最新人教版高一数学必修1第一章《函数的奇偶性》教案1

合集下载

函数的奇偶性教案2篇

函数的奇偶性教案2篇

函数的奇偶性教案第一篇:函数的奇偶性教案目标:1. 了解函数的奇偶性的定义和性质。

2. 判断函数的奇偶性。

3. 通过练习题加深对函数的奇偶性的理解。

预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以用一个简单的问题引入话题,例如:你知道什么是函数的奇偶性吗?为什么需要关注函数的奇偶性?学生可以自由发言,激发学生们的兴趣。

步骤二:讲解奇偶性的概念(10分钟)教师简要讲解函数的奇偶性的概念,可以借助一些例子来说明。

奇函数和偶函数是对称的关系,奇函数关于y轴对称,而偶函数关于原点对称。

步骤三:奇偶性的判断方法(15分钟)教师讲解奇偶性的判断方法。

一般来说,对于一元函数,可以通过以下两种方法判断函数的奇偶性。

方法1:使用函数的定义式。

对于奇函数,f(-x)=-f(x)成立;对于偶函数,f(-x)=f(x)成立。

方法2:使用函数的图象。

对于奇函数,其图象关于原点对称;对于偶函数,其图象关于y轴对称。

步骤四:练习题(15分钟)教师提供一些练习题,让学生在纸上完成,然后进行讲解和讨论。

例如:1. 判断函数f(x)=x^3+3x^2-5x是否为奇函数。

2. 判断函数g(x)=2x^2-4是否为偶函数。

3. 利用函数的奇偶性,简化函数h(x)=5x^3-x^2+2x-1的图象。

步骤五:总结(10分钟)教师对本节课内容进行总结,并强调函数的奇偶性的重要性和应用。

第二篇:函数的奇偶性教案(续)目标:1. 掌握奇函数和偶函数的一些常见函数的性质。

2. 进一步加深对函数的奇偶性的理解。

3. 练习函数的奇偶性的判断和应用。

预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以复习上节课的内容,然后提问学生,你还记得什么是奇函数和偶函数吗?奇函数和偶函数有哪些性质?步骤二:常见函数的性质(15分钟)教师讲解一些常见函数的性质,例如:1. 幂函数:对于非负整数n,当n为奇数时,函数f(x)=x^n是奇函数;当n为偶数时,函数f(x)=x^n是偶函数。

最新人教A版高中数学必修一《函数的奇偶性》教案名师优秀教案

最新人教A版高中数学必修一《函数的奇偶性》教案名师优秀教案

人教A版高中数学必修一《函数的奇偶性》教案函数的奇偶性人教A版必修一第一章第三节课题函数的奇偶性课型新授课课时安排一课时1、知识目标: (1)理解函数奇偶性的概念,掌握判断一些简单函数的奇偶性的方法;(2)能利用函数的奇偶性简化函数图像的绘制过程。

教学2、能力目标:(1)重视基础知识的教学、基本技能的训练和能力的培养; 目标(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造性地解决问题;(3)通过教师指导总结知识结论,培养学生的抽象概括能力和逻辑思维能力。

3、德育目标:通过自主探索,培养学生的动手实践能力,激发学生学习数学的兴趣,陶冶学生的情操,培养学生坚忍不拔的意志、实事求是的科学学习态度和勇于创新的精神。

函数奇偶性的概念及函数奇偶性的判断教学重点教学对函数奇偶性定义的掌握和灵活运用难点1、教法根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采教学用以引导发现法为主,直观演示法、设疑诱导法、类比法为辅的教学方式。

教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,方法诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

2、学法让学生在“观察一归纳一应用”的学习过程中,自主参与知识的产生、发展、形成的过程,使学生掌握知识。

教学教学内容师生活动教学设计意图过程观察下面两张图片:通过让学生观察图片导入新课,让学直观感受生感受到数学来源于一、生活中的对称生活,数学与生活是美。

创设密切相关的,从而激发学生浓厚的学习兴情境 ?麦当劳的标志 ?风车趣。

问题1:图像有何共同特点, 引入1新课问题2:你能回忆几类常见函数及指出这两类就是图像吗,请找出哪些关于轴对称,哪本节课要研究和学习些关于原点成中心对称。

1、关于y轴对的对象。

y y 称的轴对称函数图像:??? x x O 2、关于原点对 o 称的中心对称函数图像:?? 1fxx(),? ? fx(), x y yx x O o2f(x),a ? ? f(x),xyx 以提问的方式,O 引出本节课的课题 f(x),x? ----如何用数学语言来描述这种图像的对问题3:如何从数学角度,用数称特征。

