222.化简.(1)=______,=______,=______,=______.(2)=______,=______.=______,=______.(3)根据以上信息,观察a,b所在位置,完成化简.+-四、解答题(本大题共4小题,共28.0分)23.如图,已知∠1+∠2=180°,∠3=∠B,则DE∥BC?下面是王冠同学的部分推导过程,请你帮他在括号内填上推导依据或内容.解:∵∠1+∠2=180°,(已知)∠1=∠4,(______)∴∠2+______=180°∴EH∥AB.(______)∴∠B=∠EHC.(______)∵∠3=∠B,(已知)∴∠3=∠EHC.(______)∴DE∥BC.(______)24.如图,EF∥AD,∠1=∠2,∠BAC=70°.求∠AGD的度数.25.在平面直角坐标系中,线段AB的两端点的坐标分别为A(-1,3),B(-3,1),将线段AB向下平移2个单位,再向右平移4个单位得线段CD(A与D对应,B与C对应).(1)画出线段AB与线段CD,并求点C、点D的坐标.(2)求四边形ABCD的面积26.(1)将直角三角形ACB按如图①放置,使得坐标原点与点C重合,已知A(a,3)B(b,-3),且a+b=8,求三角形ACB的面积.(2)将直角三角形ACB按如图②方式放置,使得点O在边AC上,D是y轴上一点,过D作DF‖x轴,交AB于点F,AB交x轴于G点,BC交DF于E点,若∠AOG=50°,求∠BEF的度数.(CM平行于x轴)(3)将直角三角形ACB按照如图③方式放置,使得∠C在x轴与DF之间,N为AC边上一点,且∠NEC+∠CEF=180°,写出∠NEF与∠AOG之间的数量关系,并证明你的结论.答案和解析1.【答案】C【解析】解:A、图形属于旋转得到,故错误;B、图形属于旋转得到,故错误;C、图形的形状和大小没的变化,符合平移性质,故正确;D、图形属于旋转得到,故错误.故选:C.根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.2.【答案】D【解析】解:A、只有两直线平行同位角才相等,故错误,是假命题;B、过直线外一点有且只有一条直线与已知直线垂直,故错误,是假命题;C、相等的角是对顶角,错误,是假命题;D、邻补角一定互补,正确,是真命题,故选:D.利用平行线的性质、对顶角的性质及邻补角的定义分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及邻补角的定义等知识,难度不大.3.【答案】A【解析】解:无理数有,,共2个.故选:A.根据无理数的定义选出即可.本题考查了对无理数的应用,注意:无理数是指无限不循环小数.4.【答案】B【解析】解:因为点P(-1,3)的横坐标是负数,纵坐标是正数,所以点P在平面直角坐标系的第二象限.故选:B.应先判断出所求点的横纵坐标的符号,进而判断点所在的象限.解决本题的关键是掌握好四个象限的点的坐标的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.【答案】A【解析】解:∵点P位于第二象限,距离x轴4个单位长度,∴点P的纵坐标为4,∵距离y轴3个单位长度,∴点P的横坐标为-3,∴点P的坐标是(-3,4).故选:A.根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.6.【答案】D【解析】解:A、=4,故本选项错误;B、=±4,故本选项错误;C、=4,故本选项错误;D、正确;故选:D.根据平方根、算术平方根、立方根,即可解答.本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根.7.【答案】B【解析】解:∵方程(a-2)x|a|-1+y=1是关于x、y的二元一次方程,∴a-2≠0且|a|-1=1,解得:a=-2,故选:B.根据二元一次方程的定义得出a-2≠0且|a|-1=1,求出即可.本题考查了二元一次方程的定义,能根据二元一次方程的定义得出a-2≠0且|a|-1=1是解此题的关键.8.【答案】C【解析】解:∠1与∠2是对顶角的是C,故选:C.根据对顶角的定义进行选择即可.本题考查了对顶角,掌握对顶角的定义是解题的关键.9.【答案】D【解析】解:①中有3个未知数x,y,z.不符合二元一次方程组的定义,故错误;②、⑥中未知数项的最高次数是2,不符合二元一次方程组的定义,故错误;③、④符合二元一次方程组的定义,故正确;⑤,此方程组中第二个方程不是整式方程,不符合二元一次方程组的定义,故错误;故选:D.分析各个方程组是否满足二元一次方程组的定义“1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程”.本题是考查对二元一次方程组的识别,掌握二元一次方程组的定义,就很容易判断.10.【答案】B【解析】解:∵<<,∴3<<4,故选:B.求出的范围即可.本题考查了估算无理数的大小的应用,关键是确定的范围.11.【答案】B【解析】解:∵a1∥a2,∠1=56°,∴∠3=∠1=56°.∴∠2=180°-56°=124°,故选:B.根据两直线平行,同位角相等解答即可.本题考查了平行线的性质,熟记性质是解题的关键.12.【答案】B【解析】解:如图,∵直尺两边平行,∠1=67°,∴∠3=∠1=67°,∴∠2=90°-∠3=90°-67°=23°.故选:B.先根据两直线平行,同位角相等求出∠1的同位角,再根据直角为90°列式进行计算即可得解.本题主要利用了两直线平行,同位角相等的性质,熟记性质是解题的关键.13.【答案】B【解析】解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°.∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90°,∴∠EPF=∠EPN+∠NPF=40°+90°=130°.故选:B.如图,过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.本题考查平行线的判定定理以及平行线的性质.注意如果两条直线都和第三条直线平行,那么这两条直线也互相平行的运用.14.【答案】B【解析】解:∵将三角形ABC沿BC方向平移2cm得到三角形DEF,∴AD=CF=2cm,∵三角形ABC的周长为16cm,∴AB+BC+AC=AB+BC+DF=16cm,∴四边形ABFD的周长为:16+2+2=20(cm).故选:B.利用平移的性质得出AD=CF=2cm,AC=DF,进而求出答案.此题主要考查了平移的性质,正确利用平移的性质得出对应线段是解题关键.15.【答案】如果两个角是邻补角,那么这两个角互补;真【解析】解:命题“邻补角互补”写成如果…那么…的形式为:如果两个角是邻补角,那么这两个角互补,它是一个真命题,故答案为:如果两个角是邻补角,那么这两个角互补;真.根据命题的概念、邻补角的概念解答.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16.【答案】;-;【解析】解:到原点距离等于的数是,的相反数是-,它的绝对值是,故答案为:,-,.根据绝对值的意义,相反数的意义,可得答案.本题考查了实数的性质,利用绝对值的意义,相反数的意义是解题关键.17.