苏科版数学七年级上提优练习与答案(余角、补角、对顶角))
苏科版七上 6.3 余角、补角、对顶角 练习(2)

第1页 共1页 6.3余角、补角、对顶角(2)1、 如图,其中共有________对对顶角。
2、 如图,直线AB 和CD 相交于O ,那么图中DOE ∠与COA ∠的关系是( )A 、对顶角B 、相等C 、互余D 、互补3、 下面4个命题中正确的是( )A 、相等的两个角是对顶角B 、和等于90 º的两个角互为余角C 、如果∠1+∠2+∠3 =180º,那么∠1,∠2,∠3互为补角D 、一个角的补角一定大于这个角4、 如果一个角的余角是35 º16′16″,那么它的补角是__________;如果一个角是它的余角的一半,那么这个角是_________5、 如果∠1+∠2=90 º,∠2+∠3=90 º,则∠1与∠3的关系为________,其理由是__________ 如果∠1+∠2=180 º,∠2+∠3=180 º,则∠1与∠3的关系为________,其理由是__________6、 直线AB 、CD 相交于O ,且∠AOC +7、如图,直线AB 、CD 相交于点O ,OE 平分∠BOD , ∠BOD=120 º,求∠AOC 的度数。
∠DOE=30 º,求∠AOC 的度数。
B E DC BO OA D C A8、如图,直线AB 、CD 相交于O ,已知∠AOC=70 º,OE 把∠BOD 分成两个角,且∠BOE :∠EOD=2:3,求EOD 的度数。
A DO EC B9、直线AB 、CD 相交于点O,OE 是∠AOD 的平分线,∠FOC=90 º,∠1=40 º,求∠2与 ∠3的度数。
EDA 2 B3 1C CF10、如图,直线AB 、EF 相交于点D ,∠ADC=90 º E(1)∠1的对顶角是_____________; 1 2∠2的余角有__________________ A B(2)若∠1与∠2的度数之比为1:4,求∠CDF 、∠EDB 的度数。
七年级数学上册余角、补角、对顶角配套练习及答案

6.3 余角、补角、对顶角(二)一、基础训练1.如果两个角是对顶角,那么这两个角一定________________. 2.如图,其中共有________对对顶角.3.如图,直线AB 、CD 相交于O ,且∠AOC +∠BOD =120 º,则∠AOC 的度数为 . 4.如图,直线AB 和CD 相交于O ,∠AOE = 90 º ,那么图中∠DOE 与∠COA 的关系是 . 二、典型例题例1 如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,∠DOE =30 º,求∠AOC 的度数.分析 欲求∠AOC ,根据对顶角相等只需先求出∠BOD ,而利用角平分线的定义 容易求得∠BOD .例2 如图,直线AB 与CD 相交于点O ,∠BOE =90°,∠COE =30°,求∠AOD 的度数.分析 欲求∠AOD ,根据对顶角相等只需先求∠BOC ,而∠BOC 即为 ∠BOE 的∠COE 和.例3 如图,两条直线AB 与CD 相交于O ,OE 平分∠AOD ,且∠EOF =90°,∠BOC =30°,求∠COF 的度数.分析 因为∠AOB 为平角,欲求∠COF 只需先求∠AOF ,又∠EOF =90°, 故应先求∠AOE ,而利用对顶角相等及角平分线可容易求得∠AOE .三、拓展提升如图,已知直线AB 、CD 、EF 交于点O ,∠BOC =∠AOC . (1)图中∠AOE 的补角有 ;图中的对顶角共有 对; (2)若∠AOE :∠AOD =1:3,求∠BOF 、∠DOF 的度数.分析 首先通过∠BOC =∠AOC 可知AB 、CD 相交所组成的四个角均是直角,然后根据∠AOE :∠AOD =1:3,可设∠AOE 为x °,∠AOD 为3x °,建立方程来解决.本题在找对顶角时还要注意按顺序,做到不重复也不遗漏.B ADCOE A BC EDGF H(第2题图)ABCDO(第3题图)(第4题图)ABDOCE AOBCDE F FABEDOC四、课后作业1.图中共有 对对顶角.2.∠1和∠2互余,∠2和∠3是对顶角,且∠1=63°,则∠3=_____. 3.如图,∠AOB =90°,直线CD 过点O ,且∠AOC =50°, 则∠DOB = °. 4.如图,射线OB 的反向延长线表示的方位是 .5.如图,直线AB 、CD 相交于点O ,OE 是射线,OD 是∠BOE 的角平分线,且∠DOE =35°,则∠AOC = °.6.如图,直线AB 、CD 相交于点O ,OA 平分∠COE ,∠DOB =40°,求∠DOE .7.如图,直线AB 、CD 相交于点O ,OE 是∠AOD 的平分线,∠FOC =90 º,∠1=54º,求∠2与∠3的度数.8.如图,直线AB 、CD 相交于点O ,已知∠AOC =80 º,OE 把∠BOD 分成两个角,且∠BOE :∠EOD =2:3,求∠EOD 的度数.9.如图,直线AB 、CD 、EF 相交于同一点O ,而且∠BOC =∠AOC ,∠ DOF =21∠BOE ,求∠EOC 的度数.(第1题图)30OB东北西(第4题图)ED BOAC (第5题图)ABCD OEA OB CF DE 132 C OBDE A ABDCE FO6.3余角、补角、对顶角(二) 一、基础训练 1.相等 2.4 3.60 4.互与 二、典型例题例1.∵OE 平分∠BOD ,∴∠BOD =2∠DOE =60°,∵∠BOD 与∠AOC 是对顶角,∴∠AOC =∠BOD =60°例2.∵∠BOE =90°,∠COE =30°,∴∠BOC =∠BOE +∠COE =120°,∵∠AOD 与∠BOC 是对顶角,∴∠AOD =∠BOC =120°例3.∵∠AOD 与∠BOC 是对顶角,∴∠AOD =∠BOC =30°,∵OE 平分∠AOD ,∴∠AOE =21∠AOD =15°,∴∠AOF =∠EOF -∠AOE =75°,∴∠COF =180°-∠AOF -∠BOC =75°. 三、拓展提升(1)∠BOE 、∠AOF ;6(2)∠BOF =22.5°、∠DOF =67.5° 四、课后作业 1.2 2.27 3.140 4.南偏西30° 5.35 6.100°7.∠2=36°、∠3=72° 8.48° 9.30°。