人教A版高中数学必修一函数的基本性质奇偶性教案(1)

人教A版高中数学必修一函数的基本性质奇偶性教案(1)

1.3函数的基本性质-----奇偶性(一)教学目标1.知识与技能:使学生理解奇函数、偶函数的概念,学会运用定义判断函数的奇偶性.2.过程与方法:通过设置问题情境培养学生判断、推断的能力.3.情感、态度与价值观:通过绘制和展示优美的函数图象来陶冶学生的情操. 通过组织学生分组讨论,培养学生主动交流的合作精神,使学生学会认识事物的特殊性和一般性之间的关系,培养学生善于探索的思维品质.(二)教学重点与难点重点:函数的奇偶性的概念;难点:函数奇偶性的判断.(三)教学方法应用观察、归纳、启发探究相结合的教学方法,通过设置问题引导学生观察分析归纳,形成概念,使学生在独立思考的基础上进行合作交流,在思考、探索和交流的过程中获得对函数奇偶性的全面的体验和理解. 对于奇偶性的应用采取讲练结合的方式进行处理,使学生边学边练,及时巩固.(四)教学过程一.复习与回顾1、在初中学习的轴对称图形和中心对称图形的定义是什么?2、要求学生同桌两人分别画出函数f (x) =x3与g (x) = x2的图象.3、多媒体屏幕上展示函数f (x) =x3和函数g (x) = x2的图象,并让学生分别求出x =±3,x =±2,x=±12,…的函数值,同时令两个函数图象上对应的点在两个函数图象上闪现,让学生发现两个函数的对称性反映到函数值上具有的特性:f (–x) = –f (x),g (–x) = g (x). 然后通过解析式给出证明,进一步说明这两个特性对定义域内的任意一个x都成立.二.新课讲授1、奇函数、偶函数的定义:奇函数:设函数y = f (x)的定义域为D,如果对D内的任意一个x,都有f (–x) = –f (x),则这个函数叫奇函数.偶函数:设函数y = g (x)的定义域为D,如果对D内的任意一个x,都有g (–x) = g (x),则这个函数叫做偶函数.问题1:奇函数、偶函数的定义中有“任意”二字,说明函数的奇偶性是怎样的一个性质?与单调性有何区别?强调定义中“任意”二字,说明函数的奇偶性在定义域上的一个整体性质,它不同于函数的单调性 . 问题2:–x与x在几何上有何关系?具有奇偶性的函数的定义域有何特征?奇函数与偶函数的定义域的特征是关于原点对称.问题3:结合函数f (x) =x3的图象回答以下问题:(1)对于任意一个奇函数f (x),图象上的点P (x,f (x))关于原点对称点P′的坐标是什么?点P′是否也在函数f (x)的图象上?由此可得到怎样的结论.(2)如果一个函数的图象是以坐标原点为对称中心的中心对称图形,能否判断它的奇偶性?2、奇函数与偶函数图象的对称性:如果一个函数是奇函数,则这个函数的图象以坐标原点为对称中心的中心对称图形. 反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数.如果一个函数是偶函数,则它的图形是以y轴为对称轴的轴对称图形;反之,如果一个函数的图象关于y轴对称,则这个函数是偶函数.3、举例分析例1 判断下列函数的奇偶性;(1)f (x) = x + x3 +x5;(奇)(2)f (x) = x2 +1;(偶)(3)f (x) = x + 1;(非奇非偶)(4)f (x) = x2,x∈[–1,3];(非奇非偶)(5)f (x) = 0.(既是奇函数又是偶函数的函数是函数值为0的常值函数. 前提是定义域关于原点对称). 归纳:(1)根据定义判断一个函数是奇函数还是偶函数的方法和步骤是:第一步先判断函数的定义域是否关于原点对称;第二步判断f (–x) = f (x)还是判断f (–x) = –f (x).(2)对于一个函数来说,它的奇偶性有四种可能:是奇函数但不是偶函数;是偶函数但不是奇函数;既是奇函数又是偶函数;既不是奇函数也不是偶函数.学生练习:1、判断下列函数的是否具有奇偶性:(1) f (x) = x + x3;(奇)(2) f (x) = –x2;(偶)(3) h (x) = x3 +1;(非奇非偶)(4) k (x) =21 1x+,x[–1,2];(非奇非偶)(5) f (x) = (x + 1) (x – 1);(偶)(6) g (x) = x (x + 1);(非奇非偶)(7) h (x) = x;(奇)(8) k (x) =211x-.(偶)2、判断下列论断是否正确:(1)如果一个函数的定义域关于坐标原点对称,则这个函数关于原点对称且这个函数为奇函数;(错)(2)如果一个函数为偶函数,则它的定义域关于坐标原点对称,(对)(3)如果一个函数定义域关于坐标原点对称,则这个函数为偶函数;(错)(4)如果一个函数的图象关于y轴对称,则这个函数为偶函数. (对)3、如果f (0) = a≠0,函数f (x)可以是奇函数吗?可以是偶函数吗?为什么?(不能为奇函数但可以是偶函数)4、如果函数f (x)、g (x)为定义域相同的偶函数,试问F (x) =f (x) + g (x)是不是偶函数?是不是奇函数?为什么?(偶函数)5、如图,给出了奇函数y = f (x)的局部图象,求f (– 4).6、如图,给出了偶函数y = f (x)的局部图象,试比较f (1)与f (3) 的大小.例2 (1)设f (x)是偶函数,g (x)是奇函数,且f (x) + g (x) =11x+,求函数f (x),g (x)的解析式;(2)设函数f (x)是定义在(–∞,0)∪(0,+∞)上的奇函数,又f (x)在(0,+∞)上是减函数,且f (x)<0,试判断函数F (x) =1()f x在(–∞,0)上的单调性,并给出证明.解析:(1)∵f (x)是偶函数,g (x)是奇函数,∴f (–x) = f (x),g (–x) = –g (x),由f (x) + g (x) =11x-①用–x代换x得f (–x) + g (–x) =11x--,∴f (x ) –g (x ) =11x --, ②(① + ②)÷2 = 得f (x ) =211x -; (① – ②)÷2 = 得g (x ) =21x x -. (2)F (x )在(–∞,0)是中增函数,以下进行证明:设x 1,x 2–∞,0),且x 1<x 2.则△x = x 2 – x 1>0且–x 1,–x 2(0,+∞), 且–x 1>– x 2,则△(–x ) = (–x 2) – (–x 1) = x 1–x 2 = –△x <0,∵f (x )在(0,+∞)上是减函数,∴f (–x 2) – f (–x 1)>0 ① 又∵f (x )在 (–∞,0)∪(0,+∞)上是奇函数,∴f (–x 1) = – f (x 1),f (–x 2) = – f (x 2), 由①式得 – f (x 2) + f (x 1) >0,即f (x 1) – f (x 2)>0.当x 1<x 2<0时,F (x 2) – F (x 1) =122112()()11()()()()f x f x f x f x f x f x --=⋅,又∵f (x ) 在(0,+∞)上总小于0,∴f (x 1) = – f (–x 1)>0,f (x 2) = – f (–x 2)>0,f (x 1)·f (x 2)>0,又f (x 1) – f (x 2)>0,∴F (x 2) – F (x 1)>0且△x = x 2 – x 1>0,故F (x ) =1()f x 在(–∞,0)上是增函数.三.归纳总结:从知识、方法两个方面来对本节课的内容进行归纳总结.四.布置作业: 习案:作业11。

高一数学必修一函数奇偶性教学教案

高一数学必修一函数奇偶性教学教案

函数奇偶性的教学教案一、教学目标理解函数奇偶性的概念及性质;能够判断函数的奇偶性,并了解常见函数的奇偶性;学会应用函数奇偶性解决实际问题;培养学生的数学思维能力和创新意识。

