中职数学教案:直线与圆的方程的实际应用(全2课时)

合集下载

中职数学第八章《直线和圆的方程》全部教学设计7份教案(高教版)

中职数学第八章《直线和圆的方程》全部教学设计7份教案(高教版)

【课题】8.1 两点间的距离与线段中点的坐标【教学目标】知识目标:掌握两点间的距离公式与中点坐标公式;能力目标:用“数形结合”的方法,介绍两个公式.培养学生解决问题的能力与计算能力.【教学重点】两点间的距离公式与线段中点的坐标公式的运用【教学难点】两点间的距离公式的理解【教学设计】两点间距离公式和中点坐标公式是解析几何的基本公式,教材采用“知识回顾”的方式给出这两个公式.讲授时可结合刚学过的向量的坐标和向量的模的定义讲解,但讲解的重点应放在公式的应用上.例1是巩固性练习题.题目中,两个点的坐标既有正数,又有负数.讲授时,要强调两点间的距离公式的特点特别是坐标为负数的情况.例2是中点公式的知识巩固题目.通过连续使用公式(8.2),强化学生对公式的理解与运用.例3是本节两个公式的综合性题目,是知识的简单综合应用.要突出“解析法”,进行数学思维培养.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】212(==P P P P x、N、P、Q、R各点的坐标.在平面直角坐标系内,描出下列各点:(1,1)A、(3,4)B .并计算每两点之间的距离.第1题图12)(=-x x 01012-=⎧⎨-=-⎩x x y y y y图8-2【教师教学后记】【课题】8.2 直线的方程【教学目标】知识目标:(1)理解直线的倾角、斜率的概念; (2)掌握直线的倾角、斜率的计算方法. 能力目标:采用“数形结合”的方法,培养学生有条理地思考问题.【教学重点】直线的斜率公式的应用.【教学难点】直线的斜率概念和公式的理解.【教学设计】本教材采用的定义是:“当直线与x 轴相交于点P 时,以点P 为顶点,始边指向x 轴正方向,终边落在直线上的最小正角叫做直线的倾角.当直线与x 轴不相交(或重合)时,规定倾角为零角”.这样就使得关于角的概念一致起来.结合图形,让学生观察倾角的取值范围,要注意倾角的取值范围是[0,180) 而非 [0,180].教材中的“试一试”有助于巩固学生对倾角概念的理解.教材采用“数形结合”的方法,分成两种情况来研究斜率公式.教学中要注意这种分类讨论问题的思考方法的教育,培养学生有条理的思考问题.要强调应用斜率公式的条件12x x .例1是斜率概念及公式的巩固题目,属于简单题.通过例题加强对概念和公式的理解.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】图8-3动脑思考探索新知【新知识】为了确定直线对x轴的倾斜程度,我们引入直线的倾角的概念.轴垂直(如图8−5()3=.31,2)与点B上的任意两点,则直线此节的书面作业习题里没有【课题】8.2 直线的方程(二)【教学目标】知识目标:(1)了解直线与方程的关系;(2)掌握直线的点斜式方程、斜截式方程,理解直线的一般式方程.能力目标:培养学生解决问题的能力与计算能力.【教学重点】直线方程的点斜式、斜截式方程.【教学难点】根据已知条件,选择直线方程的适当形式求直线方程.【教学设计】采用“问题——分析——联系方程”的步骤,从学生熟知的一次函数图像入手,分析图像上的坐标与函数解析式的关系,把函数的解析式看作方程,图像是具有某种特征的平面点集(轨迹).很自然地建立直线和方程的关系,把函数的解析式看作方程是理解概念的关键.导出直线的点斜式方程过程,是从直线与方程的关系中的两个方面进行的.首先是直线上的任意一点的坐标都是方程的解,然后是以方程的解为坐标的点一定在这条直线上.直线的斜截式方程是直线的点斜式方程的特例.直线的斜截式方程与一次函数的解析式具有相同的形式.要强调公式中b的意义.直线的一般式方程的介绍,分两个层次来处理也是唯一的.首先,以问题的形式提出前面介绍的两种直线方程都可以化成一般的二元一次方程的形式.然后按照二元一次方程Ax By C++=的系数的不同取值,进行讨论.对CyB=-与CxA=-只是数形结合的进行说明.这种方式比较适合学生的认知特征.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】)y 为直线-x 11,)x y 在经过点图8-7上任取点(,)P x y (不同于0P 点) 0y y k x x -=-,1).αtan=,所以直线方程为图8-8B b,且斜即直线经过点(0,)3=.,由公式(8.4)【课题】8.3 两条直线的位置关系(一)【教学目标】知识目标:(1)掌握两条直线平行的条件;(2)能应用两条直线平行的条件解题.能力目标:培养学生的数学思维及分析问题和解决问题的能力.【教学重点】两条直线平行的条件.【教学难点】两条直线平行的判断及应用.【教学设计】从初中平面几何中两条直线平行的知识出发,通过“数”“形”结合的方式,讲解两条直线平行的判定方法,介绍两条直线平行的条件,学生容易接受.知识讲解的顺序为:.两条直线平行⇔同位角相等⇔倾斜角相等⇔9090⎧≠⇔⎨=⇔⎩αα倾斜角斜率相等;倾斜角斜率都不存在.教材都是采用利用“斜率与截距”判断位置关系的方法.其步骤为:首先将直线方程化成斜截式方程,再比较斜率与截距进行位置关系的判断.例1就是这种方法的巩固性题目.