苏科版七年级数学上册阶段综合练(角、余角、补角、对顶角)【含答案】

苏科版七年级数学上册阶段综合练(角、余角、补角、对顶角)一、选择题1、如图,下列各个图形中,能用∠1,∠AOB ,∠O 三种方法表示同一角的图形是( )A .B .C .D .2、如图所示,∠1和∠2是对顶角的图形是( )A .B .C .D .3、如图,直线AB 、CD 相交于点O ,下列描述:①∠1和∠2互为对顶角;②∠1和∠2互为邻补角;③∠1=∠2,④,其中正确的是( )13∠=∠A .①③B .②④C .②③D .①④(3题) (4题) (6题)4、如图,直线AB ,CD 相交于点O ,分别作∠AOD ,∠BOD 的平分线OE ,OF . 将直线CD 绕点O 旋转,下列数据与∠BOD 大小变化无关的是( )A .∠AOD 的度数B .∠AOC 的度数 C .∠EOF 的度数D .∠DOF 的度数5、对于题目:“如图1,已知A ,B 为两个海岛,点B 在点A 的正东方向,若灯塔C 在海岛A 北偏东65°的方向上,在海岛B 北偏西35°的方向上,请画出灯塔C 的位置.”甲、乙两人分别作出了如下解答:甲:先以A 为参照点,作南偏东25°,再以B 为参照点,作南偏西65°,画出图形如图2.乙:先以A 为参照点,作东偏北25°,再以B 为参照点,作西偏北55°,画出图形如图3.下列判断正确的是( )A .甲的说法和画图都正确B .乙的说法正确,画图错误C .乙的说法和画图都正确D .甲乙的说法都错误6、如图,射线平分,以为一边作,60AOB ∠=︒OC AOB ∠OC 15COP ∠=︒则 (BOP ∠=)A . B . C .或 D .或15︒45︒15︒30︒15︒45︒7、如图,直线AB ,CD 相交于点O ,如果∠BOD =75°,OE 把∠AOC 分成两个角,且∠AOE :∠EOC =2:3.那么∠AOE 的度数是( )A .15°B .30°C .45°D .35°8、如图,直线AB ,CD 相交于点O ,OF 平分∠BOD ,OE 平分∠COF ,∠AOD :∠BOF =4:1,则∠AOE = .(8题) (9题) (10题)9、如图,直线、相交于点,.下列说法不正确的是 AB CD O 90EOD ∠=︒()A .B .AOD BOC ∠=∠AOC AOE∠=∠C .D .90AOE BOD ∠+∠=︒180AOD BOD ∠+∠=︒10、如图,直线,相交于点,平分,且,则的度数是 AB CD O OA EOC ∠:2:9EOC EOB ∠∠=BOD ∠()A .B .C .D .15︒16︒18︒20︒二、填空题11、已知和,画一个角使它等于,画法如下:1∠2∠12∠+∠(1)画______________.AOB ∠=(2)以点O 为顶点,为始边,在的__________作;则.OB AOB ∠2BOC ∠=∠12AOC ∠=∠+∠12、若与是对顶角,的补角是,则的余角的度为 .α∠β∠α∠100︒β∠13、如图,钟表上显示的时间是,此时,时针与分针的夹角是_________12:20(13题) (14题) (16题)14、如图所示:直线与相交于O ,已知,是的平分线,AB CD 130∠=︒OE BOC ∠则的度数为________.2∠15、平面内,已知,,平分,平分,则 .90AOB ∠=︒20BOC ∠=︒OE AOB ∠OF BOC ∠EOF ∠=16、如图,直线、相交于点,射线平分,.若,AB CD O OM AOC ∠90MON ∠=︒50BON ∠=︒则的度数为 .BOD ∠17、如图,∠AOB =∠AOC =90°,∠DOE =90°,OF 平分∠AOD ,∠AOE =36°,则∠BOF 的度数=______.(17题) (18题)18、如图,,相交于点,,有以下结论:AB CD O 90BOE ∠=︒①与互为余角; ②与互为余角; ③;AOC ∠COE ∠BOD ∠COE ∠AOC BOD ∠=∠④与互为补角; ⑤与互为补角; ⑥COE ∠DOE ∠AOC ∠DOE ∠AOC COE∠=∠其中错误的有 (填序号).三、解答题19、计算:(1); (2); (3); (4).32175342427︒'''+︒'''90361215︒-︒'''2512355︒'''⨯536︒÷20、完成推理填空:如图,直线AB 、CD 相交于O ,∠EOC =90°,OF 是∠AOE 的角平分线,∠COF =34°,求∠BOD 的度数.其中一种解题过程如下:请在括号中注明根据,在横线上补全步骤.解:∵∠EOC =90°,∠COF =34° ( )∴∠EOF = °又∵OF 是∠AOE 的角平分线 ( )∴∠AOF ═ =56° ( )∴∠AOC =∠ ﹣∠ = °∴∠BOD =∠AOC = °( )21、如图,已知直线,相交于点,平分,平分.若,AB CD O OE BOD ∠OF COE ∠100AOD ∠=︒求:(1)的度数;EOD ∠(2)的度数.AOF ∠22、如图,直线AB ,CD 相交于点O ,∠AOC =120°,OE 平分∠BOC .(1)求∠BOE 的度数;(2)若OF 把∠AOE 分成两个角,且∠AOF :∠EOF =2:3,判断OA 是否平分∠DOF ?