【答案】(4,3)【解析】解:根据题意知,平移后点的坐标为(1+3,1+2),即(4,3),故答案为:(4,3).根据坐标的平移规律:左减右加、下减上加可得.本题主要考查坐标与图形的变化-平移,熟练掌握点的坐标的平移规律:左减右加、下减上加是解题的关键.18.【答案】-3;1【解析】解:∵一个数的平方根是a+4和2a+5,∴a+4+2a+5=0,∴a=-3,∴这个数的平方根是±1,这个数是1,故答案为-3,1.根据平方根的定义构建方程即可解决问题.本题考查平方根的定义、一元一次方程等知识,解题的关键是记住平方根的定义,学会构建方程解决问题.19.【答案】连接直线外一点与直线上所有点的连线中,垂线段最短【解析】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故答案为:连接直线外一点与直线上所有点的连线中,垂线段最短.过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.本题是垂线段最短在实际生活中的应用,体现了数学的实际运用价值.20.【答案】-4【解析】解:∵2<<3,∴-4<--1<-3,∴[-]=-4.故答案为:-4.直接利用的取值范围得出-4<--1<-3,进而得出答案.此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.21.【答案】解:(1)①②,由②,得:y=3x+1 ③,将③代入①,得:x+2(3x+1)=9,解得:x=1,将x=1代入③,得:y=4,所以方程组的解为;(2)原方程组整理可得:①②,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+4y=14,解得:y=,则方程组的解为;(3)∵4y2-36=0,∴4y2=36,则y2=9,∴y=±3;(4)原式=-2-=-1.【解析】(1)利用代入消元法求解可得;(2)方程组整理为一般式后,利用加减消元法求解可得;(3)利用平方根的定义求解可得;(4)根据实数的混合运算顺序和运算法则计算可得.此题考查了解二元一次方程组和实数的混合运算,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.【答案】2;2;0;|a|;3;-3;0;a【解析】解:(1)=2,=2,=0,=|a|,故答案为:2、2、0、|a|;(2)=3,=-3.=0,=a,故答案为:3、-3、0、a;(3)由图可得,a<0<b,|a|<|b|,∴=b+b-a-(a-b)=b+b-a+b=3b-a.(1)根据算术平方根的计算方法可以解答本题;(2)根据立方根的计算方法可以解答本题;(3)根据数轴可以判断a、b的大小与正负,从而可以化简题目中的式子.本题考查立方根、算术平方根、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】对顶角相等∠4 同旁内角互补,两直线平行两直线平行,同位角相等等量代换内错角相等,两直线平行【解析】解:∵∠1+∠2=180°,(已知)∠1=∠4,(对顶角相等)∴∠2+∠4=180°,∴EH∥AB,(同旁内角互补,两直线平行)∴∠B=∠EHC,(两直线平行,同位角相等)∵∠3=∠B,(已知)∴∠3=∠EHC,(等量代换)∴DE∥BC,(内错角相等,两直线平行)故答案为:对顶角相等,同旁内角互补,两直线平行,两直线平行,同位角相等,等量代换,内错角相等,两直线平行.根据对顶角相等,得出∠1=∠4,根据等量代换可知∠2+∠4=180°,根据同旁内角互补,两直线平行,得出EH∥AB,再由两直线平行,同位角相等,得出∠B=∠EHC,已知∠3=∠B,有等量代换可知∠3=∠EHC,再根据内错角相等,两直线平行,即可得出DE∥BC.本题主要考查了利用平行线的性质和平行线的判定解答,命题意图在于训练学生的证明书写过程,难度适中.24.【答案】解:∵EF∥AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3∴DG∥AB,∴∠BAC+∠AGD=180°,∴∠AGD=110°【解析】根据平行线的性质与判定即可求出答案本题考查平行线的性质,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.25.【答案】解:(1)如图所示:点C的坐标为(3,1),点D的坐标为(1,-1);(2)四边形ABCD的面积=.【解析】(1)利用平移的性质得出对应点位置进而得出答案.(2)利用面积公式解答即可.此题主要考查了平移变换,正确根据题意得出的对应点位置是解题关键.26.【答案】解:(1)如图①中,过点A作AM⊥y轴于M,过点B作BN⊥y轴于N.∵A(a,3),B(b,-3),∴AM=a,OM=3,BN=b,ON=3,∴MN=3+3=6,△ABC的面积=(a+b)×6-×3a-×3b,=(a+b),∵a+b-8=0,∴a+b=8∴△ABC的面积=×8=12;(2)如图②中,作CM∥OG.∵∠AOG=50°,CM∥OG,∴∠ACM=50°,∵∠ACB=90°∴∠BCM=40°,∵DF∥OG,∴DF∥CM,∴∠BEF=∠BCM=40(3)如图③中,∵∠NEC+∠CEF=180°,∠CEF+∠CED=180°,∴∠NEC=∠CED,∵∠CED+∠NEC+∠NEF=180°,∴∠NEF+2∠CED=180°,∴∠NEF=2(90°-∠CED),∵∠CED=∠COD=90°-∠AOG,∴∠AOG=90°-CED,∴∠NEF=2∠AOG.【解析】(1)过点A作AM⊥y轴于M,过点B作BN⊥y轴于N,根据△ABC的面积等于梯形AMNB的面积减去两个直角三角形的面积列式计算即可得解;(2)如图②中,作CM∥OG.利用平行线的性质即可解决问题;(3))首先证明∠NEC=∠CED,由∠NEF=2(90°-∠CED),∠CED=∠COD=90°-∠AOG,推出∠AOG=90°-CED,即可推出∠NEF=2∠AOG;本题考查三角形综合题、直角三角形的性质、平行线的性质.三角形内角和定理等知识,解题的关键是学会添加常用辅助线,构造平行线,利用平行线的性质解决问题,属于中考压轴题.。
湖北省武汉市汉阳区2019年七年级下期中数学试卷(含答案解析)