二、教学内容本节课教学内容为函数的奇偶性,包括奇函数、偶函数、非奇非偶函数等概念及其判断方法。

三、教学过程导入新课通过复习函数的定义及性质,引出函数的奇偶性。

新课教学(1)奇函数和偶函数的概念定义:对于函数f(x),如果对于任意一个x∈D(D为函数的定义域),都有f(-x)=f(x),那么函数f(x)称为偶函数;如果对于任意一个x∈D,都有f(-x)=-f(x),那么函数f(x)称为奇函数。

(2)常见函数的奇偶性a. 正比例函数f(x)=kx (k≠0)是奇函数,因为f(-x)=-f(x)。

b. 一次函数f(x)=kx+b (k≠0)是非奇非偶函数,因为f(-x)=kx-b≠f(x)。

c. 反比例函数f(x)=k/x (k≠0)是奇函数,因为f(-x)=-f(x)。

d. 二次函数f(x)=ax^2+bx+c (a≠0)是非奇非偶函数,因为f(-x)=ax^2-bx+c≠f(x)。

(3)如何判断函数的奇偶性a. 首先确定函数的定义域是否关于原点对称;b. 其次计算f(-x)与f(x)或-f(x)的关系,判断函数是奇函数、偶函数还是非奇非偶函数。

(4)应用举例通过具体例子的判断,加深学生对函数奇偶性的理解。

课堂练习(1)让学生判断一些函数的奇偶性;(2)让学生自己举出一些函数的奇偶性的例子。

四、教学反思本节课教学内容比较简单,学生容易理解。

但需要注意一些细节,如:判断函数的奇偶性时,首先要确定函数的定义域是否关于原点对称;其次要计算f(-x)与f(x)或-f(x)的关系。

在实际应用中,要注意将函数的奇偶性与函数的单调性、周期性等其他性质结合起来,才能更好地理解函数的性质。

同时,培养学生的数学思维能力和创新意识也是本节课的重要目标之一。

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性》一、教学目标:1. 知识与技能:理解函数奇偶性的概念,能够判断函数的奇偶性;学会运用函数的奇偶性解决一些简单问题。

2. 过程与方法:通过观察、分析、归纳等方法,探索函数奇偶性的性质及其判断方法。

3. 情感态度价值观:培养学生的逻辑思维能力,提高学生对数学的兴趣。

二、教学内容:1. 函数奇偶性的定义2. 函数奇偶性的判断方法3. 函数奇偶性的性质三、教学重点与难点:1. 教学重点:函数奇偶性的定义及其判断方法。

2. 教学难点:函数奇偶性的性质及其应用。

四、教学方法:1. 采用问题驱动法,引导学生主动探究函数奇偶性的性质;2. 通过实例分析,让学生掌握函数奇偶性的判断方法;3. 利用小组讨论,培养学生的合作能力。