考虑到学生的实际状况和职业教育的特点,教材没有介绍利用直线的一般式方程来判断两条直线的位置关系.例2是利用平行条件求直线的方程的题目,属于基础性题.首先利用平行条件求出直线的斜率,从而写出直线的点斜式方程,最后将方程化为一般式方程.简单的解决问题的过程,蕴含着“解析法”的数学思想,要挖掘.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】当直线1l 、2l 的斜率都是与x 轴平行,所以1l 当两条直线1l 、直线1l 与直线2l 都与图8-11-11(1)【课题】8.3 两条直线的位置关系(二)【教学目标】知识目标:(1)掌握两条直线平行的条件; (2)能应用点到直线的距离公式解题. 能力目标:培养学生的数学思维及分析问题和解决问题的能力.【教学重点】两条直线的位置关系,点到直线的距离公式.【教学难点】两条直线的位置关系的判断及应用.【教学设计】与倾角的定义相类似,本教材将两条直线夹角的定义建立在任意角定义的基础上.两条直线相交所形成的最小正角叫做这两条直线的夹角.同时规定,两条直线平行或重合时两条直线的夹角为零角,这样两条直线的夹角的范围是0,90⎡⎤⎣⎦.教材采用“数形结合”、“看图说话”的方法,导入两条直线垂直的条件,过程简单易懂.两条直线垂直的实质就是这两条直线的夹角为90.运用垂直条件时,要注意斜率不存在的情况.例4是巩固性题目.属于基础性题.首先将直线的方程化为斜截式方程,再根据斜率判断两条直线垂直是本套教材判断两条直线垂直的主要方法.例5是利用垂直条件求直线的方程的题目,属于基础性题.首先利用垂直条件求出直线的斜率,然后写出直线的点斜式方程,最后将方程化为一般式方程.这一系列解题程序,蕴含着“解析法”的思想方法.需要强调,点到直线的距离公式中的直线方程必须是一般式方程.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】图8-12探索新知图8-13我们把两条直线相交所成的最小正角叫做这)是直线图8-148-1511tan BCk ABα==, 233tan tan()tan ==-=-=-AB BCααα180 121k k ⋅=-.上面的过程可以逆推,即若121k k ⋅=-,则1l ⊥由此得到结论(两条直线垂直的条件):2l1l【课题】8.4 圆(一)【教学目标】知识目标:(1)了解圆的定义;(2)掌握圆的标准方程和一般方程. 能力目标:培养学生解决问题的能力与计算能力.【教学重点】圆的标准方程和一般方程的理解与应用.【教学难点】对圆的标准方程和一般方程的正确认识.【教学设计】用“解析法”推导圆的标准方程的过程,学生比较容易掌握,可以引导学生自己完成.要强化对圆的标准方程()()222x a y b r -+-=的认识,其中半径为r ,圆心坐标为(),O a b '.经常容易发生错误的地方是认为半径是2r ,圆心坐标为(),O a b '--.教学中应予以强调,反复强化.例1和例2是圆的标准方程的知识巩固性题目,属于基础性题目.可以由学生自己完成.通过例题,进一步熟悉圆的标准方程.再介绍圆的一般方程时,教材首先将圆的标准方程展开,分析系数特点,然后将方程配方成圆的标准方程.这一系列的过程,不但介绍圆的一般方程及其与标准方程的联系,还显示出用代数的方法研究几何问题的魅力.例3是圆的方程巩固性题目.题中的两种解法,都是经常使用的方法.特别是解法1,通常采用配方法,将方程化为标准方程,求出圆心坐标与半径.这类题目的训练,有助于学生数学运算能力的提高.求圆的方程,基本有两种基本方法.一种是根据已知条件求出圆心和半径,然后写出圆的标准方程,例4就是这种类型的基础性题目;另一种是,设出圆的方程,然后,利用待定系数法确定相应的常数,例5就是这种类型的基础性题目.【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】【课题】8.4 圆(二)【教学目标】知识目标:(1)理解直线和圆的位置关系;(2)了解直线与圆相切在实际中的应用.能力目标:培养学生的数学思维及分析问题和解决问题的能力.【教学重点】直线与圆的位置关系的理解和掌握.【教学难点】直线与圆的位置关系的判定.【教学设计】直线与圆的位置关系的判定是本节的难点,将直线的方程与圆的方程联立组成方程组,通过对方程组的解的讨论,来研究直线和圆的位置关系,理论上讲是很简单的,但是,实际操作的运算过程很麻烦.教材采用“数”“形”结合的方式,利用比较半径与圆心到直线的距离大小的关系来讨论的方法,相对比较简单.平面几何中,学生对这样判断直线与圆的位置关系比较熟悉,现在通过比较半径与圆心到直线的距离的大小,来判定直线与圆的位置关系,学生容易接受,例6就是采用这种方法进行讨论的.经过一点求圆的切线方程,通常作法是设出点斜式方程,利用圆心到切线的距离与半径相等来确定斜率,从而得到切线方程,其中蕴含着“待定系数法”和“解析法”等数学方法.例8是直线在科技领域中的应用知识,根据光学原理,反射角等于入射角,利用直线的斜率公式可以求得反射点P的坐标.例9是圆在生产实践中的应用知识.解决这类实际问题首先要选择直角坐标系.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】动脑思考 探索新知 【新知识】图8-21图8-22。

