油酸以及双面包覆的磁流体的合成

合集下载

表面活性剂二次包覆制备Fe3O4水基磁流体

表面活性剂二次包覆制备Fe3O4水基磁流体
影 、 为药 物载体 进 行靶 向治疗 等 。 作 在 水 基 磁 流体 的二 次包 覆 中 , 由于 F e 微粒 在水 中带正 电荷 , 次 包覆 往往 选用 阴离子 表 面 活性 剂 , 0 首 磁性 粒子 在首 次包覆 后是 不稳 定 的 , 时表 面活 性剂 的亲 水基 和 F 粒表 面结合 后 , 此 e0 微 疏水 的烷 基伸 入水
流体 , 在化 工 、 能源 、 冶金 、 保 、 环 生物 医疗等领 域都 有很 多应用 。例如在 环保 方面 , 基磁 流体避 免 了有机 水
溶 剂 对 环境 的污 染 ; 生 物 医学方 面 , 基 磁 流体 可 用 于 固定 蛋 白质 [ 示 踪 细胞 [ 免 疫 分 析 、 磁共 振 造 在 水 6 1 、 7 1 、 核
摘 要 :以 化学 共沉 淀法 制备 了 F 性 微 粒 , 以 油酸 为 内层 表 面 活 性 剂 , 别 以乳 化 剂 一 0 0 一 0 、 温 一 0 e 磁 0 并 分 1 (P 1)吐 2
( 一 O 、 基 酚 聚 氧 乙烯 醚 ( 叮 1 ) 种 非 离 子 型表 面 活 性 剂 进 行 外 层 包 覆 , 备 得 到 了双 层 表 面 活 性 剂 修 饰 的 T 2 )壬 O『 0 三 一 制 F 基磁 流体 。 过 研 究 p 值 、 面活 性 剂 包覆 温度 、 类 及 用 量 对 磁 流体 分 散 稳 定性 和磁 性 的 影 响 。 到 了 能 e 水 0 通 H 表 种 得
关键 词 : 酸 ; 离 子型 表 面 活 性 剂 ; 基 磁 流体 : 次包 覆 油 非 水 二
中 图分 类 号 : 6 O 1 文献标识码 : A 文章 编 号 :17 — 6 7 2 1 ) 3 0 4 — 5 6 2 0 8 ( 0 2 0 — 0 6 0

纳米磁性粉体材料及其磁流体的制备

纳米磁性粉体材料及其磁流体的制备

中文摘要本文是围绕着磁流体的制备来进行研究的,并根据磁流体的组成将其制备流程分为以下三大环节:纳米级磁性粉体颗粒(粒径在10rim左右)的制备;磁性粉体颗粒的表面处理;磁流体的制备。

首先,是小粒径的磁性粉体颗粒的制备。

根据大量试验探索,本文找到制备小粒径(~10rim)磁性粉体材料的较好方法——低温相转化法。

并通过对反应中升温顺序的控制,发现用先升温法在制备10rim左右的小粒径磁性颗粒材料方面较具有优越性,并用这种方法相继制得了一系列纳米尖晶石型磁性粉体材料。

另外还通过在制各样品的过程中掺杂zn:+,使Zn2+进入所制备的尖晶石型样品的四面体间隙内,并通过尖晶石结构中离子间的超交换作用,可以使所制样品的磁性能得到很大的提高,从而优选出可以用来制备磁流体的纳米磁性粉体样品。

其次,是用油酸对适合用来制备磁流体的磁性粉体颗粒进行表面处理,以降低粒子的表面能,从而可防止因两个磁性粒子互相接近而引起颗粒在载液中聚凝和沉降。

并用紫外光谱仪对磁性粉体颗粒表面改性效果进行定量评估,探讨了pH值、温度、时间以及复合表面活性剂对颗粒表面包覆效果的影响,从而确定了磁性粉体颗粒表面改性效果的最佳条件。

最后,是把表面改性效果最佳的磁性粉体颗粒通过过渡液均匀分散于载液中而制得磁流体。

试验中采用DOP作载液,这是因为DOP的凝固点为.50℃,沸点为384℃,用其作载液不仅能耐一定的低温,而且也能耐高温,具有很宽的温度适用范围。

文中探讨了过渡液、温度对制备磁流体稳定性的影响以及固液比与粘度的关系。

试验表明,在制各磁流体时,温度不宜太高,否则会影响制各的磁流体的稳定性;并且磁流体的粘度随其所包含磁性颗粒量的增加而增大。

本文对磁流体制备过程中的各个环节进行了较为详尽的研究,并进行了相应的表征、分析,取得了一些极为有价值的数据,尤其是在纳米磁性粉体颗粒的制备及其表面处理效果的评估方面作了很有意义的探索。

关键词:尖晶石超顺磁性纳米粒子低温相转化法包覆磁性液体AbstractIIlthisarticle,thepreparationofmagneticfluidswasthecenterofinvestigation.Accordingtothemakeupofthemagneticfluids,forwhichtheprocessofpreparationvcasdoneasfollow,first,thefabricationofmagneticpowderswithnanosizeabout10nm;second,thedisposalforthesurfaceofmagneticpowders;finally,thepreparationofmagneticfluids.withsmallnanosizewerefabricated.AccordingtoFirstly,magneticpowdersabundantresearchinexperiment,abettermethod,phasetransformationatlowtemperature.Wasfoundusingforthesynthesisofmagneticpowders、vitllsmallnanosizeaboutlOnm.Bymeansofthecontrolfortheorderoftemperature-raisingintheprocessofsynthesis,pre-temperature·raisingmethodwasofmoresuperiorityinthepreparationofmagneticpowderswithsmallnanosizeaboutlOnm.Andaseriesofmagneticpowderswithnanocrystalline¥tnleturewassynthesized.Inaddition,intheprocessofthesamplesfabricated,alittleofmatterwithZn2+ionvcasaddedinordertomakeZn2+ionsentertheinterspaceoftetrahedronforthesamples、Ⅳitllspinelstructure.Throughthesuper-exchangereciprocityamongthedifferentionsinthespinel,themagnetizationofthesamplespreparedcouldberaisedinlargedegree.Sosamplesofmagneticpowders稍tllnanosizeaboutlOamwerechosensuitableforthepreparationofmagneficfluid.magneticpowders,whichmettheSecondly,thedisposalforthesurfaceofrequirementsofthepreparationofthemagneticfluids,vcasdoneSO懿toreducethesurfaceenergyofthemagneticparticles,andthustopreventtwomagneticparticlesfromapproachingwhichmightleadtocongregationandsedimentationofparticlesincarriedliquids.TheeffectsofthedisposalforthesurfaceofmagneticpowderswereevaluatedbyUVspectraapparatus,researchingtheimpactsaboutvalesofpH,temperature,timeandcompoundsurfactantsontheeffectsofthedisposalfortheparticlesurface.Sothebestconditionsontheeffectsofcoatingforparticlesurfacewereachieved.Finally,magneticparticles,whichwerecoatedbest,weredisperseduniformlyinthecarriedliquidsbymeansoftransitionliquids,andthusmagneticliquidswereformed.Intheexperimerit,DOPwasusedforcarriedliquids.Becauseitsfreezingpointandboilingpointwereat-50。