并说明理由.23、如图,为直线上一点,,平分.O AB 90DOE ∠=︒OF BOD ∠(1)若,则 ;20AOE ∠=︒BOF ∠=(2)若是的5倍,求度数.BOF ∠AOE ∠AOE ∠24、已知点是直线上一点,,是的平分线.O AB 60COE ∠=︒OF AOE ∠(1)如图1,当时,求的度数;80BOE ∠=︒COF ∠(2)当和射线在如图2所示的位置,且题目条件不变时.COE ∠OF ①求与之间的数量关系;COF ∠AOE ∠②直接写出的值.2BOE COF ∠-∠25、如图①,直角三角板的直角顶点在直线上,,是三角板的两条直角边,射线是O AB OC OD OE 的平分线.AOD ∠(1)当时,求的度数;50AOE ∠=︒BOD ∠(2)当时,求的度数;30COE ∠=︒BOD ∠(3)当时,则 (用含的式子表示);COE α∠=BOD ∠=α(4)当三角板绕点逆时针旋转到图②位置时,,其它条件不变,则 O COE α∠=BOD ∠=(用含 的式子表示).α26、已知直线和相交于,为锐角.AB CD O AOC ∠(1)填空:如图1图中有___________对相等的角(平角除外)分别是_____________________,判断的依据是_____________________(2)如图2,作,平分,求的度数.90COE ∠=︒OF COB ∠AOF EOF ∠-∠(3)在(2)的条件下,,计算的度数.:2:5AOC COF ∠∠=DOF ∠答案一、选择题1、如图,下列各个图形中,能用∠1,∠AOB,∠O三种方法表示同一角的图形是( )A.B.C.D.【解题思路】根据角的表示方法判断即可.【解答过程】解:A、图形中的∠1,能用∠AOB表示,但不能用∠O表示,本选项不符合题意;B、图形中的∠1,能用∠AOB,∠O表示,本选项符合题意;C、图形中的∠1,能用∠AOB表示,但不能用∠O表示,本选项不符合题意;D、图形中的∠1,能用∠AOB表示,但不能用∠O表示,本选项不符合题意;故选:B.2、如图所示,∠1和∠2是对顶角的图形是( )A.B.C.D.【答案】B【分析】根据对顶角的定义,对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,据此即可求解.【详解】解:对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,满足条件的只有B .故选:B .3、如图,直线AB 、CD 相交于点O ,下列描述:①∠1和∠2互为对顶角;②∠1和∠2互为邻补角;③∠1=∠2,④,其中正确的是( )13∠=∠A .①③B .②④C .②③D .①④【答案】B【分析】根据对顶角和邻补角的定义逐个判断即可得.【详解】解:和不是对顶角,互为邻补角,则①错误,②正确;1∠2∠,但和不一定相等,则③错误;12180∠+∠=︒1∠2∠由对顶角相等得:,则④正确;13∠=∠综上,正确的是②④,故选:B .4、如图,直线AB ,CD 相交于点O ,分别作∠AOD ,∠BOD 的平分线OE ,OF . 将直线CD 绕点O 旋转,下列数据与∠BOD 大小变化无关的是( )A .∠AOD 的度数B .∠AOC 的度数 C .∠EOF 的度数D .∠DOF 的度数【答案】C【分析】由角平分线性质解得,根据对角线性质、平角性质解得,90EOF ∠=︒180AOD BOD ∠=︒-∠,据此解题.1,2AOC BOD DOF BOD∠=∠∠=∠【详解】解: OE ,OF 平分∠AOD ,∠BOD 11,22AOE EOD AOD DOF FOB BOD∴∠=∠=∠∠=∠=∠180AOD BOD ∠+∠=︒ 111()90222EOD DOF AOD BOD AOD BOD ∴∠+∠=∠+∠=∠+∠=︒90EOF ∴∠=︒180AOD BOD∴∠=︒-∠1,2AOC BOD DOF BOD∴∠=∠∠=∠都与∠BOD 大小变化有关,只有∠EOF 的度数与∠BOD 大小变化无关,故选:C .5、对于题目:“如图1,已知A ,B 为两个海岛,点B 在点A 的正东方向,若灯塔C 在海岛A 北偏东65°的方向上,在海岛B 北偏西35°的方向上,请画出灯塔C 的位置.”甲、乙两人分别作出了如下解答:甲:先以A 为参照点,作南偏东25°,再以B 为参照点,作南偏西65°,画出图形如图2.乙:先以A 为参照点,作东偏北25°,再以B 为参照点,作西偏北55°,画出图形如图3.下列判断正确的是( )A .甲的说法和画图都正确B .乙的说法正确,画图错误C .乙的说法和画图都正确D .甲乙的说法都错误【解题思路】根据方向角定义即可进行判断.【解答过程】解:根据方向角定义可知:灯塔C 在海岛A 北偏东65°的方向上,在海岛B 北偏西35°的方向上,画出灯塔C 的位置如图3.故选:D .6、如图,射线平分,以为一边作,则 60AOB ∠=︒OC AOB ∠OC 15COP ∠=︒(BOP ∠=)A .B .C .或D .或15︒45︒15︒30︒15︒45︒【分析】根据,射线平分,可得,分在内,在60AOB ∠=︒OC AOB ∠30BOC ∠=︒OP BOC ∠OP 内,两种情况讨论求解即可.AOC ∠【解析】,射线平分,60AOB ∠=︒ OC AOB ∠,1302AOC BOC AOB ∴∠=∠=∠=︒又15COP ∠=︒①当在内,OP BOC ∠,301515BOP BOC COP ∠=∠-∠=︒-︒=︒②当在内,OP AOC ∠,301545BOP BOC COP ∠=∠+∠=︒+︒=︒综上所述:或.15BOP ∠=︒45︒故选:.D7、如图,直线AB ,CD 相交于点O ,如果∠BOD =75°,OE 把∠AOC 分成两个角,且∠AOE :∠EOC =2:3.