2018-2019学年湖北省武汉市汉阳区七年级(下)期中数学试卷一、选择题(每题3分,共30分)1.(3分)实数9的算术平方根为()A.3 B.C.D.±32.(3分)下列实数是无理数的是()A.3.14159 B.C.D.3.(3分)点P(﹣2,3)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C D.5.(3分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为()A.55°B.65°C.75°D.125°6.(3分)如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点()A.(1,3)B.(﹣2,1)C.(﹣1,2)D.(﹣2,2)7.(3分)交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,同位角相等B.相等的角是对顶角C.所有的直角都是相等的D.若a=b,则a﹣3=b﹣38.(3分)4根火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形变成的象形文字是()A.B.C.D.9.(3分)如图,直线AB∥CD,一个含60°角的直角三角板EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于()A.10°B.20°C.30°D.50°10.(3分)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2 B.3 C.4 D.5二、填空题:(每题3分,共18分)11.(3分)写出一个在x轴正半轴上的点坐标.12.(3分)若一个数的立方根等于这个数的算术平方根,则这个数是.13.(3分)若的整数部分为a,小数部分为b,求a2+b﹣的值为.14.(3分)如图,在一块长为30米,宽为16米的长方形草地上,有两条宽都为1米的纵、横相交的小路,这块草地的绿地面积为平方米.15.(3分)观察下列各式:(1)=5;(2)=11;(3)=19;…根据上述规律,若=a,则a=.16.(3分)如图,直线l1∥l2,∠α=∠β,∠1=38°,则∠2=.三、解答题(共8题,共72分)17.(8分)计算:﹣+|1﹣|.18.(8分)解方程:(1)3x2=27(2)2(x﹣1)3+16=0.19.(8分)直线a,b,c,d的位置如图所示,已知∠1=58°,∠2=58°,∠3=70°,求∠4的度数.20.(8分)如图,已知点P是直线AB外一点,按下列语句画出图形:(1)过点P作PC⊥AB,垂足为C;(2)过点P作PD∥AB.观察你所作的图形,猜想CP与PD的位置关系.21.(8分)完成下面的证明过程:如图所示,直线AD与AB,CD分别相交于点A,D,与EC,BF分别相交于点H,G,已知∠1=∠2,∠B=∠C.求证:∠A=∠D.证明:∵∠1=∠2,(已知)∠2=∠AGB()∴∠1=()∴EC∥BF()∴∠B=∠AEC()又∵∠B=∠C(已知)∴∠AEC=()∴()∴∠A=∠D()22.(10分)观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=51293=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为,又由203<19000<303,猜想19683的立方根十位数为,验证得19683的立方根是(2)请你根据(1)中小明的方法,完成如下填空:①=;②=;③=.23.(10分)如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(a,b),且a=+﹣3.(1)直接写出点C的坐标;(2)直接写出点E的坐标;(3)点P是CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x,y,z之间的数量关系,并证明你的结论.24.(12分)(1)如图1,梯形ABCD中对角线交于点O,AB∥CD,请写出图中面积相等的三角形;(2)如图2,在直角坐标系中,O是坐标原点,点A(﹣2,3),B(2,1).①分别求三角形ACO和三角形BCO的面积及点C的坐标;②请利用(1)的结论解决如下问题:D是边OA上一点,过点D作直线DE平分三角形ABO的面积,并交AB于点E(要有适当的作图说明).参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)实数9的算术平方根为()A.3 B.C.D.±3【解答】解:∵32=9,∴9的算术平方根是3.故选:A.2.(3分)下列实数是无理数的是()A.3.14159 B.C.D.【解答】解:=﹣3,无理数为:.故选:C.3.(3分)点P(﹣2,3)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵点P的横坐标为负,纵坐标为正,∴点P(﹣2,3)所在象限为第二象限.故选:B.4.(3分)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.【解答】解:如图所示:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),故选:B.5.(3分)如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为()A.55°B.65°C.75°D.125°【解答】解:∵∠ADE=125°,∴∠ADB=180°﹣∠ADE=55°,∵AD∥BC,∴∠DBC=∠ADB=55°.故选:A.6.(3分)如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点()A.(1,3)B.(﹣2,1)C.(﹣1,2)D.(﹣2,2)【解答】解:以“将”位于点(1,﹣2)为基准点,则“炮”位于点(1﹣3,﹣2+3),即为(﹣2,1).故选:B.7.(3分)交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,同位角相等B.相等的角是对顶角C.所有的直角都是相等的D.若a=b,则a﹣3=b﹣3【解答】解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是真命题;交换命题D的题设和结论,得到的新命题是若a﹣3=b﹣3,则a=b是真命题,故选:C.8.(3分)4根火柴棒摆成如图所示的象形“口”字,平移火柴棒后,原图形变成的象形文字是()A.B.C.D.【解答】解:原图形平移后,水平的火柴头应在左边,竖直的火柴头应是一上一下.只有B符合.故选:B.9.(3分)如图,直线AB∥CD,一个含60°角的直角三角板EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于()A.10°B.20°C.30°D.50°【解答】解:∵直线AB∥CD,∠AHG=50°,∴∠AKG=∠XKG=50°.∵∠CKG是△KMG的外角,∴∠KMG=∠CKG﹣∠G=50°﹣30°=20°.∵∠KMG与∠FMD是对顶角,∴∠FMD=∠KMG=20°.故选:B.10.(3分)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2 B.3 C.4 D.5【解答】解:如图,∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.故选:C.二、填空题:(每题3分,共18分)11.(3分)写出一个在x轴正半轴上的点坐标(1,0).【解答】解:写出一个在x轴正半轴上的点坐标(1,0),故答案为:(1,0).12.(3分)若一个数的立方根等于这个数的算术平方根,则这个数是0或1.【解答】解:∵算术平方根与立方根都等于它本身的数是0和1.故填0和1.13.(3分)若的整数部分为a,小数部分为b,求a2+b﹣的值为6.【解答】解:∵<<,∴3<<4,∴的整数部分为:a=3,小数部分为:b=﹣3,∴a2+b﹣=32+﹣3﹣=6.故答案为:6.14.