五、教学过程:1. 导入:回顾上一节课的内容,引导学生思考函数的奇偶性与什么有关。

2. 新课讲解:(1)介绍函数奇偶性的定义;(2)讲解函数奇偶性的判断方法;(3)分析函数奇偶性的性质。

3. 例题解析:选取典型例题,分析解题思路,引导学生运用函数奇偶性解决问题。

4. 课堂练习:布置练习题,让学生巩固所学内容。

5. 总结与拓展:总结本节课的主要内容,提出拓展问题,激发学生的学习兴趣。

6. 课后作业:布置适量作业,巩固所学知识。

注意:在教学过程中,要关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够掌握函数奇偶性的相关知识。

六、教学评估:1. 课堂提问:通过提问了解学生对函数奇偶性的理解程度,及时发现并解决学生学习中存在的问题。

2. 练习题解答:检查学生完成练习题的情况,评估学生对函数奇偶性知识的掌握情况。

3. 课后作业:批改课后作业,了解学生对课堂所学知识的巩固程度。

七、教学反思:1. 反思教学内容:检查教学内容是否全面、深入,是否适合学生的认知水平。

2. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。

3. 反思教学效果:总结本节课的教学成果,找出不足之处,为下一节课的教学做好准备。

人教版高中数学必修一《集合与函数概念》之《函数的奇偶性》教学案

人教版高中数学必修一《集合与函数概念》之《函数的奇偶性》教学案

1.3.2 奇偶性(一)自主学习1.掌握函数的奇偶性的定义和判断方法.2.理解奇函数和偶函数的图象的特点.1.阅读课本内容填写下表:2.(1)0. (2)有没有既是奇函数又是偶函数的函数?举例说明. f (x )=0,x ∈[-1,1].对点讲练函数奇偶性的判断【例1】 判断下列函数的奇偶性: (1)f (x )=x 3+x 5; (2)f (x )=2x 2+2xx +1;(3)f (x )=1-x 2+x 2-1;(4)f (x )=4-x 2|x +2|-2.解 (1)函数的定义域为R .f (-x )=(-x )3+(-x )5=-(x 3+x 5)=-f (x ). ∴f (x )是奇函数.(2)函数的定义域为{x |x ≠-1},不关于原点对称, ∴函数f (x )既不是奇函数也不是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,得x =±1,此时f (x )=0,x ∈{-1,1}.∴f (x )既是奇函数又是偶函数.(4)∵⎩⎪⎨⎪⎧4-x 2≥0,|x +2|-2≠0,∴f (x )的定义域为[-2,0)∪(0,2],关于原点对称. 此时f (x )=4-x 2|x +2|-2=4-x 2x .又f (-x )=4-(-x )2-x =-4-x 2x =-f (x ),∴f (x )=4-x 2|x +2|-2为奇函数.规律方法 (1)用定义判定函数奇偶性的一般步骤为: ①先求定义域,考查定义域是否关于原点对称;②有时需在定义域内对函数解析式进行变形、化简,再找f (-x )与f (x )的关系;判断函数奇偶性可用的变形形式:若f (-x )+f (x )=0,则f (x )为奇函数;若f (-x )-f (x )=0,则f (x )为偶函数. (2)奇(偶)函数的性质①f (x )为奇函数,定义域为D ,若0∈D ,则必有f (0)=0; ②在同一个关于原点对称的定义域上, 奇函数+奇函数=奇函数; 偶函数+偶函数=偶函数; 奇函数×奇函数=偶函数; 偶函数×偶函数=偶函数.变式迁移1 判断下列函数的奇偶性:(1)f (x )=x 2-|x |; (2)f (x )=|x +1|-|x -1|; (3)f (x )=x -1+1-x . 解 (1)既是奇函数,又是偶函数. ∵f (x )=0,f (-x )=0,∴f (-x )=f (x )且f (-x )=-f (x ). (2)函数的定义域为R ,∵f (-x )=|-x +1|-|-x -1|=|x -1|-|x +1| =-(|x +1|-|x -1|)=-f (x ), ∴f (x )=|x +1|-|x -1|是奇函数.