基于双面金属包覆波导的磁流体折射率研究

基于双面金属包覆波导的磁流体折射率研究

1/91/71/52/11/37/97/77/57/37/16/96/76/56/36/15/98/1˾)ŃDž图1 衰减全反射吸收峰式中h 为液体膜的厚度;ε1为硅片的相对介电常数;θm 为m阶导模的模角,即图1衰减全反射吸收峰峰谷所对应的横坐标角度;为模阶数;ε2为银膜的相对复介电常数。

如果测量出了模序数为m -1、m 、m +1连续三个导模的模角m -1、θm 、θm -1,便可联立超越方程:()() −++=−−+=−−+−=−−−12211122112211arctan 21sin 2arctan 2sin 2arctan 21sin 2εεπθελπεεπθελπεεπθελπm h m h m h m m mիӷӷ896on MbtfsCի 图2 实验装置零度入射角位置的校准使用半反半透镜。

可见光探测器用于探测波导反射光的强度,其结果送计算机处理。

偏振片用于获得竖直方向偏振的光束,波长为785 nm的激光束经光学小孔整形后入射到波导上,对光波导进行角度扫描。

实验中所加磁场的方向为垂直转台水平面向下,图3是施加磁场的示意图。

图3 实验施加的磁场对反射光扫描得到图4,对波导施加磁场与不施加磁场两种情况下衰减全反射吸收峰的对比。

从图4中可以看出,减全反射吸收峰发生了相移,取定某一入射角度,发现反射率发生即磁场作用使磁流体折射率改变。

1/91/71/52/11/37371696765636175˾)Ń*图4 磁场作用下ATR的相移施加磁感应强度大小为10G s。

对波导进行角度扫描,在所得的AT R曲线中取三个连续连续导膜角:θm -1=6.057815 °、θm =6.359532 °、θm -1=6.643751 °,计算得出折射率为1.3738。

通过上下移动磁钢位置,改变波导上激光照射点处磁感应强度大小,依次扫描出10至100 Gs (间隔10 Gs)时的衰减全反射吸收峰,计算出磁流体不同的折射率。

磁流体材料生产工艺

磁流体材料生产工艺

磁流体材料生产工艺磁流体又称磁性液体(Magnetic Fluids) , 是由纳米级的磁性颗粒通过表面活性剂的包覆, 高度均匀分散于基载液中所形成的稳定的固2液两相胶状液体[ 1 ]。

这种材料既具有固相材料的磁性, 又具有液相的流动性, 即使在重力、离心力、电磁力等作用下也不会发生固液分离, 是一种典型的纳米复合材料[ 2 ] ,同时它也是目前真正具有工业实用价值的液体磁性材料, 自20 世纪60 年代问世以来, 发展非常迅速。

目前磁性液体已经发展成为一个横跨多学科的综合体系, 其应用领域已扩展到机械、航空、电子、医疗、生物、环保等诸多方面[ 3 ]。

磁流体的组成与机理磁流体由磁性微粒、表面活性剂和载液三者组成,三者关系如图a所示。

磁性微粒可以是:Fe3O4、γ-Fe2O3、氮化铁、单一或复合铁氧体、纯铁粉、纯钴粉、铁-钴合金粉、稀土永磁粉等,目前常用Fe3O4粉。

表面活性剂的选用主要是让相应的磁性微粒能稳定地分散在载液中,这对制备磁流体来说至关重要。

典型的表面活性剂一端是极性的,另一端是非极性的,它既能适应于一定的载液性质,又能适应于一定磁性颗粒的界面要求。

包覆了合适的表面活性剂的纳米磁性颗粒之间就可相互排斥、分隔并均匀地分散在载液之中成为稳定的胶体溶液。

关于载液的选择,应以低蒸发速率、低粘度、高化学稳定性、耐高温和抗辐射为标准,但同时满足上述条件非常困难,因此,往往根据磁流体的用途及其工作条件来选择具有相应性能的载液。

1 磁性液体的制备磁性液体按磁性颗粒来分, 主要分为铁氧体型、金属型和氮化铁型。

由于铁氧体型磁性液体具有很好的稳定性, 成为目前国内外应用最广泛的磁性液体,其缺点是饱和磁化强度(M s ) 较低, 一般在0102 ~0103 T, 最高可达0106 T[ 4 ] , 限制了其应用的范围。

金属型磁性液体有较高的M s值, 但化学稳定性较差。

近年来开发的氮化铁型磁性液体既具有高M s ,又有较好的磁稳定性, 因而成为研究者关注的热点。

纳米Fe3O4磁流体的制备及其影响因素研究

纳米Fe3O4磁流体的制备及其影响因素研究

1. m,F — 63n rI R图谱 中 1 9 、1 3 296c 等处的吸收峰很强烈 ,这充分说明该纳米粒子被油酸很好地包覆 ;选 3 6和 2 m 5 7 择油酸作为表面活性剂 ,起到表面改性 和萃取出纳米粒子的作用;制得的油酸包覆纳米 F , 粒子能够稳定分散 于有机 eO
Ab ta tTh e g ei trfu d s p e a e t i ud- h s o rcp tt n By u i g oec a i o te t sr c : e F 3 ma n tc wae i swa r p rd wi lq i p a ec p e i iai . sn l i cd t ra O4 l h o
溶剂中。