那么∠AOE 的度数是( )A .15°B .30°C .45°D .35°【解析】∵∠BOD =75°,∴∠AOC =75°,∵∠AOE :∠EOC =2:3,∴设∠AOE =2x °,∠EOC =3x °,则2x +3x =75,解得:x =15,∴∠AOE =30°,故选:B .8、如图,直线AB ,CD 相交于点O ,OF 平分∠BOD ,OE 平分∠COF ,∠AOD :∠BOF =4:1,则∠AOE = .【分析】根据角平分线的定义得出∠BOD =2∠BOF ,∠BOF =∠DOF ,根据∠AOD :∠BOF =4:1求出∠AOD :∠BOD =4:2,根据邻补角互补求出∠AOD =120°,∠BOD =60°,求出∠AOC =60°,根据角平分线定义求出∠COE ,再求出答案即可.【解析】∵OF 平分∠BOD ,∴∠BOD =2∠BOF ,∠BOF =∠DOF ,∵∠AOD :∠BOF =4:1,∴∠AOD :∠BOD =4:2,∵∠AOD +∠BOD =180°,∴∠AOD =120°,∠BOD =60°,∴∠AOC =∠BOD =60°,∴∠BOF =∠DOF==30°, 6021∴∠COF =180°﹣∠DOF =150°,∵OE 平分∠COF ,∴∠COE=COF=,∠21 7515021=⨯∴∠AOE =∠AOC +∠COE =60°+75°=135°,故答案为:135°.9、如图,直线、相交于点,.下列说法不正确的是 AB CD O 90EOD ∠=︒()A .B .AOD BOC∠=∠AOC AOE ∠=∠C .D .90AOE BOD ∠+∠=︒180AOD BOD ∠+∠=︒【分析】根据对顶角相等可得,不是的角平分线,因此和不一AOD BOC ∠=∠AO COE ∠AOC ∠AOE ∠定相等,根据,利用平角定义可得,根据邻补角互补可得90EOD ∠=︒90AOE BOD ∠+∠=︒180AOD BOD ∠+∠=︒【解析】、,说法正确;A AOD BOC ∠=∠、,说法错误;B AOC AOE ∠=∠、,说法正确;C 90AOE BOD ∠+∠=︒、,说法正确;D 180AOD BOD ∠+∠=︒故选:.B 10、如图,直线,相交于点,平分,且,则的度数是 AB CD O OA EOC ∠:2:9EOC EOB ∠∠=BOD ∠()A .B .C .D .15︒16︒18︒20︒【分析】根据角平分线的定义和对顶角的性质即可得到结论.【解析】设,,2EOC x ∠=9EOB x ∠=平分,OA EOC ∠,12AOE EOC x ∴∠=∠=根据题意得,解得,9180x x +=︒18x =︒,18EOA AOC x ∴∠=∠==︒,18BOD AOC ∴∠=∠=︒故选:.C 二、填空题11、已知和,画一个角使它等于,画法如下:1∠2∠12∠+∠(1)画______________.AOB ∠=(2)以点O 为顶点,为始边,在的__________作;则.OB AOB ∠2BOC ∠=∠12AOC ∠=∠+∠【答案】 外部1∠【分析】根据角的画法步骤,先画出∠AOB=∠1,再在∠AOB 的外部画出∠2,即可得到∠AOC【解析】画法详解:(1)画∠AOB=∠1.(2)以点O 为顶点,OB 为始边,在∠AOB 的外部作∠BOC=∠2;则∠AOC=∠1+∠2.故答案: (1)∠1 (2)外部12、若与是对顶角,的补角是,则的余角的度为 .α∠β∠α∠100︒β∠【分析】根据补角定义可得的度数,再根据对顶角相等可得答案.α∠【解析】的补角为,α∠ 100︒,18010080α∴∠=︒-︒=︒与是对顶角,α∠ β∠,80βα∴∠=∠=︒的余角的度为,β∴∠10︒故答案为:.10︒13、如图,钟表上显示的时间是,此时,时针与分针的夹角是_________12:20【答案】110︒【分析】根据时针在钟面上每分钟转,分针每分钟转,然后分别求出时针、分针转过的角度,即可得到答0.5 6案.【详解】解:∵时针在钟面上每分钟转,分针每分钟转,0.5 6 ∴钟表上12时20分钟时,时针转过的角度为,分针转过的角度为,0.52010⨯= 620120⨯=所以时分针与时针的夹角为.12:2012010110-= 14、如图所示:直线与相交于O ,已知,是的平分线,AB CD 130∠=︒OE BOC ∠则的度数为________.2∠【答案】75°.【分析】由邻补角的定义可求得∠COB =150°,然后根据角平分线的定义可求得∠2.【详解】解:∵∠1+∠COB =180°,∠1=30°,∴∠COB =180°﹣30°=150°.∵OE 是∠BOC 的平分线,∴∠2= ∠COB =75°.12故答案为:75°.15、平面内,已知,,平分,平分,则 .90AOB ∠=︒20BOC ∠=︒OE AOB ∠OF BOC ∠EOF ∠=【分析】分两种情况:当在内时;当在外时.根据角平分线的定义,角的和差进行OC AOB ∠OC AOB ∠解答便可.【解析】当在内时,如图1,OC AOB ∠;11119020352222EOF BOE BOF AOB BOC ∠=∠-∠=∠-∠=⨯︒-⨯︒=︒当在外时,如图2,OC AOB ∠,11119020552222EOF BOE BOF AOB BOC ∠=∠+∠=∠+∠=⨯︒+⨯︒=︒故答案为:或.35︒55︒16、如图,直线、相交于点,射线平分,.若,AB CD O OM AOC ∠90MON ∠=︒50BON ∠=︒则的度数为 .BOD ∠【分析】首先根据余角的性质可得,再根据角平分线的性质可算出905040AOM ∠=︒-︒'=︒,再根据对顶角相等可得的度数,40280AOC ∠=︒⨯=︒BOD ∠【解析】.,90MON ∠=︒ 50BON ∠=︒,905040AOM ∴∠=︒-︒'=︒射线平分,OM AOC ∠,40280AOC ∴∠=︒⨯=︒.80BOD AOC ∴∠=∠=︒故答案为:.80︒17、如图,∠AOB =∠AOC =90°,∠DOE =90°,OF 平分∠AOD ,∠AOE =36°,则∠BOF 的度数=______.