(3)由⎩⎪⎨⎪⎧x -1≥0,1-x ≥0,知x =1,∴函数f (x )的定义域为{1},不关于原点对称.故f (x )既不是奇函数,也不是偶函数.分段函数奇偶性的证明【例2】 已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x +3 (x <0)-x 2+2x -3 (x >0),判断f (x )的奇偶性.解 (1)当x <0时,-x >0, f (-x )=-(-x )2+2(-x )-3 =-x 2-2x -3=-f (x ). (2)当x >0时,-x <0, f (-x )=(-x )2+2(-x )+3=x 2-2x +3=-(-x 2+2x -3)=-f (x ), 综上可知f (x )为奇函数.规律方法 (1)对于分段函数奇偶性的判断,须特别注意x 与-x 所满足的对应关系,如x >0时,f (x )满足f (x )=-x 2+2x -3,-x <0满足的不再是f (x )=-x 2+2x -3,而是f (x )=x 2+2x +3.(2)要对定义域内的自变量都要考察,如本例分为两种情况,如果本例只有(1)就说f (-x )=-f (x ),从而判断它是奇函数是错误的、不完整的.(3)分段函数的奇偶性判断有时也可通过函数图象的对称性加以判断. 变式迁移2 判断函数f (x )=⎩⎪⎨⎪⎧x -1 (x >0)0 (x =0)x +1 (x <0)的奇偶性.解 当x <0时,-x >0,f(-x)=-x-1=-(x+1)=-f(x),另一方面,当x>0时,-x<0,f(-x)=-x+1=-(x-1)=-f(x),而f(0)=0,∴f(x)是奇函数.抽象函数奇偶性的判断【例3】已知函数f(x),x∈R,若对任意实数a,b都有f(a+b)=f(a)+f(b).求证:f(x)为奇函数.证明设a=0,则f(b)=f(0)+f(b),∴f(0)=0.又设a=-x,b=x,则f(0)=f(-x)+f(x).∴f(-x)=-f(x).∴f(x)是奇函数.规律方法抽象函数奇偶性的判定是根据定义,即寻求f(x)与f(-x)的关系,需根据这样的目标,认真分析函数所满足的条件式的结构特征,灵活赋值.变式迁移3 函数f(x),x∈R,且f(x)不恒为0.若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1)·f(x2).求证:f(x)为偶函数.证明令x1=0,x2=x,则得f(x)+f(-x)=2f(0)f(x)①又令x1=x,x2=0,得f(x)+f(x)=2f(x)f(0)②由①、②得f(-x)=f(x),∴f(x)是偶函数.1.在奇函数与偶函数的定义域中,都要求x ∈D ,-x ∈D ,这就是说,一个函数不论是奇函数还是偶函数,它的定义域都一定关于坐标原点对称.如果一个函数的定义域关于坐标原点不对称,那么这个函数就失去了是奇函数或是偶函数的条件. 2.解题中可以灵活运用f (x )±f (-x )=0对奇偶性作出判断. 3.奇函数f (x )若在x =0处有意义,则必有f (0)=0.课时作业一、选择题 1.已知函数f (x )=1x 2(x ≠0),则这个函数( ) A .是奇函数 B .既是奇函数又是偶函数 C .是偶函数 D .既不是奇函数又不是偶函数 答案 C解析 ∵x ≠0,∴f (-x )=1(-x )2=1x 2=f (x ),∴f (x )是偶函数.2.奇函数y =f (x ) (x ∈R )的图象必过点( )A .(a ,f (-a ))B .(-a ,f (a ))C .(-a ,-f (a )) D.⎝⎛⎭⎫a ,f ⎝⎛⎭⎫1a 答案 C解析 ∵y =f (x )是奇函数,过(-a ,f (-a ))点, 而f (-a )=-f (a )∴y =f (x )过点(-a ,-f (a )).3.函数y =(x +1)(x -a )为偶函数,则a 等于( )A .-2B .-1C .1D .2 答案 C解析 结合选项,当a =1时,y =x 2-1, 显然为偶函数. 4.如图是一个由集合A 到集合B 的映射,这个映射表示的是( ) A .奇函数而非偶函数 B .偶函数而非奇函数 C .