关键词 :纳米 F eO ;磁流体 ;油酸 ;表 面改性
中图分 类 号 :T 18 1 文献 标 识 码 :A 文章 编 号 :05 0 5 (0 6 1 17— Q3. 24—Pr pa a i n a fe to no ie t y o e r to nd Ef c fNa sz d
维普资讯
20 0 6年 1 0月
润滑与密封
LUBRI CAT【 ON ENGI NEERI NG
Oc. 0 6 t2 o
第 1 0期 ( 总第 12期 ) 8
N . 0 ( eilN . 8 ) o 1 sr o 1 2 a
纳米 F 4磁 流体 的制 备 及 其 影 响 因素 研 究 eO
me tt e c aa trz t n Wa eemi e y FT-R d HRT n ,h h ce ai s d tr n d b r i o I a n EM . s l h w h tt e a e a e sz ft e p e a e u e Re u t s o t a h v r ie o h rp d c b s g r cy tln n e s 1 . m ;h to g a s r ii t15 3、 3 d 2 9 6 e rsa a o F 3 i 6 3 n t esr n b opt t a 9 17 6 a 2 m i T-R p cr h wst a e O4 v y n n FrI s e tas o h tF 3 O4 n o atee i o td b li cd; e p p e e a o a t l o td b li cd C e d ta td se dl n 0 . n a p ril s c ae y oec a i T r a d F 3 n h e r O4 n p ri e c ae yoec a i a b erce ta i i r e n y g i u d . n a e f is l

高稳定性导热油基磁性流体的制备

高稳定性导热油基磁性流体的制备
关 键 词 导热油 磁性流体 制备方法
P e a aino a o d cigOi b sdMa n t li i g tbl y rp r t f o Het n u t l ae g ei F udw t HihSa it C n — c h i
QU g a Jn mio ,HONG o uБайду номын сангаасi Ru y
h a o d cig olb s dma n tcf i x ii to g ma n ts a dhg tbl y e tc n u t i a e g ei l d e hbt sr n g eim n ih sa i t. n u s i
Ke r s y wo d h a o d cig ol e tc n u tn i,ma n t l i g e i f d,p e a a in me h d c u r p r to t o s
S o h w ie st o c o Unv r i y,S z o 1 1 3 2 S a eKe b r tr fM u p a eCo lx S se ,I si t fPrc s n iern , u h u 2 5 2 ; tt yLa o aoy o hih s mp e y tms n t u eo o e sE gn eig t
a rcptt r sp e ii o .Th r p ry o h 3 a o atce n h g e i f i siv siae . Th e ut n iae a epo et ft eFe04n n p rilsa d t ema n tc l d i n etg td u er s lsidc t
磁性流体 又称 磁流 体 、 性 液体 , 由磁性 纳 米粒 子 、 磁 是 载

纳米四氧化三铁的制备、修饰及磁场的影响

纳米四氧化三铁的制备、修饰及磁场的影响
(3)采用络合-还原水/溶剂热路径,以氯化钴和联氨为主要原料,制备得到了两种不同形貌和结构的钴单质。研究了络合剂、反应持续时间、联氨的浓度等对样品形貌的影响,给出了不同结构和形貌的钴单质的形成机理,并研究了两种钴单质样品的磁性能。<br>
(4)在十六烷基三甲基溴/氯化铵存在的情况下,以氯化钴、氯化镍和联氨为起始原料,经水热处理制备了6-7μm长的亚微米链状镍钴(NiCo)合金聚集体。研究了表面活性剂对其结构和形貌的影响,并对其磁性能进行了研究。
目前的研究中,制备分散性好的、稳定性高的油基磁流体一直是磁流体制备过程的难点。本论文对油基磁流体的六种制备工艺进行了研究,制备出了在多种有机介质中纳米分散的四氧化三铁磁流体。红外光谱和X-射线衍射实验表明,油酸在Fe3O4粒子表面形成了包覆,且磁流体制备过程中表面活性剂油酸和有机介质的加入并不影响Fe3O4粒子的晶形。制备的Fe3O4粒子洗涤后,不经过干燥过程分散在有机介质中,得到的磁流体磁含量最高,达到12%;磁流体中Fe3O4粒子粒径分布窄,绝大多数粒子粒径在6-10nm范围。在Fe3O4粒子制备过程中加入有机介质制得的磁流体粒径分布均一,粒子集中分布在5-7nm,磁含量在10%左右。得到的磁流体均具有很好的磁响应性和稳定性。
,说明了纳米晶和非纳米晶之间明显的晶界阻值差别及颗粒小的材料有更大的晶界电阻。
2.纳米四氧化三铁的制备和性质研究分别采用沉淀法、水热法和溶剂热法,以七水合硫酸亚铁和氢氧化钠为反应物,制备出四氧化三铁纳米片、纳米球和立方块。其中,沉淀法的实验条件简单温和,得到的四氧化三铁纳米球具有高矫顽力,其值达到175Oe;水热法制备的立方块状四氧化三铁在几种方法制得的产物中结晶度最好;溶剂热法能够制备出均一而规整的四氧化三铁纳米纳米片,并具有高达100emu/g的磁饱和度。磁学测量的结果表明:粉末磁性材料的矫顽力和磁饱和度与其晶体尺寸和结晶度紧密相关。

磁流体简介

磁流体简介

磁流体简介一理论知识1.磁流体的组成磁流体指的是吸附有表面活性剂的磁性微粒在基载液中高度弥散分布而形成的稳定胶体体系,它是由纳米级的固体磁性粒子、表面活性剂和基液三部分组成,如图1所示。

图1 磁流体组成(1)固体磁性粒子磁性粒子一般有铁氧体粒子如Fe3O4、MeFe2O4(Me=Co,Mn,Ni等)、金属及其合金(Co, Fe, Ni及其合金)粒子、氮化铁粒子等。