(3分)如图,在一块长为30米,宽为16米的长方形草地上,有两条宽都为1米的纵、横相交的小路,这块草地的绿地面积为435平方米.【解答】解:由图象可得,这块草地的绿地面积为:(30﹣1)×(16﹣1)=435.故答案为:435.15.(3分)观察下列各式:(1)=5;(2)=11;(3)=19;…根据上述规律,若=a,则a=155.【解答】解:=11×14+1=154+1=155.故答案为:155.16.(3分)如图,直线l1∥l2,∠α=∠β,∠1=38°,则∠2=142°.【解答】解:延长AB交l2于点E,∵∠α=∠β,∴AB∥DC,∴∠3+∠2=180°,∵l1∥l2,∴∠1=∠3=38°,∴∠2=180°﹣38°=142°,故答案为:142°.三、解答题(共8题,共72分)17.(8分)计算:﹣+|1﹣|.【解答】解:原式=5﹣4+﹣1=.18.(8分)解方程:(1)3x2=27(2)2(x﹣1)3+16=0.【解答】解:(1)3x2=27∴x2=9,∴x=±3.(2)∵2(x﹣1)3+16=0,∴(x﹣1)3=﹣8,∴x﹣1=﹣2∴x=﹣1.19.(8分)直线a,b,c,d的位置如图所示,已知∠1=58°,∠2=58°,∠3=70°,求∠4的度数.【解答】解:如图所示,∵∠1=58°,∠2=58°,∴∠1=∠2=58°,∴a∥b,∴∠5=∠3=70°,∴∠4=180°﹣∠5=110°.20.(8分)如图,已知点P是直线AB外一点,按下列语句画出图形:(1)过点P作PC⊥AB,垂足为C;(2)过点P作PD∥AB.观察你所作的图形,猜想CP与PD的位置关系.【解答】解:(1)如图所示:点C即为所求;(2)如图所示:PD即为所求;则CP与PD互相垂直.21.(8分)完成下面的证明过程:如图所示,直线AD与AB,CD分别相交于点A,D,与EC,BF分别相交于点H,G,已知∠1=∠2,∠B=∠C.求证:∠A=∠D.证明:∵∠1=∠2,(已知)∠2=∠AGB(对顶角相等)∴∠1=∠AGB(等量代换)∴EC∥BF(同位角相等,两直线平行)∴∠B=∠AEC(两直线平行,同位角相等)又∵∠B=∠C(已知)∴∠AEC=∠C(等量代换)∴AB∥CD(内错角相等,两直线平行)∴∠A=∠D(两直线平行,内错角相等)【解答】证明:∵∠1=∠2,(已知)∠2=∠AGB(对顶角相等)∴∠1=∠AGB(等量代换),∴EC∥BF(同位角相等,两直线平行)∴∠B=∠AEC(两直线平行,同位角相等),又∵∠B=∠C(已知)∴∠AEC=∠C(等量代换)∴AB∥CD(内错角相等,两直线平行),∴∠A=∠D(两直线平行,内错角相等),故答案为:对顶角相等,∠AGB,等量代换,同位角相等,两直线平行,两直线平行,同位角相等,∠C,等量代换,AB∥CD,内错角相等,两直线平行,两直线平行,内错角相等.22.(10分)观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为7,又由203<19000<303,猜想19683的立方根十位数为2,验证得19683的立方根是27(2)请你根据(1)中小明的方法,完成如下填空:①=49;②=﹣75;③=0.81.【解答】解:(1)先估计19683的立方根的个位数,猜想它的个位数为7,又由203<19000<303,猜想19683的立方根十位数为2,验证得19683的立方根是27(2)①=49;②=﹣75;③=0.81.故答案为:(1)7,2,27;(2)49,﹣72,0.81.23.(10分)如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(a,b),且a=+﹣3.(1)直接写出点C的坐标(﹣3,2);(2)直接写出点E的坐标(﹣2,0);(3)点P是CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x,y,z之间的数量关系,并证明你的结论.【解答】解:(1)∵a=+﹣3,∴b=2,a=﹣3,∵点C的坐标为(a,b),∴点C的坐标为:(﹣3,2);故答案为:(﹣3,2);(2)∵点B在y轴上,点C的坐标为:(﹣3,2),∴B点向左平移了3个单位长度,∴A(1,0),向左平移3个单位得到:(﹣2,0)∴点E的坐标为:(﹣2,0);故答案为:(﹣2,0);(3)x+y=z.证明如下:如图,过点P作PN∥CD,∴∠CBP=∠BPN又∵BC∥AE,∴PN∥AE∴∠EAP=∠APN∴∠CBP+∠EAP=∠BPN+∠APN=∠APB,即x+y=z.24.(12分)(1)如图1,梯形ABCD中对角线交于点O,AB∥CD,请写出图中面积相等的三角形;(2)如图2,在直角坐标系中,O是坐标原点,点A(﹣2,3),B(2,1).①分别求三角形ACO和三角形BCO的面积及点C的坐标;②请利用(1)的结论解决如下问题:D是边OA上一点,过点D作直线DE平分三角形ABO的面积,并交AB于点E(要有适当的作图说明).【解答】解:(1)∵AB∥DC,=S△ABC,S△ADC=S△BDC,∴S△ABD=S△BOC.∴S△AOD(2)∵点A(﹣2,3),B(2,1),∴直线AB的解析式为y=﹣x+2,∴C(0,2)=×2×2=2,S△BOC=×2×2=2,∴S△AOC,(3)连接CD,过点O作OE∥CD交AB于点E,连接DE,则DE就是所作的线.。
2019年牡丹江市七年级数学下期中试题(附答案)

CD / /EF (
)
1 2(已知)
BCD 1(
)
DG / / (
)( )
B ADG (
)
22.为了增强学生的身体素质,西南大学附中七年级学生在每天晚自习之后进行夜跑.在学
期末的体育考试中,七年级的同学们表现出很好的体育素养,并取得了良好的体育成绩.为
了了解七年级学生的体育考试情况,小明抽取了部分同学的体育考试成绩进行分析,体育
x 5
15.请设计一个解为
y
1
的二元一次方程组________________.
16.如图,直线 AB,CD 交于点 O,OF⊥AB 于点 O,CE∥AB 交 CD 于点 C,
∠DOF=60°,则∠ECO 等于_________度.
17.比较大小: 2 3 _____________ 3 2 .
还知道∠CDG=∠BFE,则能得到∠AGD=∠ACB.”乙说:“如果还知道
∠AGD=∠ACB,则能得到∠CDG=∠BFE.”丙说:“∠AGD 一定大于∠BFE.”丁说:
“如果连接 GF,则 GF∥AB.”他们四人中,正确的是( )
A.0 个
B.1 个
C.2 个
D.3 个
4.已知∠A、∠B 互余,∠A 比∠B 大 30°,设∠A、∠B 的度数分别为 x°、y°,下列方程
数,故本选项正确;
C、﹣ 3 8 =﹣2, 3 8 =﹣2,﹣ 3 8 和 3 8 两数不互为相反数,故本选项错误; D、﹣2 和 1 两数不互为相反数,故本选项错误.
2
故选:B. 【点睛】 考查了相反数的定义:要知道,只有符号不同的两个数互为相反数.
12.D
解析:D 【解析】 【分析】 根据各象限内点的坐标特征解答即可. 【详解】 ∵点 P(1,-2),横坐标大于 0,纵坐标小于 0,∴点 P(1,-2)在第三象限,故选 D. 【点睛】 本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符 号.