人教版中职数学(基础模块)下册8.5《直线与圆的方程的应用》word教学设计

人教版中职数学(基础模块)下册8.5《直线与圆的方程的应用》word教学设计

8.5直线与圆的方程的应用【教学目标】1. 能根据实际问题中的数形关系,运用直线和圆的方程解决问题.2. 通过本节例题教学,让学生认识数学与人类生活的密切联系,培养学生应用所学的数学知识解决实际问题的意识.【教学重点】直线和圆的方程在解决实际问题中的应用.【教学难点】根据实际问题中的数量关系列出直线和圆的方程.【教学方法】这节课主要采用讲练结合的教学法. 本节课紧密联系学生熟悉的生产和生活背景,有针对性地选择了可以利用直线方程和圆的方程解决的实际问题,通过师生共同研究,不仅可以巩固直线与圆的有关内容,并且提高了学生运用所学数学知识解决实际问题的意识和能力. 【教学过程】环节教学内容师生互动设计意图1 •点到直线的距离公式是什学生回答,教师点评. 复习所学知引么?师: 前面我们学习了直线与识,为本节学习做入 2 •已知圆上不共线的三点,女口圆的方程,下面学习直线与圆的准备•何来求圆的方程?方程的应用的例子. 引入课题.例1在一次设计电路板的实直线方程的应验中,张明设计的电路板如图(教材图8-23)所示(单位:cm),现在张明要从P点连一条线到线段AB, 他想知道这条线的最短长度,你能替他计算出来吗?(精确到0.01 cm)用.解:不难看出,P到直线AB的教师引导学生建立直角坐标解题过程中注距离就是张明想知道的最短距离,所系. 意引导学生建立直以可以利用直线的有关知识来解. 角坐标系.以这块电路板的左下角为原点,师: 在所建立的直角坐标系建立平面直角坐标系,由图中尺寸可中, A, B, P三点的坐标各是什新知么?课A(2 , 6), B(16 , 8), P(4,10).因此直线AB的斜率师: 直线AB的斜率怎么求?8 —6 1k= = 7,16—2 7师: 求出直线AB的斜率后,所以直线AB的方程为怎么求直线AB的方程?y —6 = y(x—2), 师: 你能求出P到直线的距即x—7y + 40= 0. 离吗?从而可知P到直线AB的距离为14—7^0+401 斗.时P 研3.68,因为我们就这么一辈子,几十年的光景,无法重来,开心也好,不开心也罢,怎么都是活着,那么何不让自己开开心心的过好每一天呢!生活虽辛苦,但我们一定要笑着过,以积极乐观的心态让日子过得有滋有味,这样才不白来人世走一遭,才会无怨无悔。

人教版中职数学基础模块下册《直线与圆的方程的应用》教学设计 (一)

人教版中职数学基础模块下册《直线与圆的方程的应用》教学设计 (一)

人教版中职数学基础模块下册《直线与圆的方程的应用》教学设计 (一)人教版中职数学基础模块下册《直线与圆的方程的应用》教学设计一、教学目标1.学习直线的一般式方程和圆的标准式方程。