其中氮化铁粒子的饱和磁化强度最高,而铁氧体粒子的化学稳定性较好。

目前常用的是Fe3O4粉。

对磁流体来说,要求磁性粒子要足够小,因为磁流体是通过粒子的布朗运动来阻止颗粒的团聚和沉淀的,从而维护整个体系的稳定性,一般而言,所用粒子的粒度约为10nm左右。

(2)基液基液又叫载液,是磁流体的主要组成部分。

基液应该满足这样一些条件:低蒸发率、低粘度和高度化学稳定性,以及具有抗高温和抗辐射特性等。

基液的性质在很大程度上决定了磁流体的基本物理化学性质,所以要根据特定的条件和要求选择合适的基液。

基液大致可以分为:水基、有机基和金属基三类。

通常所选用的基液名称及制得的相应铁磁流体的应用范围见表1。

(3)表面活性剂表面活性剂是一种具有亲水亲油结构并具有降低表面张力、减小表面能,能对溶液进行乳化、湿润、成膜等功能的有机化合物。

它是一种极性官能团结构的长链分子,如图2,非极性的疏水碳氢链部分和极性的亲水基团分别处于官能团的两端,一端能通过氢键、离子对或者Van Der Waals力等作用与固体磁性粒子表面形成牢固结合,另一端悬浮于基液中,相互溶解。