【答案】63°【分析】先求出∠AOD =54°,再求出∠BOD 和∠DOF ,即可求出∠BOF .【详解】解:∵∠DOE =90°,∠AOE =36°,∴∠AOD =90°﹣36°=54°,∵∠AOB =90°,∴∠BOD =90°﹣54°=36°,∵OF 平分∠AOD ,∴∠DOF ∠AOD =27°,12=∴∠BOF =36°+27°=63°.18、如图,,相交于点,,有以下结论:AB CD O 90BOE ∠=︒①与互为余角; ②与互为余角;③;AOC ∠COE ∠BOD ∠COE ∠AOC BOD ∠=∠④与互为补角; ⑤与互为补角; ⑥COE ∠DOE ∠AOC ∠DOE ∠AOC COE∠=∠其中错误的有 (填序号).【分析】根据垂线的定义、对顶角、邻补角的性质解答即可.【解析】,相交于点,,AB CD O 90BOE ∠=︒①与互为余角,正确;∴AOC ∠COE ∠②与互为余角,正确;BOD ∠COE ∠③,正确;AOC BOD ∠=∠④与互为补角,正确;COE ∠DOE ∠⑤设,则,,故与互为补角错误;30AOC ∠=︒120DOE ∠=︒180AOC DOE ∠+∠≠︒AOC ∠BOC DOE ∠=∠⑥,错误;AOC BOD COE ∠=∠≠∠故答案为:⑤⑥.三、解答题19、计算:(1); (2); (3); (4).32175342427︒'''+︒'''90361215︒-︒'''2512355︒'''⨯536︒÷【分析】(1)1度分,即,1分秒,即,依此计算加法;60=160︒='60=160'=''(2)1度分,即,1分秒,即,依此计算减法;60=160︒='60=160'=''(3)1度分,即,1分秒,即,依此计算乘法;60=160︒='60=160'=''(4)1度分,即,1分秒,即,依此计算除法.60=160︒='60=160'=''【解析】(1)原式;=︒'''=︒74596075(2)原式;=︒'''534745(3)原式;=︒'''=︒'''12560175126255(4)原式.850=︒'20、完成推理填空:如图,直线AB、CD相交于O,∠EOC=90°,OF是∠AOE的角平分线,∠COF=34°,求∠BOD的度数.其中一种解题过程如下:请在括号中注明根据,在横线上补全步骤.解:∵∠EOC=90°,∠COF=34°( )∴∠EOF= °又∵OF是∠AOE的角平分线( )∴∠AOF═ =56°( )∴∠AOC=∠ ﹣∠ = °∴∠BOD=∠AOC= °( )【分析】利用角的和差关系和角平分线定义可得∠AOF的度数,然后利用垂垂线定义计算出∠AOC的度数,再根据对顶角相等可得∠BOD的度数.【解析】∵∠EOC=90°,∠COF=34°(已知),∴∠EOF=56°,又∵OF是∠AOE的角平分线(已知),∴∠AOF ═∠EOF =56° (角平分线定义),∴∠AOC =∠AOF ﹣∠COF =22°,∴∠BOD =∠AOC =22°(对顶角相等).故答案为:已知;56;已知;∠EOF ;角平分线定义;AOF ;COF ;22;22;对顶角相等.21、如图,已知直线,相交于点,平分,平分.若,AB CD O OE BOD ∠OF COE ∠100AOD ∠=︒求:(1)的度数;EOD ∠(2)的度数.AOF ∠【答案】(1)40°;(2)150°【分析】(1)根据邻补角的性质,可求出的度数,再根据角平分线的性质即可求出的度数,DOB ∠DOE ∠(2)根据邻补角的性质,可求出的度数,再根据角平分线的性质,求出,在根据对顶角COE ∠COF ∠的性质求出,即可求出的度数.AOC ∠AOF ∠【详解】(1)∵直线,相交于点,AB CD O ∴,180AOD BOD ∠+∠=︒∵,100AOD ∠=︒∴,18080BOD AOD ∠=-∠=°°∵平分,OE BOD ∠∴.1402DOE BOD ∠=∠=°(2)∵,180COE DOE ∠+∠=°∴,180140COE DOE ∠=-∠=°°∵平分,OF COE ∠∴,1702COF COE ∠=∠=°∵,80AOC BOD ∠=∠=︒∴.150AOF AOC COF ∠=∠+∠=°22、如图,直线AB ,CD 相交于点O ,∠AOC =120°,OE 平分∠BOC .(1)求∠BOE 的度数;(2)若OF 把∠AOE 分成两个角,且∠AOF :∠EOF =2:3,判断OA 是否平分∠DOF?并说明理由.【答案】(1)30°;(2)平分,理由见解析.【分析】(1)根据邻补角的概念求出,根据角平分线的定义计算,得到答案;BOC ∠(2)求出,根据题意分别求出,根据角平分线的定义证明即可.AOE ∠AOF EOF ∠∠、【详解】解:(1)∵∠AOC =120°,∴∠BOC =180°﹣120°=60°,∵OE 平分∠BOC ,∴∠BOE =∠BOC =×60°=30°;1212(2)OA 平分∠DOF ,理由如下:∵∠BOE =30°,∴∠AOE =180°﹣30°=150°,∵∠AOF :∠EOF =2:3,∴∠AOF =60°,∠EOF =90°,∵∠AOD =∠BOC =60°,∴∠AOD =∠AOF ,∴OA 平分∠DOF .23、如图,为直线上一点,,平分.O AB 90DOE ∠=︒OF BOD ∠(1)若,则 ;20AOE ∠=︒BOF ∠=(2)若是的5倍,求度数.BOF ∠AOE ∠AOE ∠【分析】(1)根据互余、互补以及角平分线的定义可得答案;(2)由(1)的方法列出方程可求出答案.【解析】(1),,90DOE ∠=︒ 20AOE ∠=︒.902070AOD DOE AOE ∴∠=∠-∠=︒-︒=︒.180********BOD AOD ∴∠=︒-∠=︒-︒=︒平分.OF BOD ∠.