2.掌握直线与圆的方程的应用。

3.加深对直线和圆的认识,提高解决实际问题的能力。

二、教学重点1.掌握直线的一般式方程和圆的标准式方程。

2.理解直线与圆的方程的应用。

三、教学难点1.理解和应用直线与圆的方程。

2.解决实际问题时的思维方法和技巧。

四、教学过程1.引入(1)出示一些图形,引导学生认识直线和圆。

(2)出示一些实际问题,引导学生思考如何应用直线和圆的方程来解决问题。

2.教学主体(1)直线的一般式方程①导入难点:由点斜式方程推导一般式方程。

②讲解一般式方程的含义和用法。

③练习:给出直线的两点坐标,求解一般式方程。

(2)圆的标准式方程①导入难点:先讲解圆的标准式方程含义及其由中心点和半径推导。

②讲解圆的标准式方程的应用:求解圆心、半径,求解圆与直线的交点。

③练习:给出圆的半径和截距,求解圆心坐标和圆的方程。

(3)直线与圆的方程的应用①导入难点:从实际问题入手,如两个圆相交,求解交点坐标。

②讲解直线与圆的应用技巧,如如何求解直线和圆的交点等。

③练习:出示一些实际问题,引导学生用直线和圆的方程来解决问题。

3.总结总结本课时所学到的知识点和技巧,并强调应用技能的重要性。

五、教学辅助1.多媒体设备:投影仪。

2.教学课件:制作直线方程,制作圆方程。

3.题目练习:编写题目练习和解答。

六、教学评估1.课堂练习:课上出题,学生现场解答。

2.作业考核:留作业,检查学生课下巩固情况。

七、教学反思本课时教学重点难点在于理解和应用直线与圆的方程,在教学过程中需要通过举实际问题来引导学生思考,从而更好地理解和掌握相关知识和技能。

同时还需注意给学生提供充足的练习和检查,以巩固和提高学习效果。

直线与圆的方程的应用教学设计

直线与圆的方程的应用教学设计

直线与圆的方程的应用教学设计教学目标:1.知识目标:掌握直线与圆的方程的应用,能够正确推导出直线与圆的交点坐标和直线是否与圆相交的判断。

2.能力目标:培养学生运用直线与圆的方程解决实际问题的能力。

3.情感目标:培养学生合作探究、独立思考的态度和习惯。

教学重点:理解直线与圆交点坐标的推导过程,掌握对应方法与技巧。

教学难点:利用直线与圆的方程解决实际问题。

教学过程:一、导入(5分钟)通过展示一个例子,引出问题:“给定一个圆和一条直线,如何确定它们的交点的坐标?”二、知识讲解(15分钟)1.提要求:教师依次向学生提问,引导学生思考求解交点坐标的问题。

-如何找到直线与圆的交点?-如何确定直线与圆是否相交?2.教师讲解:教师介绍直线与圆的方程及其应用,并讲解求解直线与圆交点坐标的步骤。

- 直线方程:y = kx + b-圆方程:(x-a)²+(y-b)²=r²-求解交点坐标:联立直线方程和圆方程,解方程组得到交点坐标。

-判断直线与圆是否相交:将直线方程代入圆方程,判断是否有实数解,若有则相交,若无则不相交。

3.导入问题解决:教师给出具体的例题,引导学生利用所学知识求解交点坐标。

三、示范演练(20分钟)1.教师示范演练:教师选取一道典型的例题,结合黑板和投影仪,演示如何通过解方程组求解交点坐标。

2.学生模仿演练:学生在纸上模仿教师的示范演练,逐步求解其他例题。

教师及时指导和纠正。

四、合作探究(20分钟)1.学生小组活动:将学生分为小组,每个小组选择一道直线与圆的问题,并自主解决。

学生之间可以互相讨论、合作,但每个学生需独立写出解题过程和答案。

2.小组汇报:每个小组派一名代表进行汇报,其他小组可以提问和讨论。

教师在汇报过程中及时指导、点评和纠正,引导学生探讨和总结在实际问题中应用直线与圆方程的方法。

五、拓展延伸(15分钟)1.学生自主拓展:学生自选一个与直线与圆相关的问题,并通过求解方程组来解决问题。

直线与圆的方程的应用教案

直线与圆的方程的应用教案

直线与圆的方程的应用教案教案主题:直线与圆的方程的应用教案目标:1.了解直线和圆的方程的基本形式及意义。

2.掌握直线与圆的方程的应用,包括求直线与圆的交点、条件判断等。

3.能够运用直线与圆的方程解决实际问题。

教学内容:1.直线方程的基本形式与意义a.直线方程的一般形式:Ax+By+C=0b. 直线方程的斜截式:y = kx + b,斜率k和截距b的意义c.直线方程的点斜式:y-y₁=k(x-x₁),点斜式与斜截式的转换2.圆的方程的基本形式与意义a.圆的标准方程:(x-a)²+(y-b)²=r²,圆心坐标为(a,b)、半径为rb.圆的一般方程:x²+y²+Dx+Ey+F=0,圆心坐标为(-D/2,-E/2)、半径为√(D²+E²-4F)/23.直线与圆的交点的求解a.直线与圆联立方程求解:将直线方程代入圆的方程,得到二次方程,求解交点坐标。