表1 各种基液种类和制得磁流体的用途图2 表面活性剂分子示意图包覆了表面活性剂后,当磁性粒子彼此接近时,外部的官能团因极性相同而相互排斥,使磁性粒子彼此分开,同时固体磁性粒子由于热运动能的原因带动表面活性剂悬浮的一端在基液中自由摆动,运动轨迹理想状态下是一个球面,从而形成了一个保持距离的能垒,使固体磁性粒子很难越过这个能垒发生团聚。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Preparation and magnetic performance of the magnetic fluid stabilized by bi-surfactantBuhe Bateer,Yang Qu,Xiangying Meng,Chungui Tian,Shichao Du,Ruihong Wang,Kai Pan,Honggang Fu nKey Laboratory of Functional Inorganic Material Chemistry,Ministry of Education of the People’s Republic of China,Heilongjiang University,150080Harbin,PR Chinaa r t i c l e i n f oArticle history:Received 9August 2012Received in revised form 22November 2012Available online 22December 2012Keywords:Bi-surfactant coated Fe 3O 4Phase-transferStable oil-dispersion Magnetic fluidMagnetic performancea b s t r a c tA stable poly-alpha olefin oil based magnetic fluid of bilayer surfactant coated (oleic acid and succinimide)Fe 3O 4nanoparticles was prepared by a using phase transfer method.The bilayer surfactant-coated magnetic particles are characterized by Fourier-transform infrared spectroscopy,the result shows that the Fe 3O 4nanoparticles are coated by oleic acid,and the bilayer surfactant succinimide wraps the oleic acid coated Fe 3O 4nanoparticles.Transmission electron microscopy images indicate that the dispersibility of the bilayer coated Fe 3O 4nanoparticles is better than that of the uncoated ones.Vibrating sample magnetometer measurement confirms that both the coated and uncoated Fe 3O 4nanoparticles are super-paramagnetic.Stability measurements show the magnetic fluids prepared by bilayer coated Fe 3O 4nanoparticles is nearly constant for 360days at room temperature.&2012Elsevier B.V.All rights reserved.1.IntroductionMagnetic fluid (ferrofluid)is a kind of suspension composed of magnetic nanoparticles (NPs),such as magnetite (Fe 3O 4),[1,2]iron nitride (e -Fe 3N),[3]iron (Fe),[4]cobalt (Co)[5]with the size about 10nm that were dispersed into the carrier liquid (aqueous or organic solvent)since their first appearance in the middle of the 1960s [6].The magnetic particles and the liquid are not separated even in the presence of centrifugal force or magnetic field [7].Magnetic fluids have the characteristics of both magnetic and fluid properties and have a diverse range of applications in various fields.It was estimated that 500million hard drives,350million loud speakers,15million DVD-ROM drives,and 200,000rotary vacuum seals had been manufactured using magnetic fluids in 2006[8].And there are other uses of magnetic fluids in magnetic resonance imaging,[9]magnetic ink,[10]micropumps,[11]medicines [12]and art [13].Stability of magnetic fluids is of great importance in applica-tions,especially in industry,and thus it has been a topic of great interest in recent years.The suitable organic surfactants and carrier liquids are important factors that can effect the stability of magnetic fluids [14–16].Surface coating can restrict the agglomeration and improve the dispersibility of the Fe 3O 4NPs simultaneously,[17–19]and consequently,can improve thestability of the magnetic fluids largely.There are many reports about magnetic fluids prepared by dispersing of magnetic NPs coated with monolayer surfactant (oleic acid)in different organic solvents (kerosene,transformer oil,dodecane,etc.)[20,21].Although it is simple and easy,the organic solvents have low boiling point and can volatilize fast,so the magnetic fluid cannot last for a long time.There are also reports regarding to the synthesis of magnetic fluids in oil based carriers with high boiling point.In this case,a single surfactant,such as the lauroyl sarcosine surfactant,was used in silicone oil based magnetic fluid [22].The evaporation rate of these oil-based carriers is slower than that of the organic solutions with low boiling point,but the dispersing stability of magnetic NPs in them becomes poor.To improve the stability of magnetic fluids,the NPs coated with bilayer surfactant are used [23].Shimoiizaka et al.[24]found bilayer stabilization as early as 1980s by first precipitating oleic acid-coated particles and then re-dispersing them in aqueous solutions of sodium dodecylbenzene sulfonate,poly(oxyethylene)nonylphenyl ethers,and di(2-ethylhexyl)-adipate those acted as a second layer on the top of oleic acid.Wooding et al.[25,26]produced stable aqueous magnetic fluids by selecting various saturated and unsaturated fatty acids as primary and secondary surfactants.The n-alkanoic acids with 9–13carbons can be used as bilayer surfactant to stabilize magnetic fluids as demonstrated by Shen et al.[27,28].Hong et al.[29]prepared the aqueous magnetic fluids in which the oleate sodium and PEG-4000were used as the primary and the secondary layers respectively.These bilayer coated aqueous-based magnetic fluids are quite stable,Contents lists available at SciVerse ScienceDirectjournal homepage:/locate/jmmmJournal of Magnetism and Magnetic Materials0304-8853/$-see front matter &2012Elsevier B.V.All rights reserved./10.1016/j.jmmm.2012.12.009nCorresponding author.Tel.:þ8645186608458;fax:þ8645186673647.E-mail address:fuhg@ (H.Fu).Journal of Magnetism and Magnetic Materials 332(2013)151–156and can be used in biomedical,but they are hard to be used in industrial due to their low boiling point and poor thermal stability.A bilayer surfactant-coated oil-based magnetic fluid would be desirable due to their high stability that is favorable for the industrial application,but there is no report about this at present.Above analyses indicate that the traditional method of pre-paring magnetic fluids has some disadvantages,such as hard to disperse in oil and low stability.As known,the high stability and well dispersibility in oil is very significant for the industrial application of the magnetic NPs.In this paper,we designed a stable oil-based magnetic fluid of bilayer surfactants coated Fe 3O 4NPs by using simple phase transfer method.The Fe 3O 4NPs are coated with a primary surfactant that can bind strongly to the surface atoms of the Fe 3O 4NPs,and then the coated Fe 3O 4NPs are recoated with a second surfactant that has a good compatibility with the carrier of the magnetic fluid.We choose oleic acid and succinimide (PIBA)as primary and secondary surfactant respec-tively.By using phase transfer method,the bilayer surfactant