∴111105522BOF BOD ∠=∠=⨯︒=︒故答案为:.55︒(2)设,AOE x ∠=则.5BOF x ∠=.90AOD x ∴∠=︒-.180(90)90BOD x x ∠=︒-︒-=︒+平分,OF BOD ∠.∴11(90)4522BOF x x ∠=︒+=︒+,∴14552x x ︒+=即9452x =︒,∴245109x =︒⨯=︒.10AOE ∴∠=︒24、已知点是直线上一点,,是的平分线.O AB 60COE ∠=︒OF AOE ∠(1)如图1,当时,求的度数;80BOE ∠=︒COF ∠(2)当和射线在如图2所示的位置,且题目条件不变时.COE ∠OF ①求与之间的数量关系;COF ∠AOE ∠②直接写出的值.2BOE COF ∠-∠【答案】(1)10°;(2)①;②60°1602COF AOE∠=︒-∠【分析】(1)利用角平分线的定义以及角的和差计算即可求解;(2)利用角平分线的定义以及角的和差列式即可;(3)利用邻补角的定义结合(2)的结论即可求解.【详解】解:(1)∵,,∴,.80BOE ∠=︒60COE ∠=︒40AOC ∠=︒100AOE ∠=︒∵是的平分线,∴,OF AOE ∠1502AOF AOE ∠=∠=︒∴;10COF AOF AOC ∠=∠-∠=︒(2)①∵是的平分线,∴,OF AOE ∠12EOF AOE∠=∠∴;1602COF COE EOF AOE∠=∠-∠=︒-∠②∵∠BOE=180-∠AOE ,︒∴∠BOE-2∠COF=180-∠AOE-2(60-∠AOE)=180-∠AOE-120+∠AOE .︒︒12︒︒60=︒25、如图①,直角三角板的直角顶点在直线上,,是三角板的两条直角边,射线是O AB OC OD OE 的平分线.AOD ∠(1)当时,求的度数;50AOE ∠=︒BOD ∠(2)当时,求的度数;30COE ∠=︒BOD ∠(3)当时,则 (用含的式子表示);COE α∠=BOD ∠=α(4)当三角板绕点逆时针旋转到图②位置时,,其它条件不变,则 O COE α∠=BOD ∠=(用含 的式子表示).α【分析】(1)根据角平分线的定义先求出,再根据互补求出即可;AOD ∠BOD ∠(2)根据互余求出,再根据角平分线的定义求出,最后根据互补求出的答案;DOE ∠AOD ∠(3)由(2)的解题过程可得答案;(4)根据互余、互补、角平分线的定义可求出答案.【解析】(1)射线平分,,OE AOD ∠22250100AOD AOE DOE ∴∠=∠=∠=⨯︒=︒;180********BOD AOD ∴∠=︒-∠=︒-︒=︒(2),,,90COD ∠=︒ 30COE ∠=︒903060DOE ∴∠=︒-︒=︒又平分,,OE AOD ∠2260120AOD DOE ∴∠=∠=⨯︒=︒;180********BOD AOD ∴∠=︒-∠=︒-︒=︒(3),,,90COD ∠=︒ COE α∠=90DOE α∴∠=︒-又平分,,OE AOD ∠22(90)1802AOD DOE αα∴∠=∠=⨯︒-=︒-,180********BOD AOD αα∴∠=︒-∠=︒-︒+=故答案为:;2α(4)由图②得,,90DOE α∠=-︒平分,,OE AOD ∠22180AOD DOE α∴∠=∠=-︒,18018021803602BOD AOD αα∴∠=︒-∠=︒-+︒=︒-故答案为:.3602α︒-26、已知直线和相交于,为锐角.AB CD O AOC ∠(1)填空:如图1图中有___________对相等的角(平角除外)分别是_____________________,判断的依据是_____________________(2)如图2,作,平分,求的度数.90COE ∠=︒OF COB ∠AOF EOF ∠-∠(3)在(2)的条件下,,计算的度数.:2:5AOC COF ∠∠=DOF ∠【答案】(1)2,、,对顶角相等;(2)90°;(3)105°=COB AOD ∠∠=AOC BOD ∠∠【分析】(1)根据对顶角相等证明即可;(2)设,表示已知条件中的角推理计算即可;=AOC x ∠(3)结合(2)中的关系列方程即可求出x 的值,再由和互补求AOC COF ∠∠、DOF ∠COF ∠出.DOF ∠【详解】(1)根据对顶角相等可得图1中有2对相等的角(平角除外)分别是:,.=COB AOD ∠∠=AOC BOD ∠∠故答案为:2,、,对顶角相等;=COB AOD ∠∠=AOC BOD ∠∠(2)设°,则=AOC x ∠180BOC x ∠=︒-︒∵平分∴OF COB ∠11=9022COF BOC x ∠∠=︒-︒∴1==90+2AOF AOC COF x ∠∠+∠︒︒∵∴90COE ∠=︒1=2EOF COE COF x ∠∠-∠=︒∴;11=90+=9022AOF EOF x x ∠-∠-︒(3)∵:2:5AOC COF ∠∠=∴5=2AOC COF∠∠由(2)可知:,=AOC x ∠1=902COF x ∠︒-︒∴解得15=2(90)2x x ︒︒-︒30x =︒∴, ∴190=752COF x ∠=-︒180105DOF COF ∠=-∠=︒27。
2019-2020年初中七年级上册数学6.3 余角 补角 对顶角苏科版习题精选第二十三篇