4.条件判断a.判断直线和圆的关系:联立直线方程和圆的方程,判断二次方程的解情况。

b.判断直线是否与圆相切、相交或相离。

5.应用实例分析与解决a.实际问题的建模:将实际问题转化为直线与圆的方程,并解决问题。

b.计算过程的解释:解释每一步的计算过程,以增强学生对于问题求解思路的理解。

教学步骤:导入与引导:1.出示一个直线和一个圆的图形,询问学生如何表示直线和圆的方程。

2.引导学生回顾直线方程的三种形式和圆的两种形式,并讲解各个形式的意义。

知识讲解与归纳:3.讲解直线方程的一般形式、斜截式和点斜式的含义,并分别以实例进行演示。

4.讲解圆的标准方程和一般方程的含义,并以实例进行演示。

知识运用与练习:5.分组进行讨论,给出一个直线方程和一个圆的方程,要求求解直线与圆的交点。

6.学生自主运用直线与圆的方程进行计算,掌握求解直线与圆交点的方法。

7.组织学生进行条件判断练习,判断直线与圆的关系(相切、相交、相离)。

中职数学直线与圆的方程教案

中职数学直线与圆的方程教案

x x 职业技术教育中心教案复习引入:新授:1.平面内两点间的距离设A ,B 为平面上两点.若A ,B 都在x 轴(数轴)上(见图7-3(1)),且坐标为A (x 1,0), B (x 2,0),初中我们已经学过,数轴上A ,B 两点的距离为 |AB |=|x 2-x 1|. 同理,若A ,B 都在y 轴上(见图7-3(2)),坐标为A (0,y 1), B (0,y 2),则A ,B 间的距离 |AB |=|y 2-y 1|.若A ,B 至少有一点不在坐标轴上,设 A , B 的坐标为A (x 1,y 1), B(x 2,y 2).过A ,B分别作x ,y 轴的垂线,垂线延长交于C (见图7-3(3)),不难看出C 点的坐标为(x 1,y 2), 则 |AC |=|y 2-y 1|,|BC |=|x 2-x 1|,由勾股定理 |AB |=22BC AC +=221221)()(y y x x -+-. 由此得平面内两点间的距离公式:已知平面内两点A (x 1,y 1), B (x 2,y 2),则|AB |=221221)()(y y x x -+-. (7-1-1)例1 求A (-4,4),B (8,10)间的距离|AB |.解 x 1=-4, y 1=4;x 2=8, y 2=10,应用公式(7-1-1),|AB |=)()(21221y y x x -+-=2210484)()(-+--=180=65. 例2 已知点A (-1,-1), B (b ,5),且|AB |=10,求b . 解:据两点间距离公式,|AB |=36)1()]1(5[)]1([222++=--+--b b =10,解得 b =7或b =-9.例3 站点P 在站点A 的正西9km 处,另一站点Q 位于P ,A 之间,距P 为5km ,且东西向距A 为6km ,问南北向距A 多少?解 以A 为原点、正东方向为x 轴正向建立坐标系如图7-4,则P 的坐标为(-9,0),|PQ |=9.设Q 坐标为(x ,y ), 图7-3(2)xy O y 1 y 2 • • B A 图7-3(1) x y O x 1 x 2•• B A 图7-3(3)则x =-6,据题意要求出y . 据两点间距离公式(7-1-1)|PQ |=22069)()(y -++-=5,解得 y =±4,即站点Q 在南北向距A 是4km .例4 如图7-5,点A ,B ,C ,D 构成一个平行四边形, 求点D 的横坐标x .解 因为ABCD 是平行四边形,所以对边相等, |AB |=|CD |, |AC |=|BD |. 由距离公式(7-1-1)|AB |=5311222=-++-)()(; |AC |=17212222=-+--)()(;|CD |=42242222+-=-+-)()()(x x|BD |=11341222++=-++)()()(x x 由|AC |=|BD |得11172++=)(x ,x =-1±4;由|AB |=|CD |,知x 只能取-1+4=3.所以当点A ,B ,C ,D 构成一个平行四边形时,点D 的横坐标x =3,即D 的坐标为(3,4). 课内练习1 1. 求|AB |:(1)A (8,6),B (2,1);(2)A (-2,4),B (-2,-2).2. 已知A (a ,-5),B (0,10)间的距离为17,求a .3. 已知A (2,1),B (-1,2),C (5,y ),且∆ABC 为等腰三角形,求y 。