coated Fe 3O 4NPs were prepared.After it was dispersed in PAO-2carrier,the stable magnetic fluid with high stability and good magnetic property were obtained.2.Experimental section 2.1.Chemicals and materialsFerric chloride (FeCl 3Á6H 2O,99%),ferrous sulfate (FeSO 4Á7H 2O,99%),oleic acid (OA),ammonium hydroxide (28%NH 3in water,w/w),deionized water,heptane,were purchased from Sinopharm Chemical Reagent Co.Ltd.Succinimide dispersant (PIBA),poly-alpha olefin synthetic oil (PAO-2)were purchased from China Petrochemical Corporation.2.2.Synthesis of oleic acid-coated Fe 3O 4magnetic NPsOleic acid coated (primary surfactant)Fe 3O 4magnetic NPs were firstly prepared by a modified chemical coprecipitation method.Aqueous solutions of 200mL of 2M FeCl 3Á6H 2O and 200mL of 1M FeSO 4Á7H 2O were mixed in a 2L beaker.A total of 200mL of NH 4OH (28%(w/w))was quickly added,and the mixture was vigorously stirred at 601C for 30min.After adding of 12mL oleic acid,the temperature was raised to 801C and remained for 45min under constant stirring.After the beaker wascooled to room temperature,the Fe 3O 4magnetic NPs were obtained.2.3.Synthesis of bilayer-coated Fe 3O 4magnetic NPs200mL of heptane contained succinimide dispersant (second-ary surfactant)was added into the beaker contained OA-coated Fe 3O 4magnetic NPs and stirred for 10min.After standing for 30min,two liquid layers formed in the beaker,and the color of the aqueous phase became clear,which meant the Fe 3O 4NPs were transferred to heptane.The two phases were separated by a separating funnel.2.4.Synthesis of magnetic fluidsA certain number of PAO-2is added into the heptane solution including bilayer coated Fe 3O 4magnetic NPs and then stirred at 1001C until the heptane is evaporated to get a stable bilayer coated magnetic fluid.The content of magnetic NPs in the magnetic fluids is controlled by the adding amount of PAO-2.2.5.CharacterizationX-ray powder diffraction (XRD)patterns were obtained by a Rigaku D/max-IIIB diffractometer using Cu Ka radiation(l ¼1.5406˚A).The transmission electron microscopy (TEM)experiment was performed on a JEM-2100electron microscope (JEOL,Japan)with an acceleration voltage of 200kV.Carbon coated copper grids were used as the sample holders.Thermo-gravimetric analysis was performed on a TG (TA,Q600)thermal analyzer under air with a heating rate of 101C min À1.Fourier-transform infrared spectra (FT-IR)of the samples were acquired with a PE Spectrum One B IR spectrometer.Magnetization was measured at 300K with a Lake Shore Vibrating Sample Magnet-ometer Model 7404,applying field strengths up to 20kOe.3.Results and discussion3.1.Characterization of magnetic NPsThe synthetic process of magnetic fluid of bilayer coated Fe 3O 4NPs is shown in Scheme 1.The Fe 3O 4NPs are prepared by chemical co-precipitation method,and they are coated with oleic acid as the primary layer surfactant in aqueous phase.The oleic acid molecules bind strongly to the surface atoms of the Fe 3O4Scheme 1.Synthetic process of magnetic fluid of bilayer coated Fe 3O 4magnetic NPs.B.Bateer et al./Journal of Magnetism and Magnetic Materials 332(2013)151–156152NPs[30].The oleic acid coated Fe3O4NPs are transferred to heptane to be coated with succinimide.Succinimide is amphi-philic molecular composed of two long non-polar tails and a polar head.The polar heads can attach to the oleic acid coated Fe3O4 NPs,a restricted mobility of the OA is due to theirfirm anchoring on the surface of Fe3O4NPs,while PIBA is formed with polar and nonpolar groups,and the polar groups are bound with the OA layer by strong van der Waals interactions,[27]the long(non-polar)hydrocarbon tails are favorable for the sustentation of succinimide in PAO-2,therefore,even the application of an external strong magneticfield,the bilayer-coated Fe3O4NPs cannot easily reorient the spins.The bilayer coated magnetic NPs can be used to the preparation of magneticfluids.Phase-transfer method is commonly used in the preparation of nano-material[31–33].In water–oil systems,the particles tend to be assembled at the water–oil interface[34–36]and transferred to the oil phase in the presence of surfactant[37–39].The hydrophilic group of the surfactant is adsorbed on the particle surface by electrostatic and/or hydrogen-bonding interactions [40].The hydrophobic chain of the surfactant is directed to the outside,so the hydrophobic particles modified with surfactant could be extracted and dispersed in the oil phase.The re-coated step of oleic acid coated Fe3O4NPs through phase-transfer to heptane can simplify the preparation process,prevent the agglomeration of the NPs and improve the dispersing efficiency simultaneously.The mixture of PAO-2and heptane solution including bilayer coated Fe3O4magnetic NPs is stirred at1001C until the heptane is evaporated(the evaporated heptane can be recycled).And a stable bilayer coated magneticfluid isfinally prepared.Magneticfluids made of uncoated and monolayer coated Fe3O4 NPs dispersing in PAO-2are easily precipitated(Supporting Information,Fig.S1).The uncoated Fe3O4NPs are easy to precipitate from the carrier due to their bald surface,and the upper layer of the magneticfluid becomes clear after2h.And the magneticfluid of monolayer coated Fe3O4NPs is unstable because the nonpolar groups can bind weakly to PAO-2molecular.While the magneticfluid of bilayer coated Fe3O4NPs is stable due to the virtue of the bilayer surfactants.Fig.1A shows the TEM image of uncoated Fe3O4NPs prepared by chemical coprecipitation method.The uncoated Fe3O4NPs are not modified by any surfactants,so they are easily reunited and badly re-dispersed in heptane or PAO-2,even under vigorous stirring or long-time ultrasonic vibration.Fig.1B shows the TEM image of oleic acid coated Fe3O4NPs prepared by a modified chemical coprecipita-tion method,which are well-dispersed in heptane but bad-dispersed in PAO-2.Fig.1C shows bilayer coated Fe3O4NPs prepared by phase-transfer,they are well-dispersed in both heptane and PAO-2.We can see that the coating of bilayer surfactants improves the dispersibility of the Fe3O4NPs without any effect on their particle size.And we can see from Fig.1B and C,both the single coated and bilayer coated Fe3O4NPs have a good dispersibility.From Fig.1A,B and C,we can see that the particle shape of the single coated and bilayer coated