既是奇函数又是偶函数 D .既不是奇函数也不是偶函数 答案 C解析 因为f (x )=0,x ∈{-2,2}, 满足f (-x )=±f (x ).所以该映射表示的既是奇函数又是偶函数.5.若f (x )=ax 2+bx +c (a ≠0)是偶函数,则g (x )=ax 3+bx 2+cx 是( ) A .奇函数 B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数 答案 A解析 ∵f (x )是偶函数,∴f (-x )=f (x ), 即ax 2-bx +c =ax 2+bx +c ,∴b =0, 此时g (x )=ax 3+cx (a ≠0),由于g (-x )=a (-x )3+c (-x )=-(ax 3+cx )=-g (x ), ∴g (x )是奇函数. 二、填空题6.已知函数f (x )=ax 2+bx +3a +b 为偶函数,其定义域为[a -1,2a ],则a =________,b =________. 答案 13解析 ∵f (x )是定义域为[a -1,2a ]的偶函数, ∴a -1=-2a ,∴a =13.又f (-x )=f (x ),∴13x 2-bx +1+b =13x 2+bx +1+b . ∴b =0.7.下列四个结论:①偶函数的图象一定与纵轴相交;②奇函数的图象一定通过原点;③既是奇函数,又是偶函数的函数一定是f (x )=0 (x ∈R );④偶函数的图象关于y 轴对称,其中正确的命题有________个. 答案 1解析 ①错误,如偶函数f (x )=1x 2的图象与纵坐标轴不相交.②错误,如奇函数f (x )=1x不过原点.③错误,如f (x )=0,x ∈[-1,1],既是奇函数又是偶函数. ④正确.8.已知f (x )=ax 3+bx -8,且f (-2)=10,则f (2)=__________. 答案 -26解析 ∵f (-x )+f (x )=-16, ∴f (2)+f (-2)=-16, ∴f (2)=-26. 三、解答题9.判断下列函数的奇偶性.(1)f (x )=2x -1+1-2x ; (2)f (x )=x 4+x ; (3)f (x )=⎩⎪⎨⎪⎧x 2+2 (x >0)0 (x =0)-x 2-2 (x <0); (4)f (x )=x 3-x 2x -1.解 (1)定义域为⎩⎨⎧⎭⎬⎫12,不关于原点对称.该函数既不是奇函数也不是偶函数. (2)定义域为R ,关于原点对称, f (1)=2,f (-1)=0,∴f (-1)≠-f (1),f (-1)≠f (1), 故其既不是奇函数也不是偶函数. (3)定义域为R ,关于原点对称. 当x >0时,-x <0,f (-x )=-(-x )2-2=-(x 2+2)=-f (x ); 当x <0时,-x >0,f (-x )=(-x )2+2=-(-x 2-2)=-f (x ); 当x =0时,f (0)=0. 故该函数为奇函数.(4)函数的定义域为{x |x ∈R 且x ≠1},不关于原点对称. 所以函数f (x )=x 3-x 2x -1既不是奇函数也不是偶函数.10.已知f (x )是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x ,y ,f (x )都满足f (x ·y )=y ·f (x )+x ·f (y ).(1)求f (1),f (-1)的值; (2)判断f (x )的奇偶性,并说明理由. 解 (1)∵f (x )对任意x ,y 都有 f (x ·y )=y ·f (x )+x ·f (y ),令x =y =1时,有f (1·1)=1·f (1)+1·f (1), ∴f (1)=0.令x =y =-1时,有f [(-1)·(-1)] =(-1)·f (-1)+(-1)·f (-1),∴f (-1)=0. (2)∵f (x )对任意x ,y 都有 f (x ·y )=y ·f (x )+x ·f (y ), ∴令x =t ,y =-1, 有f (-t )=-f (t )+t ·f (-1). 将f (-1)=0代入得f (-t )=-f (t ), ∴函数f (x )在(-∞,+∞)上为奇函数.。