初一年级数学期中下册重点试题(含答案解析)-word

2019初一年级数学期中下册重点试题(含答案解析)2019初一年级数学期中下册重点试题(含答案解析) 一、选择题(本大题共8小题,每小题 3分,共24分)1.下列计算中,不正确的是()C、-(a-b)=-a+bD、-3a+2a=-a 2.某不等式组的解集在数轴上表示如图,则这个不等式组可能是 ( )A. B.C. D.3.如图,下列条件中,不能判断直线l1∥l2的是()A、∠1=∠3 B、∠2=∠3 C、∠4=∠5 D、∠2+∠4=180°4.下列命题中,真命题的是()A.不是对顶角的两个角不相等 B.两条直线被第三条直线所截,内错角相等C.若ab,则 D.垂直于同一条直线的两直线平行5.下列各式从左到右的变形,属因式分解的是()A. B. 4C. D.6.已知是同类项,则()A、 B、 C、 D、7. 如果不等式组的解集是无解,那么m的取值范围是( )A.m=2 B.m≥2 C. m D.m≤28. 某校运动员分组训练,若每组6人,余3人;若每组7人,则缺5人;设运动员人数为人,组数为组,则列方程组为()A. B. C. D.二、填空题(本大题共9小题,每空2分,共20分)9. 计算:-a(-2a+b)=10. 不等式-x-10的解集是____________11.命题“直角三角形的两个锐角互余”的逆命题是:_______________________12.若x2-2(m+3)x+4是完全平方式,则m的值是13. 已知多边形的内角和比它的外角和大720°,则多边形的边数为14.已知4x-3y=2,当时,x的取值范围为15.某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了86分,她希望自己这学期总成绩不低于95分,她在期末考试中数学至少应得多少分? 设她在期末考试中数学考了x分,可列不等式________________________16.如图,DB平分∠ADE,DE∥AB,∠ CDE=86°,则∠ABD=__ ______°,∠A=________°.17. 若关于x、y的二元一次方程组的解满足x+y≥-1,则a的取值范围为______三、解答题(本大题共8小题,共56分)18.(本题满分10分,(1)、( 2)题每题3分,(3)题4分)计算:(1) (2)(3) 先化简,再求值,其中19.(本题满分6分)因式分解:(1)(2)20.(本题满分5分)解不等式,并把解集在数轴上表示出来,再求出这个不等式的最小整数解。
精选最新2019年七年级下册数学期中考核题库完整版(含标准答案)

2019年七年级下册数学期中考试模拟试题一、选择题1.一个三角形的两边长为3和6,第三边长为方程(x -2)(x -4)=0的根,则这个三角形的周长是( ) A .11B .12C .13D .11或13答案:C2.如图,AB=AC, EB= EC,那么图中的全等三角形共有( ) A .1 对B . 2 对 C. 3 对 D .4 对答案:C3.下列事件中,必然事件是( ) A .任何数都有倒数B .明年元旦那天天晴C .异号两数相乘积为负D .摸彩票中大奖答案:C4.如图,∠AOP=∠BOP ,PD ⊥OB ,PC ⊥OA ,则下列结论正确的是( ) A .PD=PC B .PD<PC C .PD>PC D .PD 和PC 的大小关系是不确定的答案:A5.方程组⎩⎨⎧=-=+134723y x y x 的解是( )A . ⎩⎨⎧=-=31y x B .⎩⎨⎧-==13y x C .⎩⎨⎧-=-=13y x D .⎩⎨⎧-=-=31y x 答案:B6.小明和哥哥并排站在镜子前,小明看到镜子中哥哥的球衣号码如图, ,那么哥哥球衣上的实际号码是( ) A .25号 B .52号 C .55号 D .22号答案:A7.某商店举办有奖销售活动,办法如下:凡购货满 100 元者得奖券一张,多购多得,每10000 张奖券为一个开奖单位,设特等奖1 个,一等奖 50 个,二等奖 100 个,那么买100元商品的中奖概率应该是( ) A .110000B .5010000C .10010000D .15110000答案:D8.下列计算正确的是( ) A .(2a )3=6a 3B .a 2·a =a 2C .a 3+a 3=a 6D .(a 3)2=a 6答案:D9.小数表示2610-⨯结果为( ) A . 0.06B . -0.006C .-0.06D .0.006答案:A10.观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)平移得到的是( )答案:C11.给出以下长度线段(单位:cm )四组:①2、5、6;②4、5、10;③3、3、6;④7、24、25.其中能组成三角形的组数是( ) A .1B .2C .3D .4答案:B12.已知2x y m =⎧⎨=⎩是二元一次方程5x+3y=1的一组解,则m 的值是( ) A .3B .3-C .113D .113-答案:B13. 某风景点的周长约为 3578 m ,若按比例尺 1:2000缩小后,其周长大约相当于( ) A .一个篮球场的周长 B .一张乒乓球台台面的周长 C .《中国日报》的一个版面的周长D .《数学》课本封面的周长答案:C14. 某校运动员分组训练,若每组 7入,则余 3人;若每组 8人,则缺 5人,设运动员人数为x 人,组数为y 组,则可列方程组为( ) A . 7385y xy x +=⎧⎨+=⎩B . 7385y xy x -=⎧⎨-=⎩C . 7385y x y x =-⎧⎨=+⎩D . 7385y x y x =+⎧⎨=-⎩答案:C15.以下列各组数为长度的线段,能组成三角形的是( )A .1cm, 2cm , 3cmB .2cm , 3cm , 6cmC .4cm , 6cm , 8cmD .5cm , 6cm , 12cm答案:C16.下列方程组不是..二元一次方程组的是( ) A .⎩⎨⎧x +y =5x -y =2B .⎩⎨⎧x -y =0y =2C .⎩⎪⎨⎪⎧x 1+y =5y =3D .⎩⎪⎨⎪⎧2x +3y =1x -y =1 答案:C 二、填空题17. 已知35x y -=,用含有x 的代数式表示y 为y = .解析:35x -18.某网站开展“北京2008年奥运会中国队能获多少枚金牌”的网络调查,共有100000人参加此次活动,现要从中抽取100名“积极参与奖”,那么参加此活动的小华能获奖的概率是__________. 解析:1000119.如果4x 2+mx +25是一个完全平方式,则实数m 的值是__________. 解析:20±20.如图,BD 是△ABC 的一条角平分线,AB =10,BC =8,且S △ABD =25,则△BCD 的面积是__________. 解析:2021.因式分解:xy y x 22-= .解析:)2(-x xy22.如图,∠BAC=800,∠ACE=1400,则∠ABD= 度. 解析:12023.在如图方格纸中,△ABC 向右平移_______格后得到△A 1B 1C 1. 解析:424.在写有1,2,3,4,5,6,7,8,9的九张卡片中随机抽取一张,是奇数的概率是 . 解析:95 25. 在公式IRE Ir n=+中,已知E ,R ,r ,n ,且0n ≠,0R nr +≠,则I 的值是 . 解析:EnR rn+26. 写出一个二元一次方程组,使它的解为23x y =⎧⎨=-⎩,则二元一次方程组为 .解析:略27.如图,是由四个形状大小完全相同的长方形拼成的图形,利用面积的不同表示法,写出一个代数恒等式: .解析:22()()4a b a b ab +=-+,或22()4()a b ab a b +-=-或22()()4a b a b ab +--= 28.如图,在△ABC 中,∠A=90°,BE 平分∠ABC ,DE ⊥BC ,垂足为 D ,若DE= 3cm ,则AE= cm.