Fe3O4NPs is reasonably spherical with better dispersion than the uncoated ones.Also,the bilayer coated Fe3O4NPs is poly-dispersed with the size in the range of8to17nm.The mean particle size is about12nm(Fig.S2).Fig.1D gives the high resolution TEM(HRTEM) image of the Fe3O4NPs,from which an interplanar spacing about 0.240nm can be observed,corresponding to the(311)plane of the cubic Fe3O4.The uncoated Fe3O4(Fig.2a),monolayer coated Fe3O4(Fig.2b) and bilayer coated Fe3O4(Fig.2c)samples are examined by XRD. All the diffraction peaks in Fig.2can be indexed as the face-centered magnetite(Fe3O4)crystallite(JCPDS cardfile No. 74-0748).The average particle size of the uncoated NPs is calculated to be about11nm by using Scherer’s equation from the half-maximum width of the(311)X-ray diffraction line.After the coating of surfactants,all of the peaks(Fig.2b,c)related to magnetic Fe3O4can also be observed.Also,the peaks of the coated Fe3O4NPs have lower intensity than that of the uncoated ones, which should be contributed to the low content of magnetic Fe3O4in coated Fe3O4NPs than that of the uncoatedones.Fig.1.TEM images of(A)uncoated Fe3O4(B)monolayer coated Fe3O4NPs(C)bilayer coated Fe3O4NPs(D)HR-TEM images of uncoated Fe3O4.B.Bateer et al./Journal of Magnetism and Magnetic Materials332(2013)151–156153An FT-IR spectrometer is used to study the surface organic groups of the coated and uncoated Fe 3O 4NPs (Fig.3).We can see that the uncoated Fe 3O 4(Fig.3a)has only a strong characteristic peak of Fe–O stretch at 590cm À1(Fig.3a).The spectrum of free oleic acid shows an IR band at 1713cm À1corresponding to the vibration of free –COOH (Supporting Information,Fig.S3).For the oleic acid coated Fe 3O 4NPs,the IR band at 1713cm À1was absent,which indicates no free oleic acid in the NPs.In addition,the peaks of –CH 2stretch for oleic acid coated Fe 3O 4NPs (Fig.4b)can be found at 2921and 2851cm À1,which have a shift toward the high wave number in comparison with the pure oleic acid,indicating the absorption of oleic acid on the surface of Fe 3O 4NPs.Two new intense and broad peaks at 1530and 1404cm À1are characteristic of COO –asymmetric and COO –symmetric stretch [41].The wave number separation (D )between COO –asymmetric and COO –symmetric of 116cm À1is ascribed to bridging bidentate,where the COO –group is covalently bonded to surface atoms of Fe 3O 4.The FT-IR spectra of bilayer coated Fe 3O 4NPs is shown in Fig.3c,the strong characteristic peak at590cm À1is assigned to Fe–O stretch,two sharp bands at 2923and 2854cm À1are attributed to the asymmetric CH 2stretch and the symmetric CH 2stretch of the second surfactant layer of PIBA.The peak at 1707cm À1corresponds to the imide absorption peak.The peak at 1404cm À1is assigned to the CH 2bending vibration of the PIBA.IR test indicates the successful modification of both OA and PIBA on the Fe 3O 4particles.To calculate the Fe 3O 4content of the uncoated and coated Fe 3O 4NPs,TGA analysis is performed (Fig.4).The weight loss of uncoated Fe 3O 4NPs is about 7.4wt%in whole temperature range (Fig.4a),which is largely due to the removal of absorbed physical and chemical water.For the monolayer coated Fe 3O 4NPs,the weight loss of 24.5%is mainly caused by thermal degradation of OA over the temperature range from 200to 4001C and the absorbed water (Fig.4b).By comparasion,the content of OA is about 17.1%in the coated Fe 3O 4NPs.The TGA curve of bilayer coated Fe 3O 4NPs (Fig.4c)shows a total weight loss of about 41.5%,which includes the degradation of OA and PIBA disper-sants.In addition,its largest weight loss can be observed from 200to 4501C.By comparison with Fig.4b,the content of PIBA dispersant is about 17%.Bulk Fe 3O 4is ferromagnetic at room temperature,but below a critical particle size it becomes super-paramagnetic.Fig.5shows the magnetization curve of the Fe 3O 4NPs at 300K and magnetic field of 20kOe.We can see from Fig.5that the uncoated,monolayer coated and bilayer coated Fe 3O 4NPs have super-paramagnetic properties because their remanence and coercivity are zero.Their saturation magnetization is 65emu/g,53emu/g and 38emu/g,respectively.The decrease of saturation magneti-zation of the coated Fe 3O 4NPs may be caused by the coating of surfactants.3.2.Characterization of magnetic fluidsThe viscosity and density dependence of the magnetic fluids consisting of bilayer coated Fe 3O 4NPs in PAO-2on the content of the bilayer coated Fe 3O 4NPs is analyzed.As shown in Figs.6and 7,the viscosity and density of the magnetic fluids increases with the increasing of the mass percentage of bilayer coated Fe 3O 4NPs in PAO-2.Also,the increasing of density is nearly proportional to the mass percentage.The viscosity and density of the magnetic fluid with 5%mass percentage of bilayer coated Fe 3O 4NPs in PAO-2are 7cP (251C)and 0.85g/cm [3].Fig.2.X-ray diffraction of (a)uncoated Fe 3O 4NPs (b)monolayer coated Fe 3O 4NPs (c)bilayer coated Fe 3O 4NPs.Fig.3.FT-IR spectra of (a)uncoated Fe 3O 4NPs (b)monolayer coated Fe 3O 4NPs (c)bilayer coated Fe 3O 4NPs.Fig.4.TGA curves of (a)uncoated Fe 3O 4NPs (b)monolayer coated Fe 3O 4NPs (c)bilayer coated Fe 3O 4NPs.B.Bateer et al./Journal of Magnetism and Magnetic Materials 332(2013)151–156154The magnetic property of the stable magnetic fluids is also studied.Fig.8shows the initial magnetization curve of magnetic fluids with different mass percentage.We can see that all the magnetic fluids have super-paramagnetic properties for the magnetization increases with the increasing of the magnetic field (H )simultaneously until it tends to be saturated and there is no remanence.The saturation magnetization of the magnetic fluids with 5%and 45%mass percentage of Fe 3O 4NPs is respectively 2.94emu/g and 21.92emu/g.The dispersion stability of the magnetic fluids is usually estimated by periodical measurement of density changement.Fig.9shows the dispersion stability of the PAO-2based magnetic fluids consisting of bilayer coated Fe 3O 4NPs with duration time.The index of stability (I )in the figure is calculated as below [5]:I ¼r 1Àr ÀÁ=r Àr wÀÁwhere r 1is the density of the upper layer of the magnetic fluid after duration,r is the density of the freshly prepared magnetic fluid,and r w is the density of the liquid carrier.As shown in Fig.9,the bilayer coated Fe 3O 4magnetic fluid does not show any