[精品]人教版中职数学教案第八章直线和圆的方程[份教案]DOC

[精品]人教版中职数学教案第八章直线和圆的方程[份教案]DOC

8.1.1 数轴上的距离公式与中点公式【教学目标】1. 理解数轴上的点与实数之间的一一对应关系,会表示数轴上某一点的坐标.2. 掌握数轴上的距离公式和中点公式,并能用这两个公式解决有关问题.3. 培养学生勇于发现、勇于探索的精神;培养学生合作交流等良好品质.【教学重点】数轴上的距离公式、中点公式.【教学难点】距离公式与中点公式的应用.【教学方法】这节课主要采用问题解决法和分组教学法.先从数轴入手,在使学生进一步明确了数与数轴上的点的一一对应关系后,给出数轴上点的坐标的定义及记法,在此基础上进一步学习数轴上距离公式及中点公式.本节教学中,始终要坚持数形结合的思想和方法,让学生积极大胆的猜想,在探索过程中发现和归纳两个公式,以此增强学生的参与意识,提高学生的学习兴趣.8.1.2 平面直角坐标系中的距离公式和中点公式【教学目标】1. 了解平面直角坐标系中的距离公式和中点公式的推导过程.2. 掌握平面直角坐标系中的距离公式和中点公式,并能熟练应用这两个公式解决有关问题.3. 培养学生勇于发现、勇于探索的精神以及合作交流等良好品质.【教学重点】平面直角坐标系中的距离公式、中点公式.【教学难点】距离公式与中点公式的应用.【教学方法】这节课主要采用问题解决法和分组教学法.本节教学中,将平面(二维)的数量关系转化为轴(一维)上的数量关系是关键.先从复习上节内容入手,通过构建直角三角形,将两点间的距离转化为直角三角形的斜边长,从而利用勾股定理求出两点间的距离.最后讨论了平面直角坐标系中的中点公式.教学过程中,通过分组抢答的形式,充分调动学生的积极性.8.2.1 直线与方程【教学目标】1. 理解直线的方程的概念,会判断一个点是否在一条直线上.2. 培养学生勇于发现、勇于探索的精神,培养学生合作交流等良好品质.【教学重点】直线的特征性质,直线的方程的概念.【教学难点】直线的方程的概念.【教学方法】这节课主要采用分组探究教学法.本节首先利用一次函数的解析式与图象的关系,揭示代数方程与图形之间的关系,然后用集合表示的性质描述法阐述直线与方程的对应关系,进而给出直线的方程的概念.本节教学中,要突出用集合的观点完成由形到数、由数到形的转化.【教学过程】8.2.2 直线的倾斜角与斜率【教学目标】1. 掌握直线的倾斜角的概念,知道直线的倾斜角的范围.2. 理解直线的斜率,掌握过两点的直线的斜率公式,了解倾斜角与斜率之间的关系.3. 让学生从学习中体会到用代数方法解决几何问题的优点,能够从不同角度去分析问题,体会代数与几何结合的数学魅力.【教学重点】直线的倾斜角和斜率.【教学难点】直线的斜率.【教学方法】这节课主要采用讲练结合的教学法.本节首先通过观察同一坐标系中的两条直线引入了直线倾斜角的定义,在明确了倾斜角范围后,定义了直线的斜率,最后讨论了直线斜率与直线上两个不同点坐标之间的关系.直线的倾斜角和斜率是反映直线相对于x轴正方向的倾斜程度的,是研究两条直线位置关系的重要依据,要引导学生正确理解概念.8.2.3 直线方程的几种形式(二)【教学目标】1. 掌握直线的一般式,理解二元一次方程与直线的对应关系.2. 了解直线的方向向量和法向量的概念,了解直线的方向向量、法向量及斜率之间的关系.3. 培养学生事物之间的普遍联系与互相转化的辩证唯物主义观点.【教学重点】直线的一般式方程,直线的方向向量和法向量.【教学难点】二元一次方法与直线的对应关系,直线的方向向量、法向量与斜率的关系.【教学方法】这节课主要采用讲练结合、小组合作探究的教学法.首先从所学的直线方程入手,揭示所学过的直线方程都可以表示成Ax+By+C=0的形式,引入了直线的一般方程的概念.在引入直线方程的一般式后,介绍了直线的方向向量和法向量的概念,进而讨论了方向向量与斜率的关系、法向量与一般式方程中一次项系数之间的关系,为以后进一步讨论两条直线的位置关系等内容打下基础.8.2.3 直线方程的几种形式(一)【教学目标】1. 掌握直线的点斜式、斜截式,能根据条件熟练地求出直线的点斜式和斜截式方程.2. 了解根据直线上两点坐标求直线方程的方法.3. 让学生从学习中进一步体会用代数方法解决几何问题的优点,体会用数形结合的方法解决问题的魅力.【教学重点】直线的点斜式与斜截式方程.【教学难点】理解直线的点斜式方程的推导过程.【教学方法】这节课主要采用讲练结合、小组合作探究的教学法.引导学生理解推导直线方程的点斜式的过程,认识到点斜式直线方程与斜率坐标公式之间的关系.对于直线方程的斜截式,要使学生认识到斜截式是点斜式的特殊情形.教材在例2中给出了已知两点求直线方程的方法,教师可针对学生的实际情况补充直线方程的两点式,但要求不宜过高.