解析:329. 如图,△ABC 中,∠A=30°,以 BE 为边,将此三角形对折,其次,又以BA 为边,再一次对折,C 点落在BE 上,此时∠CDB= 80°,则原三角形的∠B 等于 .解析:75°30.若分式13a -无意义,242b b --的值为 0,则ab = .解析:-631.若代数式242x x --的值为 0,则x = .解析:-232.如图,从A 地到 C 地,可供选择的方案是走水路、走陆路、走空中. 从A 地到B 地有2条水路、2条陆路,从B 地到 C 地有 3条陆路可供选择,走空中是从A 地不经B 地直接到C 地,则从A 地到 C 地可供选择的方案有 种.解析:13 33.已知方程组5354x y mx y +=⎧⎨+=⎩与2551x y x ny -=⎧⎨+=⎩有相同的解,则222m mn n -+= .解析:14434. 若△ABC ≌△A ′B ′C ′,∠A=∠A ′,∠B =∠B ′,∠C=70°,AB=15 cm ,则∠C ′= , A ′B ′= . 解析:70°,15cm 35. 使分式24xx -有意义的x 的取值范围是 . 解析:2x ≠ 三、解答题36.一只口袋内有7个红球、3个白球,这 10个球除了颜色外都相同,先从中摸出一个球(但不知是红球还是白球),并且不放回,试针对第一次摸球的两种情况,分别求第二次从中摸出一个红球的概率.解析:分两种情况:(1)若第一次摸出的是红球,则第二次摸球时,袋内还有6个红球和三个白球,共9个球,摸出一个红球的概率为6293=; (2)若第一次摸出的是白球,则第二次摸球时,袋内还有 7个红球和 2个白球,共 9个球,摸出一个红球的概率为7937.已知:如图,在△ABC 中,AB=BC ,∠ABC=90°.F 为 AB 延长线上一点,点E 在BC 上,BB=BF ,连接AB 、EF 和 CF. 求证:AE =CF.解析:在△ABE和△CBF中,因为 AB=BC,∠ABE ∠CBF=90°,BE =BF,所以△ABE ≌△CBF,所以AE =CF.38.你喜欢玩游戏吗?现在请你玩一个转盘游戏,如图所示的两个转盘中,指针落在每个数字上的机会均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针指向一个数字,用所指的两个数字作乘积,请你:(1)列举(用列表或画树状图法)所有可能得到的数字之积;(2)求出数字之积为奇数的概率.解析:(1)所有可能得到的数字之积列表如下:或用树状图法(略);(2)P(数字之积为奇数)=61 24439.如图,在△ABD和△ACE中,有下列四个等式:①AB= AC;②AD= AE;③∠1=∠2 ;④BD=CE.请你以其中三个等式作为条件,写在已知栏中,余下的作为结论,写在结论栏中,并说明结论成立的理由.已知:结论:说明理由:解析:已知:AB=AC ,AD=AE ,BD=CE , 结论:∠1 =∠2.理由:通过证明△ABD ≌△ACE(SSS)得到. 或已知:AB=AC ,AD=AE ,∠1=∠2, 结论:BD=CE.理由:通过证明△ABD ≌△ACE(SAS)得到.40.星期六,小华同学到新华书店买了一套古典小说《水浒传》,共有上、中、下三册,回家后随手将三本书放在书架同一层上,问: (1)共有多少种不同的放法7 请画树状图分析; (2)求出按上、中、下顺序摆放的概率.解析:(1)共有 6种不同摆放顺序 (2)1641.(1)先化简,再选择使原式有意义而你又喜欢的一个数,代入化简后的式子求值.(1)21(1)11aa a +÷--; (2)解方程11222x x x +=--解析:(1)1a +,代入计算略(0a ≠,1±) (2)0x =42.学校准备暑期组织学生去观看比赛,有A ,B ,C 三种球类门票,E ,F 两种体操类门票.小明任意选一种球类门票和一种体操类门票.恰好选中他所喜欢的 A 类门票和F 类门票的概率是多少(要求用树状图或列表方法求解)?16解析:1643. :请你在3×3 的方格纸上,以其中的格点为顶点分别画出,三个形状不同的三角形(工具不限,只要求画出图形,不必写结论).解析:44.已知 Rt △ABC 中,∠B=90°.(1)根据要求作图(尺规作图,仅留作图痕迹,不写画法): ①作∠BAC 的平分线AD 交BC 于D ;②作线段AD 的垂直平分线交AB 于E ,交AC 于F ,垂足为H ; ③连接ED ;(2)在(1)的基础上写出一对全等三角形:△ ≌△ ,并说明理由.解析:略45.已图①和图②中的每个小正方形的边长都是 1个单位.(1)将图①中的格点ABC ∆先向右平移 3个单位,再向上平移 2个单位,得11A B C ∆,请你在图①中画出11A B C ∆;(2)在图②中画出一个与格点△DEF 相似但不全等的格点三角形.解析:略46.如图,已知 AC=CE,∠1=∠2=∠3.(1)说明∠B=∠D的理由;(2)说明AB=DE的理由.解析:略47.如图,E是BC的中点,∠1=∠2,AE=DE.求证:AB=DC.解析:证明:∵ E是BC的中点,∴ BE=CE在△ABE和△DCE中,∵ BE=CE,∠1=∠2,AE=DE∴△ABE≌△DCE ,∴AB=DC.证明:∵ E是BC的中点,∴ BE=CE 在△ABE和△DCE中,∵ BE=CE,∠1=∠2,AE=DE48.如图,已知∠EFD=∠BCA,BC=EF,AF=DC.则AB=DE.请说明理由. (填空)解:∵AF=DC(已知)D∴AF+=DC+即在△ABC和△中BC=EF()∠=∠()∴△ABC≌△()∴AB=DE()解析:FC,FC,AC=DF,DEF,已知,DFE,ACB,已知,AC=DF,DEF,SAS,全等三角形的对应边相等.49.先化简2(21)(31)(31)5(1)--+-+-,再选取一个你喜欢的数代替x求值.x x x x x解析:92-+;x50.由 16 个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图). 请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.解析:略。
2019-2020学年度七下数学期中考试试题(含答案解析)

2019-2020学年度七下数学期中考试试题一.选择题(3×10=30分)1.(3分)下列语句是命题的是()A.画线段ABB.用量角器画∠AOB=90°C.同位角相等吗?D.两直线平行,内错角相等2.(3分)在下列所给出坐标的点中,在第二象限的是()A.(2,6)B.(﹣2,5)C.(﹣5,﹣3)D.(2,﹣1)3.(3分)下列各图中,∠1与∠2是对顶角的是()A.B.C.D.4.(3分)在﹣1,14,0.101001000100001L,3,3.14159,,2,这7个数中,无理数共有()A.4个B.3个C.2个D.1个5.(3分)1.下列选项中能由左图平移得到的是()A. B. C. D.6.(3分)若点P在x轴的下方,y轴的右方,到每条坐标轴的距离都是4,则点P的坐标为()A.(4,4)B.(﹣4,4)C.(﹣4,﹣4)D.(4,﹣4)7.(3+1的值在哪两个整数之间()A.5和6B.6和7C.7和8D.8和98.(3分)7. 小明同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元,设1元和2元的贺卡张数分别为x 张和y 张,则下列方程组正确的是()A.1028yxx y⎧+=⎪⎨⎪+=⎩B.822210x yx y⎧+=⎪⎨⎪+=⎩C.1028x yx y+=⎧⎨+=⎩D.8210x yx y+=⎧⎨+=⎩9.(3分)如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42B.96C.84D.4810.