change in stability even after storage of 360days,which indicates that the bilayer coated Fe 3O 4magnetic fluid can keep good stability and dispersibility for a long time.The duration lasts for more than 360days.Result proves the high stability of magnetic fluid of bilayer coated Fe 3O 4in PAO-2,which is favorable for its use in loudspeaker (Supporting Information,Fig.S4).4.ConclusionsIn conclusion,a stable magnetic fluid has been prepared by bi-surfactant assisted phase-transfer method,and its magnetic performance researched.The OA (primary surfactant)coated Fe 3O 4nanoparticles are prepared by chemical coprecipitation and transferred to heptane in which contains the PIBA (secondary surfactant).Then the heptane solution including the bilayer-surfanctant coated Fe 3O 4magnetic nanoparticles is mixed with PAO-2,and heptane is removed through constant heatingandFig.6.Viscosity of the magnetic fluids consisting of Fe 3O 4NPs in PAO-2versus their masspercentage.Fig.7.Density of the magnetic fluids consisting of Fe 3O 4NPs in PAO-2versus their masspercentage.Fig.5.Magnetic hysteresis curves of the NPs at 300K (a)uncoated Fe 3O 4NPs (b)monolayer coated Fe 3O 4NPs (c)bilayer coated Fe 3O 4NPs.Fig.8.Initial magnetization curves of Fe 3O 4NPs in PAO-2with different mass percentage.B.Bateer et al./Journal of Magnetism and Magnetic Materials 332(2013)151–156155stirring.Magnetic fluids with the bilayer surfactant-coated Fe 3O 4nanoparticles content of 5%to 45%are prepared.And their magnetization and viscosity are analyzed.The result shows that the magnetic fluids have good magnetic stability for no phase separation happens after 360days,which may have potential application in machinery.AcknowledgmentWe gratefully acknowledge the support of the Key Program Projects of the National Natural Science Foundation of China (No 21031001),the National Natural Science Foundation of China (Nos 20971040,91122018,21001042,21101061),the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (No 708029),Specialized Research Fund for the Doctoral Program of Higher Education of China (20112301110002).The Youth Foundation of Heilongjiang Province of China (QC2010021).Appendix A.Supporting informationSupplementary data associated with this article can be found in the online version at /10.1016/j.jmmm.2012.12.009.References[1]S.S.Papel,U.S.Patent 3,215,572,1965.[2]G.V.M.Jacintho, A.G.Brolo,P.Corio,P.A.Z.Suarez,J.C.Rubim,Journal ofPhysical Chemistry C 113(2009)7684–7691.[3]W.Huang,J.Wu,W.Guo,R.Li,L.Cui,Journal of Alloys and Compounds 443(2007)195–198.[4]P.N.Kaloni, A.Mahajan,International Journal of Engineering Science 48(2010)1350.[5]A.Heinemann,A.Wiedenmann,Journal of Magnetism and Magnetic Materials289(2005)149–151.[6]croix,N.F.Huls,D.Ho,X.Sun,K.Cheng,S.Sun,Nano Letters 11(2011)1641–1645.[7]S.Feng,Z.Ren,Y.Wei,B.Jiang,Y.Liu,L.Zhang,W.Zhang,H.Fu,ChemicalCommunications 46(2010)6276–6278.[8]K.H.J.Buschow,Handbook of Magnetic Materials,Elsevier,New York,2006.[9]B.H.Kim,N.Lee,H.Kim,K.An,Y.Park,Y.Choi,K.Shin,Y.Lee,S.G.Kwon,H.B.Na,J.G.Park,T.Y.Ahn,Y.W.Kim,W.K.Moon,S.H.Choi,T.Hyeon,Journal of the American Chemical Society 133(2011)12624–12631.[10]N.T.Nguyen,M.F.Chai,Micro and Nanosystems 1(2009)17–21.[11]A.K.Gupta,M.Gupta,Biomaterials 26(2005)3995–4021.[12]Y.S.Kang,S.Risbud,J.F.Rabolt,P.Stroeve,Chemistry of Materials 8(1996)2209–2211.[13]P.C.Morais,A.P.Canizares,F.M.L.Oliveira,A.C.Oliveira,Journal of Alloys andCompounds 495(2010)545–547.[14]Z.Wu,W.Li,P.A.Webley,D.Zhao,Advanced Materials 24(2012)485–491.[15]J.Hu,Z.Wen,Q.Wang,X.Yao,Q.Zhang,J.Zhou,J.Li,Journal of PhysicalChemistry B 110(2006)24305–24310.[16]X.Liu,Y.Gao,X.Wang,S.Wu,Z.Tang,Journal for Nanoscience andNanotechnology 11(2011)1941–1949.[17]M.Riskin,B.Basnar,V.I.Chegel,E.Katz,I.Willner,F.Shi,X.Zhang,Journal ofthe American Chemical Society 128(2006)1253–1260.[18]Q.Jia,J.Zeng,R.Qiao,L.Jing,L.Peng,F.Gu,M.Gao,Journal of the AmericanChemical Society 133(2011)19512–19523.[19]Y.Liu,Z.Ren,Y.Wei,B.Jiang,S.Feng,L.Zhang,W.Zhang,H.Fu,Journal ofMaterials Chemistry 20(2010)4802–4808.[20]O.Ayala-Valenzuela,P.C.Fannin,R.Betancourt-Galindo,O.Rodrıguez-Fernandez,J.Matutes-Aquino,Journal of Magnetism and Magnetic Materials 311(2007)111–113.[21]G.Vaidyanathan,S.Sendhilnathan,Journal of Magnetism and MagneticMaterials 320(2008)803–805.[22]Y.X.Zhao,L.Zhuang,H.Shen,W.Zhang,Z.J.Shao,Journal of Magnetism andMagnetic Materials 321(2009)377–381.[23]Z.Li,E.Cheng,W.Huang,T.Zhang,Z.Yang,D.Liu,Z.Tang,Journal of theAmerican Chemical Society 133(2011)15284–15287.[24]J.N.K.Shimoiizaka,T.Fujita,A.Kounosu,IEEE Transactions on Magnetics 16(1980)368–371.[25]A.Wooding,M.Kilner,mbrick,Journal of Colloid and Interface Science144(1991)236–242.[26]N.Jain,X.Zhang,B.S.Hawkett,G.G.Warr,ACS Applied Materials &Interfaces3(2011)662–667.[27]L.Shen, A.Stachowiak,T.A.Hatton,ibinis,Langmuir 16(2000)9907–9911.[28]M.V.Limaye,S.B.Singh,S.K.Date,D.Kothari,V.R.Reddy,A.Gupta,V.Sathe,R.J.Choudhary,S.K.Kulkarni,Journal of Physical Chemistry B 113(2009)9070–9076.[29]R.Y.Hong,S.Z.Zhang,Y.P.Han,H.Z.Li,J.Ding,Y.Zheng,Powder Technology170(2006)1–11.[30]S.Liua,Z.Tang,Nano Today 85(2010)267–281.[31]Y.S.Zhao,R.Qiao,Z.X.Li,Y.S.Kang,Journal of Physical Chemistry C 111(2007)7875–7878.[32]X.Feng,H.Ma,S.Huang,W.Pan,X.Zhang,F.Tian,C.Gao,Y.Cheng,J.Luo,Journal of Physical Chemistry C 110(2006)12311–12317.[33]F.Reincke,K.W.Kegel,H.Zhang,M.Nolte,D.Wang,D.Vanmaekelbergh,H.U.Mohwalda,Physical Chemistry Chemical Physics 8(2006)3828–3835.[34]J.Yang,J.Y.Lee,J.Y.Ying,Chemical Society Reviews 40(2011)1672–1696.[35]H.Yao,O.Momozawa,T.Hamatani,K.Kimura,Chemistry of Materials 13(2001)4595–4597.[36]L.Livadaru,A.Kovalenko,Journal of Colloid and Interface Science 304(2006)254–260.[37]M.Asada,Y.Hara,Y.Kuroda,S.Tanaka,T.Horikawa,Y.Miyake,Industrial &Engineering Chemistry Research 48(2009)2577–2582.[38]B.Qin,Z.Zhao,R.Song,S.Shanbhag,Z.Tang,Angewandte Chemie Interna-tional Edition 47(2008)9875–9878.[39]J.Yang,Y.J.Lee,H.Too,Analytica Chimica Acta 537(2005)279–284.[40]B.Qin,Z.Zhao,R.Song,S.Shanbhag,Z.Tang,Angewandte Chemie Interna-tional Edition 47(2008)9875–9878.[41]N.Wu,L.Fu,M.Aslam,K.C.Wong,V.P.Dravid,Nano Letters 4(2004)383–386.Fig.9.Stability index of magnetic fluid consisting of bilayer coated Fe 3O 4NPs versus the duration time.B.Bateer et al./Journal of Magnetism and Magnetic Materials 332(2013)151–156156。

相关文档
最新文档