函数的奇偶性(教案)

函数的奇偶性(教案)

函数的奇偶性课题名称函数的奇偶性时间学生年级高一1班课时1课时教师魏丹一、教材分析本节内容是人教版《数学必修1》第一章第三节的教学内容.函数的奇偶性是函数的一条重要性质,从知识结构上看,函数的奇偶性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、幂函数、三角函数等内容的基础,在研究各种具体函数的性质、解决各种问题中都有广泛的应用.二、教学目标1.知识与技能:使学生理解函数奇偶性的概念、图象和性质,并能判断一些简单函数的奇偶性.2.过程与方法:通过设置问题情境培养学生判断、观察、归纳、推理的能力.在概念形成过程中,同时渗透数形结合和特殊到一般的数学思想方法.3.情感、态度与价值观:通过绘制和展示优美的函数图像来陶冶学生的情操. 使学生学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质.三、教学重难点分析教学重点:函数的奇偶性的概念及其建立过程,判断函数的奇偶性.教学难点:对函数奇偶性概念的理解与认识.四、学法指导学生对函数图像的对称性已具备了初步认识,教学中从观察实例开始,先观察函数图象的对称性,通过函数图象分析函数值表格,逐步领悟图形对称、点对称、数相等、式相等之间的关系,这样建立函数奇偶性的概念就水到渠成了.在课堂教学中,应该为学生创设宽容的课堂气氛,指导学生形成良好的学习习惯,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性.五、教法指导为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、设疑诱导法为辅.教学中注意结合学生所熟悉的生活实例、已掌握的对称函数的图象,让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃.六、教学过程教学环节教学过程创设情境给出两组图片,让学生感受生活中的对称美.在函数中也有这样的对称美观察以上函数图象,请从图象对称的角度将这些函数图象分类. 教学环节教学过程自主探究问题1:对于上述函数图像①③,你能否从函数解析式的角度来说明这种对称性?问题2:判断下列函数是否为偶函数.问题3:如果一个函数是偶函数,它的定义域应该有什么特点?偶函数的定义:如果对于函数f(x)的定义域内任意一个x,都有f(-x)= f(x),那么函数f(x)就叫做偶函数。