(3分)如图,一个质点在第一象限及x轴、y轴上运动,在第一秒时,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)•••,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是()A.(0,9)B.(9,0)C.(0,8)D.(8,0)二.填空题(3×6=18分)11.(3的平方根是.12.(3分)已知3x+2y=1,用含x的代数式表示y:.13.(3b=,则ab=.14.(3分)∠A的两边与∠B的两边互相平行,且∠A比∠B的2倍少15°,则∠A的度数为.15.(3分).已知x3x-2111y y==⎧⎧⎨⎨==⎩⎩或都是ax+by=7的解,则a=_______,b=______.16.(3分)如图,一个面积为40cm2的正方形与另一个小正方形并排放在一起,则△ABC 的面积是cm2.三.解答题(共72分)17.(8分)计算:(1)21(2)--;(2218.(10分)解方程(组):(1)9x2=16(2){2m+3n=1①7m+6n=8②.19.(8分)将△ABC向右平移4个单位长度,再向下平移5个单位长度,(1)作出平移后的△A′B′C′.(2)求出△A′B′C′的面积.20.(8分)阅读下列解题过程,然后解答后面的问题.如图①,已知AB∥CD,∠B=35°,∠D=32°,求∠BED的度数.解:过E作EF∥AB.∵AB∥CD,∴CD∥EF.∵AB∥EF,∴∠1=∠B=35°.又∵CD∥EF,∴∠2=∠D=32°,∴∠BED=∠1+∠2=35°+32°=67°.如图②、图③,是明明设计的智力拼图玩具的一部分,现在明明遇到两个问题,请你帮他解决.(1)如图②,已知∠D=30°,∠ACD=65°,为了保证AB∥DE,∠A应多大?(2)如图③,要使GP∥HQ,则∠G,∠GFH,∠H之间有什么关系?21.(8分)完成下面的证明如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.求证:∠A=∠F.证明:∵∠AGB=∠EHF又∵∠AGB=(对顶角相等)∴∠EHF=∠DGF∴DB∥EC(____________)∴∠C=∠DBA(____________)又∵∠C=∠D∴∠DBA=∠D(___________)∴DF∥(_______________)∴∠A=∠F(_____________).22.(10分)如图,CD⊥AB于D,且CD平分∠BCA,点F是BC上任意一点,FE⊥AB 于E,且∠1=∠2,∠3=80°,CD平分∠BCA(1)证明:∠B=∠ADG;(2)求∠2的度数.23.(10分)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如注:获利24.(12分)如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2cm/s的速度沿A→B→C→E运动,最终到达点E.设点P运动的时间为t秒.(1)请以A点为原点建立一个平面直角坐标系,并用t表示出在处在不同线段上P点的坐标.(2)在(1)相同条件得到的结论下,是否存在P点使△APE的面积等于20cm2时,若存在请求出P点坐标.若不存在请说明理由.2019-2020学年度七下数学期中考试试题(答案解析)一.选择题(3×10=30分)1.(3分)下列语句是命题的是()A.画线段ABB.用量角器画∠AOB=90°C.同位角相等吗?D.两直线平行,内错角相等【分析】根据命题的定义即可求解.【解答】解:根据命题的定义可以判断A、B、C不是命题,故选:D.【点评】本题考查了命题的定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年七年级下册数学期中考试模拟试题一、选择题1.在△ABC中,∠A=1O5°,∠B-∠C=15°,则∠C的度数为()A. 35°B.60°C.45°D.30°答案:D2.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△A′0′B′≌△AOB 的依据是()A.SSS B.SAS C.ASA D.AAS答案:A3.如图,从图(1)到图(2)的变换是()A.轴对称变换B.平移变换C.旋转变换D.相似变换答案:D4.如图是用直尺和圆规作一个角的平分线的示意图,则说明 OC平分∠AOB的依据是()A. SAS B.SSS C.ASA D. AAS答案:B5.下列图案中是轴对称图形的是()A .B .C .D .答案:D6. 如图所示,1ABC S ∆=,若BDE DEC ACE S s S ∆∆∆==,则ADE S ∆等于( )A .16B .17C .18D .19答案:A7.足球场平面示意图如图所示,它是轴对称图形,其对称轴条数为( )A .1条B .2条C .3条D .4条答案:B8.如图,已知点 B ,F ,C ,E 在同一直线上,若 AB=DE ,∠B=∠E ,且BF=CE ,则要使△ABC ≌△DEF 的理由是( )A .ASAB .SASC .SSSD .AAS答案:B9.已知2x y m =⎧⎨=⎩是二元一次方程5x+3y=1的一组解,则m 的值是( ) A .3 B .3- C .113 D .113- 答案:B10.给出以下长度线段(单位:cm )四组:①2、5、6;②4、5、10;③3、3、6;④7、24、25.其中能组成三角形的组数是( )A .1B .2C .3D .4答案:B11.把0.000295用科学计数法表示并保留两个有效数字的结果是( )A .43.010-⨯B .53010-⨯C .42.910-⨯D .53.010-⨯ 答案:A12.1x -1=1x 2-1的解为( ) A .0B .1C .-1D .1或-1 答案:A13.一只小猫在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A .154B .31C .51D .152 答案:B14.如图,有 6 个全等的等边三角形,下列图形中可由△OBC 平移得到的是( )A .△OCDB .△OABC .△OAFD .△OEF答案:C15.某商店举办有奖销售活动,办法如下:凡购货满 100 元者得奖券一张,多购多得,每10000 张奖券为一个开奖单位,设特等奖1 个,一等奖 50 个,二等奖 100 个,那么买100 元商品的中奖概率应该是( )A .110000B .5010000C .10010000D .15110000答案:D二、填空题16. 计算y x x y x y---= . 解析:-117.三角形三个内角的比为2:3:4,则最大的内角是 度.解析:8018.如图,AD是线段BC的垂直平分线.已知△ABC的周长为14cm,BC=4cm,则AB=__________cm.解析:519.如果4x2+mx+25是一个完全平方式,则实数m的值是__________.解析:20±20.箱子中有6个红球和2个白球,它们除颜色外都相同.摇匀后,若随意摸出一球,摸到红球的概率是_____ _.解析:4321.掷一枚均匀的骰子,点数为3的概率是.解析:6122.已知3x-2y=5,用关于x的代数式表示y,为y=___ _____.解析:253-x23.如图,在△ABC 中,D,E分别是边AC,BC 上的点,若△ADB≌△EDB≌△EDC,则∠C 的度数为.解析:30°24.写出一个二元一次方程组,使它的解为23xy=⎧⎨=-⎩,则二元一次方程组为 .解析:略25.从-2,-1,0中任意取两个数分别作为一个幂的指数和底数,那么其中计算结果最小的幂是 .解析:12-26.如图,一块等腰直角的三角板ABC,在水平桌面上绕点 C按顺时针方向旋转到A′B′C 的位置,使A,C,B′三点共线,那么旋转角度的大小为 .解析:135°27.