【教学过程】8.2.4 直线与直线的位置关系(二)【教学目标】1. 掌握两条直线垂直的条件,能利用直线的斜率或法向量来判断两条直线是否垂直.2. 会求过已知点且与已知直线垂直的直线.3. 让学生从学习中体会到用代数方法研究几何图形性质的思想,体会代数与几何结合的数学魅力.【教学重点】两条直线垂直的条件.【教学难点】两条直线垂直的条件的应用.【教学方法】这节课主要采用讲练结合、小组合作探究的教学法.本节课从直线斜截式和一般式两个方向讨论了两直线垂直的条件:先由直线的斜截式方程,讨论了两条直线垂直时的斜率之间的关系,即l1⊥l2⇔k1k2=-1;再由直线的一般式方程讨论了两条直线垂直时的条件,即l1⊥l2⇔A1A2+B1B2=0.8.2.4 直线与直线的位置关系(一)【教学目标】1. 会求两条直线的交点,理解两条直线的三种位置关系(平行、相交、重合)与相应的直线方程所组成的二元一次方程组的解(无解、有唯一解、有无数个解)的关系.2. 掌握用直线的斜率来判断两直线位置关系的方法.3. 让学生从学习中体会到用代数方法研究几何图形性质的思想,体会代数与几何结合的数学魅力.【教学重点】两条直线平行或相交的条件.【教学难点】求两条直线的交点.【教学方法】这节课主要采用讲练结合、小组合作探究的教学法.本节课首先通过问题引入本节要研究的内容,在讨论了两条直线的位置关系与相应的直线所组成的二元一次方程组解的对应关系后,进一步研究了用直线的斜率来判断两条直线位置关系的方法.8.2.5 点到直线的距离【教学目标】1. 掌握点到直线距离公式,会运用公式解决有关点到直线距离的简单问题,会求两条平行线之间的距离.2. 培养学生数形结合的能力,综合应用知识解决问题的能力,类比思维能力.训练学生由特殊到一般的思想方法.【教学重点】点到直线的距离公式.【教学难点】点到直线的距离公式的应用.【教学方法】这节课主要采用讲练结合的方法.首先复习了点到直线的距离的概念,在解决一个特例后,给出了点到直线的距离公式,再通过例题讲解了公式的一般用法,最后通过例题解决了两平行线间的距离.教学过程中,教师可以结合学生的实际情况,同学生一起推导点到直线的距离公式,及两条平行线间的距离公式.8.3.1 圆的标准方程【教学目标】1.掌握圆的标准方程,并能根据圆的方程写出圆心坐标和半径.2.会根据已知条件求圆的标准方程.3.进一步培养学生数形结合能力,综合应用知识解决问题的能力.【教学重点】圆的标准方程,根据已知条件求圆的标准方程.【教学难点】圆的标准方程的推导.【教学方法】这节课主要采用讲练结合的方法.首先复习圆的定义,在定义的基础上,推导了圆的标准方程.最后通过例题,学习了圆的标准方程的应用.【教学过程】8.3.2 圆的一般方程【教学目标】1.掌握圆的一般方程,能判断一个二元二次方程是否是圆的方程.2.能根据圆的一般方程求出圆心坐标和半径,会用待定系数法求圆的方程.3.进一步培养学生数形结合的能力,综合应用知识解决问题的能力.【教学重点】圆的一般方程.【教学难点】二元二次方程与圆的一般方程的关系.【教学方法】这节课主要采用讲练结合的方法.首先由圆的标准方程展开得到圆的一般方程,然后讨论一个二元二次方程满足什么样的条件才能表示圆.最后通过例题,让学生初步感悟待定系数法和求曲线方程的一般步骤.8. 4 直线与圆的位置关系【教学目标】1. 依据直线与圆的方程,能熟练求出它们的交点坐标.2. 能通过比较圆心到直线的距离和半径之间的大小关系来判断直线和圆的位置关系.3. 理解直线和圆的三种位置关系(相离、相切、相交)与相应的直线和圆的方程所组成的二元二次方程组解(无解、有惟一解、有两组解)的对应关系.【教学重点】直线与圆的位置关系.【教学难点】直线与圆的位置关系的判断及应用.【教学方法】这节课主要采用讲练结合、小组合作探究的教学法.本节之前,学生已学习了如何利用方程来研究两直线的位置关系.根据初中所学知识,可以利用圆心到直线的距离与半径的大小关系研究直线与圆的位置关系.教材在处理直线与圆的位置关系时,从“形”和“数”两个方面进行了分析.8.5 直线与圆的方程的应用【教学目标】1. 能根据实际问题中的数形关系,运用直线和圆的方程解决问题.2. 通过本节例题教学,让学生认识数学与人类生活的密切联系,培养学生应用所学的数学知识解决实际问题的意识.【教学重点】直线和圆的方程在解决实际问题中的应用.【教学难点】根据实际问题中的数量关系列出直线和圆的方程.【教学方法】这节课主要采用讲练结合的教学法.本节课紧密联系学生熟悉的生产和生活背景,有针对性地选择了可以利用直线方程和圆的方程解决的实际问题,通过师生共同研究,不仅可以巩固直线与圆的有关内容,并且提高了学生运用所学数学知识解决实际问题的意识和能力.。