函数奇偶性的教案

函数奇偶性的教案

函数奇偶性的教案第一章:函数奇偶性的概念引入教学目标:1. 理解函数奇偶性的基本概念;2. 学会判断函数的奇偶性;3. 理解奇偶性在数学中的应用。

教学内容:1. 引入函数的概念;2. 介绍奇偶性的定义;3. 举例说明奇偶性的判断方法。

教学活动:1. 引导学生回顾函数的定义,强调函数的输入输出关系;2. 引入奇偶性的概念,解释奇偶性的含义;3. 通过具体例子,让学生学会判断函数的奇偶性;4. 练习判断一些简单函数的奇偶性;5. 引导学生思考奇偶性在数学中的应用,如物理中的对称性等。

教学评价:1. 检查学生对函数奇偶性概念的理解;2. 评估学生判断函数奇偶性的能力;3. 考察学生对奇偶性应用的理解。

第二章:偶函数的性质教学目标:1. 理解偶函数的定义及其性质;2. 学会运用偶函数的性质解决问题;3. 掌握偶函数图像的特点。

教学内容:1. 偶函数的定义及其性质;2. 偶函数图像的特点;3. 偶函数在实际问题中的应用。

教学活动:1. 引导学生回顾上一章所学的内容,强调奇偶性的概念;2. 引入偶函数的定义,解释偶函数的含义;3. 通过具体例子,让学生学会运用偶函数的性质解决问题;4. 练习运用偶函数性质解决一些实际问题;5. 引导学生思考偶函数图像的特点,分析偶函数在实际问题中的应用。

教学评价:1. 检查学生对偶函数定义及其性质的理解;2. 评估学生运用偶函数性质解决问题的能力;3. 考察学生对偶函数图像特点的认识。

第三章:奇函数的性质教学目标:1. 理解奇函数的定义及其性质;2. 学会运用奇函数的性质解决问题;3. 掌握奇函数图像的特点。

教学内容:1. 奇函数的定义及其性质;2. 奇函数图像的特点;3. 奇函数在实际问题中的应用。

教学活动:1. 引导学生回顾前两章所学的内容,强调奇偶性的概念;2. 引入奇函数的定义,解释奇函数的含义;3. 通过具体例子,让学生学会运用奇函数的性质解决问题;4. 练习运用奇函数性质解决一些实际问题;5. 引导学生思考奇函数图像的特点,分析奇函数在实际问题中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《函数的奇偶性》教案1
教学目标:
1.理解函数的奇偶性及其几何意义;会运用函数图象理解和研究函数的性质;会判断函数的奇偶性.
2.通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想.
3. 通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力.
教学重点难点:
重点:函数的奇偶性及其几何意义.
难点:判断函数的奇偶性的方法与格式.
教法与学法:
1.教学方法:启发引导.
2.学习指导:学生通过自己动手计算,独立地去经历发现,猜想与证明的全过程,从而建立奇偶函数的概念.
教学过程:
【创设情境导入新课】
【归纳小结,课堂延展】
教学设计说明
1.教材地位分析:
函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关联,而且为后面学习基本初等函数的性质作好了坚实的准备和基础.因此,本节课的内容是至关重要的,它对知识起到了承上启下的作用.
2.学生现实分析:
从学生认知角度看:由于学生是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃,敏捷,却缺乏冷静,深刻,因此考虑问题会片面,不严谨。

从学生的思维特点看,学生很难从前面所学的函数的单调性联系到函数图形的对称性反映了函数的奇偶性,这对学生的思维是一个突破.。

相关文档
最新文档