一只袋中有红球m个,白球7个,黑球n个,每个球除颜色外都相同,从中任取一个,取得的是白球的可能性与不是白球的可能性相同,那么 m 与n 的关系是 . 解析:7m n +=28.如图,△ABC 经过旋转变换得到△AB ′C ′,若∠CAC ′=32°,则∠BAB ′= .解析:32°29.如图,AD 是△ABC 的中线. 如果△ABC 的面积是18 cm 2,则△ADC 的面积是 cm 2.解析:930.相似变换后得△DEF ,若对应边AB=3DE ,则△ABC 的周长是△DEF 的周长的 倍. 解析:331.若代数式29x m ++是完全平方式,那么m .解析:6±32.一列列车自 2004年全国铁路第 5次大提速后,速度提高了26千米/ 时,现在该列车从甲站到乙站所用的时间比原来减少了 1 小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 米,则根据题意,可列出方程为 . 解析:312312126x x -=+ 33.在如图方格纸中,△ABC 向右平移_______格后得到△A 1B 1C 1.解析:4三、解答题34.甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?解析:解:设乙同学的速度为x米/秒,则甲同学的速度为1.2x米/秒,根据题意,得60606501.2x x⎛⎫++=⎪⎝⎭,解得 2.5x=.经检验, 2.5x=是方程的解,且符合题意.∴甲同学所用的时间为:606261.2x+=(秒),乙同学所用的时间为:6024x=(秒).2624>,∴乙同学获胜.35.解方程:113 22xx x-=---解析:无解36.如图,(1)如图,在正方形 ABCD 中,E是AD 的中点,F 是 BA 延长线上的一点,AF =12AB. 请说明△ABE≌△ADF;(2)回答下列问题:①在图中,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE 变到△ADF 的位置?答:.②指出图中线段 BE 与 DF 之间的数量关系和位置关系.答:.解析:(1)根据 SAS 说明全等:AE = AF ,AB =AD ,∠BAE = ∠DAF ;(2)①△ABE 绕点 A 逆时针旋转 90°到△ADF 的位置;③BE= DF 且BE ⊥DF37.解方程(组):(1)⎩⎨⎧=+=-42352y x y x (2) 164412-=-x x解析:(1)⎩⎨⎧-==12y x ;(2)0=x . 38.已知∠α和线段a 、b.用圆规和直尺作△ABC ,使∠C=∠α, AC=b,BC=a.(不写作法,保留作图痕迹)解析:略. 39.某山区有23名中、小学生因贫困失学需要捐款.捐助一名中学生的学习需要x 元,一名小学生的学习需要y 元.我校学生积极捐款,各年级学生的捐款数额、恰好资助的贫困学生人数的部分情况如下表:(1(2) 已知初三年级学生的捐款解决了剩余贫困中、小学生的学习费用,请将初三年级资助的贫困小学生人数和初三年级的捐款数额直接填入表中(不需写出计算过程).a bα解析:(1)由题意得⎩⎨⎧=+=+420033400042y x y x ,解得⎩⎨⎧==600800y x ;(2)7400,7. 40.某种商品因多种原因上涨25%,甲、乙两人分别在涨价前后花800元购买该商品,两人所购的件数相差10件,问该商品原售价是多少元?解析:设原售价为x 元,由题意得:1025.1800800=-x x ,解得16=x . 41.解方程组278ax by cx y +=⎧⎨-=⎩时,小明正确地解出32x y =⎧⎨=-⎩,小红把c 看错了,解得22x y =-⎧⎨=⎩,试求a ,b ,c 的值.解析:4a =,5b =,2c =-42.某校七年级甲、乙两个班共103人(其中甲班超过50人,乙班不足50人)去景点游玩,如果两班都以班为单位分别购票,那么一共需付486元.1.两班分别有多少名学生?2.若两班联合起来,作为一个团体购票,可以节约多少钱?解析:(1)设甲班有x 名学生,乙班有y 名学生.根据题意得:⎩⎨⎧=+=+48655.4103y x y x ,解得:⎩⎨⎧==4558y x (2)744103486=⨯- .43.如图,正方形ABCD 的边 CD 在正方形ECGF 的边CB 上,B 、C 、G 三点在一条直线上,且边长分别为 2和3,在BG 上截取 GP=2,连接AP 、PF.(1)观察猜想AP 与 PF 之间的大小关系,并说明理由;(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由.(3)若把这个图形沿着 PA、PF 剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.解析:(1)猜想AP= PF.理由:因为正方形ABCD、正方形 ECGF,所以AB= BC = 2,CG = GF = 3,∠B =∠G=90°.因为GP =2,所以BP=2+3-2=3=GF,AB=GP.所以△ABP≌△PGE,所以AP= PF.(2)存在,是△ABP和△PGE变换过程:把△ABP. 先向右平移5个单位,使AB在GF边上,点B与点G重合,再绕点G逆时针旋转90°,就可与△PGF重合. (答案不唯一).(3)图略,这个大正方形的面积 =正方形ABCD的面积+正方形ECGF的面积=4+9=13 44.已知△ABC中,请画出:①AB边上的高线;②AC的中垂线;③∠BAC的角平分线.(要求保留作图痕迹,不写作法)解析:略45.如图,已知 AC=CE,∠1=∠2=∠3.(1)说明∠B=∠D的理由;(2)说明AB=DE 的理由.解析:略46.发生在2008年 5 月 12 日 14时28分的汶川大地震在北川县唐家山形成了堰塞湖. 堰塞湖的险情十分严峻,威胁下游百万人生命的巨大危机.根据堰塞湖抢险指挥部的决定,将实施机械施工与人工爆破“双管齐下”的泄水方案.现在堰塞湖的水位已超过安全线,上游的河水仍以一个不变的速度流入堰塞湖. 抢险指 挥部决定炸开 10个流量相同的泄水通道.5月 26 日上午炸开了一个泄水通道,在 2小 时内水位继续上升了0.06米;下午再炸开了 2 个泄水通道后,在 2 小时内水位下降了 0.1米. 目前水位仍超过安全线 1.2米.(1)问:上游流人的河水每小时使水位上升多少米?一个泄水通道每小时使水位下降多 少米?(2)如果;第三次炸开 5个泄水通道,还需几小时水位才能降到安全线?解析:(1)上游流人的河水每小时使水位上升0.07米,一个泄水通道每小时使水位下降0.04米 (2)4.8小时47.已图①和图②中的每个小正方形的边长都是 1个单位.(1)将图①中的格点ABC ∆先向右平移 3个单位,再向上平移 2个单位,得11A B C ∆,请你在图①中画出11A B C ∆;(2)在图②中画出一个与格点△DEF 相似但不全等的格点三角形.解析:略48.如图是由大小一样的小正方形组成的网格,△ABC的三个顶点落在小正方形的顶点上. 画出三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的所有三角形.解析:49.你喜欢玩游戏吗?现在请你玩一个转盘游戏,如图所示的两个转盘中,指针落在每个数字上的机会均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针指向一个数字,用所指的两个数字作乘积,请你:(1)列举(用列表或画树状图法)所有可能得到的数字之积;(2)求出数字之积为奇数的概率.解析:(1)所有可能得到的数字之积列表如下:或用树状图法(略);(2)P(数字之积为奇数)=61 24450.如图,在△ABC 和△DEF 中,∠A=∠D ,AC=DF ,AE=BD ,请说明∠C=∠F 的理由.解析:只要证明:DEF ABC ∆≅∆)(SAS ,得出F C ∠=∠. A B C DE F。