直线与圆的方程的应用精品教案

直线与圆的方程的应用精品教案

学习必备欢迎下载直线与圆的方程的应用学习目标主要概念:坐标法――建立适当的直角坐标系后,借助代数方法把要研究的几何问题,转化为坐标之间的运算,由此解决几何问题。

教材分析一、重点难点本节教材的教学重点是掌握直线和圆的方程在实际生活中的应用,以及用坐标法研究几何问题的基本思想。

难点是如何把一个实际问题转化为数学问题,即数学建模,以及在运用坐标法证明几何问题时,如何能根据具体问题灵活地建立适当的直角坐标系。

二、教材解读本节教材的理论知识有问题提出、题型介绍、思考交流三个板块组成。

第一板块问题提出直线与圆的方程在生产、生活实践以及数学中有着广泛的应用。

第二板块题型介绍直线与圆的方程在实际生活以及平面几何中的应用第三板块思考交流课本 P.138 例 4 中提出:如果不建立坐标系,你能解决这个问题吗?拓展阅读解读理解、掌握知识的最终目的在于应用,通过知识的应用,问题的解决,一方面可使学生亲身体验到学习数学的意义和作用,培养学生学习的自觉性;另一方面联系实际的目的就是为了更好地掌握基础知识,增加用数学的意识,培养分析问题和解决问题的能力。

解读通过介绍直线与圆的方程在实际生活中的应用,其目的在于让学生了解应用问题就是在已学数学知识的基础上,从实际问题出发,经过去粗取精、抽象概括,把实际问题抽象成数学问题,建立相应的数学模型。

让学生掌握解决实际问题的全过程,提高学生分析问题和解决问题的能力。

通过介绍直线与圆的方程在平面几何中的应用,其目的在于让学生了解坐标法的数学思想,掌握用坐标法解决平面几何问题的“三步曲” ,让学生从另一个角度再次体会“数形结合”的思想方法。

解读通过让学生思考和解答,试图让学生比较坐标法和几何法在解决这一问题时的优劣,从而发现坐标法在解决一些问题时的优越性。

数学来源于实际又服务于实际,新的课程标准越来越注意对学生在数学素养、数学能力方面的要求,要求学生能应用数学知识、观点、方法去处理实际问题,从而把数学的应用与大众生活紧密地结合起来,使数学教学更具有现实意义与教育意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省XY中等专业学校2021-2022-2教案编号:
教学内容第三步:将代数运算结果“翻译”成几何结论
三、例题讲解
例1 如图所示是某圆拱桥一圆拱的示意图,该圆拱的跨度AB=20m,拱高OP=4m,在建造时,每隔4m需要一个支柱支撑,求支柱A
2
P
2
的长度。

(精确到0.01m)
解:以AB所在直线为x轴,O为原点,建立如上图直角坐标系,因为AB=20m,OP=4m,所以点A、B、P的坐标分别为(-10,0)、(10,0)、(0,4).
设圆的方程为,由于A、B、P三点在圆上,所以他们的坐标满足圆的方程,于是得到方程组:
解方程组得:D=0,E=21,F=-100
由此得到圆的方程为
由于每隔4m需要一个支柱支撑,则可算得支柱
P
江苏省XY中等专业学校2021-2022-2教案编号:
教学内容第三步:将代数运算结果“翻译”成几何结论
三、例题讲解
例2 画出方程表示的曲线。

解:由方程,得:
所以方程所表示的曲线段是如下图所示圆心为(3,0)、半径为2的右半圆。

(3,0)
1
-2
5
2
教学内容四、练习巩固
1.画出方程表示的曲线。

2.在直角坐标系中,设计一个由线段与圆组成的简单命名画,标出有关点的坐标,求圆或线段所在直线的方程。

相关文档
最新文档