2019-2020年初中七年级上册数学6.3 余角补角对顶角苏科版习题精选第二十三篇➢第1题【单选题】给出下列说法:两条直线被第三条直线所截,同位角相等;平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;相等的两个角是对顶角;从直线外一点到这条直线的垂线段,叫做这点到直线的距离;其中正确的有( )A、0个B、1个C、2个D、3个【答案】:【解析】:➢第2题【单选题】如图,∠AOC 和∠BOD都是直角,如果∠AOB=140^? 则∠DOC的度数是( )A、30^?B、40^?C、50^?D、60^?【答案】:【解析】:➢第3题【单选题】如图,O是直线AB上一点,∠AOD=120°,∠AOC=90°,OE平分∠BOD,则图中和为180°的两个角有( )A、3对B、4对C、5对D、6对【答案】:【解析】:➢第4题【单选题】下面说法错误的是( )A、两点确定一条直线B、同角的补角相等C、等角的余角相等D、射线AB也可以写作射线BA【答案】:【解析】:➢第5题【单选题】将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是( ) A、B、C、D、【答案】:【解析】:➢第6题【单选题】如图,N,C,A 三点在同一直线上,在△ ABC 中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN 等于( )A、1:2B、1:3C、2:3D、1:4【答案】:【解析】:➢第7题【单选题】如图,直线AB、CD相交于点O,EF⊥AB于O,且∠COE =50°,则∠BOD 等于( )A、40°B、45°C、55°D、65°【答案】:【解析】:➢第8题【单选题】下列说法中正确的有( )个1)一条射线上只有一个点,一条线段上有两个点;2)一条射线把一个角分成两个角,这条射线叫这个角的平分线;3)连结两点的线段叫做两点之间的距离;4)20°50ˊ=20.5°;5)互余且相等的两个角都是45°.A、1B、2C、3D、4【答案】:【解析】:➢第9题【单选题】如图,图中∠α的度数等于( )A、135°B、125°C、115°D、105°【答案】:【解析】:➢第10题【单选题】已知∠α=35°,那么∠α的余角的补角等于( )A、35°B、65°C、125°D、145°【答案】:【解析】:➢第11题【单选题】一个锐角的补角与这个锐角的余角的差是( )A、平角B、直角C、钝角D、锐角【答案】:【解析】:➢第12题【单选题】如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有( )A、1个B、2个C、3个D、4个【答案】:【解析】:➢第13题【单选题】将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为( )A、115°B、120°C、135°D、145°【答案】:【解析】:➢第14题【单选题】将一副三角板按如图所示位置摆放,其中有误与有误一定互余的是( )A、B、C、D、【答案】:【解析】:➢第15题【单选题】直线AB、CD、EF相交于O,则∠1+∠2+∠3=( )B、120°C、180°D、140°【答案】:【解析】:➢第16题【单选题】如图,将三个同样的正方形的一个顶点重合放置,如果∠1=45°,∠3=30°时,那么∠2的度数是( )A、15°B、25°C、30°【答案】:【解析】:➢第17题【单选题】如图,直线l交两条平行线AB,CD于点E,F,若∠EFD=40°,则图中等于40°的角的个数是( )A、2个B、3个C、4个D、5个【答案】:【解析】:➢第18题【单选题】如果∠α=n°,而∠α既有余角,也有补角,那么n的取值范围是( )A、90°<n<180°B、0°<n<90°C、n=90°D、n=180°【答案】:【解析】:➢第19题【填空题】如图,∠1=15°,∠AOC=90°.若点B,O,D在同一条直线上,则∠2=______.【答案】:【解析】:➢第20题【填空题】在Rt△ABC中,∠C=90°,∠A=75°,则∠B=______【答案】:【解析】:➢第21题【填空题】如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOD=120°,则∠DOE =______,∠COE=______.【答案】:【解析】:➢第22题【填空题】完成推理填空:如图在△ABC中,已知∠1+∠2=180°,∠3=∠B,试说明∠AED=∠C.解:∵∠1+∠EFD=180°(邻补角定义),∠1+∠2=180°(已知)∴______(同角的补角相等)①∴______(内错角相等,两直线平行)②∴∠ADE=∠3(______)③∵∠3=∠B(______)④∴______(等量代换)⑤∴DE∥BC(______)⑥∴∠AED=∠C(______)⑦【答案】:【解析】:➢第23题【填空题】若∠1的对顶角是∠2,∠2的邻补角是∠3,∠3=50°,则∠1的度数为______A、130°【答案】:【解析】:➢第24题【填空题】∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为______°.【答案】:【解析】:➢第25题【填空题】如图,直线AB、CD、EF相交于点O,若∠DOF=30°,∠AOE=20°,则∠BOC=______.【答案】:【解析】:➢第26题【填空题】在平面直角坐标系中,边长为3的正方形OABC的两顶点A、C分别在y 轴、x轴的正半轴上,点O在原点。
苏科版-数学-七年级上册-6.3 余角、补角、对顶角(1) 作业

6.3余角、补角、对顶角(1)1.65°15′的余角的补角等于________.2.一个角的度数是40°,那么它的余角的补角的度数是________.3.已知∠A=50°,则∠A的余角的补角是________.4.若∠A的补角的余角大于30°,的余角的补角小于150°,那么∠A与∠B的大小关系是 ________5.如果∠A=35°18′,那么∠A的余角等于________.6.一个角的余角的补角比这个角的补角的一半大90°,求这个角的度数.7.已知一个角的余角的补角是这个角的补角的,求这个角的角的余角.8.已知一个角等于它的余角的3倍,求这个角.9.一个角的补角和它的余角的比为4:1,求这个角的度数.10.一个角的补角比它的余角的2倍多10°,求这个角.参考答案:1.155°15′2.130°3.140°4.∠A>∠B5.54°42′6.解:设这个角的余角为∠A,则这个角的为90°-∠A,这个角的补角为180°-(90°-∠A)=90°+∠A,则180°-∠A=(90°+∠A)+90°,解得∠A=30°.所以90°-∠A=60°,答:这个角为60°.7.解:设这个角是x,则180°-(90°-x)=(180°-x),解得x=30°,则这个角的角的余角=90°-30°×=80°.故答案为80°.8.解:设这个角的度数为x,根据题意得x=3(90-x),解得x=67.5°,所以这个角为67.5°.9.解:设这个角度数为x,由题意得,180-x=4(90-x),解得:x=60°.即这个角的度数为60°.10.解:设这个角为x°,∵一个角的补角比它的余角的2倍多10°,∴180-x=2(90-x)+10,解得:x=10,答:这个角为10°.。
63余角、补角、对顶角同步练习苏科版七年级上初一数学试题试卷.doc

6.3余角、补角、对顶角(2)1. (1)如果一个角的余角是54。
43,44%那么它的补角是 _________(2) __________________________________________ 如果一个角是它的余角的一半,那么这个角是 ________________________________________________ .2. _________________________________________________________ 如果Zl + Z2 = 90° , Z2+Z3 = 90° ,则Z1与Z3的关系为 _________________________________________ ,其理由是 _______ ,如 果Zl + Z2=180° , Z2+Z3 = 180°,则Z1与Z3的关系为 ________________,其理由是 ______ •6. 直线AB 、CD 相交于点6 OE 是ZAOD 的平分线,ZFOC = 90° , Zl=40° ,求Z2与Z3 的度数.7. 如图,直线AB 、CD 相交于6 己知ZAOC=70°, OE 把ZBOD 分成两个角,且ZBOE : Z EOD=2: 3,求EOD 的度数.8. 一个锐角的补角比这个角的余角大 ______9. 如图,其中共有 _____ 对对顶角.4.A.B.C.D.5. 一个角的补角一定大于这个角直线 AB 、CD 相交于 6 且ZAOC+ZBOD=120°下面4个命题中正确的是 ()相等的两个角是对顶角和等于90°的两个角互为余角 如果Zl + Z2+Z3=180° ,那么Zl, Z2, Z3互为补角14. 如图,直线 AB 、CD 、EF,相交于点 0, ZA0F=3ZF0B, ZAOC=90° ,求ZEOC 的度 数.15・(1)两条直线交于一点,有 _______ 对不同的对顶角;(2) 三条直线交于一点,冇 ______ 对不同的对顶角;(3) 四条直线交于一点,有 ______ 对不同的対顶角;(4) n 条直线交于一点,有 ______ 对不同的对顶角.参考答案1. (1)144° 4344" (2)30°2. 相等 同饬的余角相等 相等 同介的补角相等3. C4. B5. 60°6. Z2=65° , Z3=50°7. 42°8. 90°9. 410. C 11. D 12. C13. 60°14. 45°15. (1)2 (2)6 (3)12 (4)n(n — 1)10. 如图,直线AB 和CD 相交于O, ZAOE=90° ,那么图中ZDOE 与ZCOA 的关系是 ( )A. C. 11. A.B.C.D.12. A. 对顶角 B.相等互余 D.互补如图,CA 丄BE 于A, AD 丄BF 于D,下列说法正确的是( a 的余角只有ZB a 的邻补角是ZDACZACF 是a 的余角 a 与ZACF 互补如图,A 、0、B 在一条直线上,Z1是锐角,则Z1的余角是( -Z2-Z1 B.丄 Z2--Z1 2 2 2C. -(Z2-Z1)D. - (Z2+Z1) 2 313. 如图,直线AB 、CD 相交于点0, 0E 平分ZBOD, ZDOE=30° ,求ZAOC 的度数.亲爱的同学:经过一番刻苦学习,大家一定跃跃欲试地示了一下自己的身手吧!成绩肯定会很理想的,在以后的学习中大家一定要用学到的知识让知识飞起来,学以致用!在考试的过程中也要养成仔细阅读,认真审题,努力思考,以最好的状态考岀好成绩!你有没有做到这些呢?是不是又忘了检查了?快去再检查一下刚完成怎样调整好考试心态心态就是一个人的心情。
七年级数学上册余角、补角、对顶角配套练习及答案

6.3 余角、补角、对顶角(一)一、基础训练1.如果两个锐角的和是 ,则这两个角互为余角,如果两个角的和是 ,则这两个角互为补角.2.若∠α=50º,则它的余角是 ,它的补角是 . 3.如图,∠ACB =∠CDB =90º,图中∠ACD 的余角有 个. 4.若∠1与∠2互余,∠3和∠2互余,则∠1与∠3的关系是 ,其理由是 . 5.如果∠1+∠2=180°,∠2+∠3=180 º,则∠1与∠3的关系是________,其理由是 . 二、典型例题例1 已知一个角的补角是这个角的余角的3倍,求这个角. 分析 本题我们可以设这个角为x °,通过建立方程来解决.例2 如图,∠AOC 和∠BOD 都是直角,且∠DOC =28º,求∠AOB 的度数.分析 欲求∠AOB ,我们就要找到它与已知角∠AOC 、∠BOD 和∠DOC 之间的关系,通过观察不难发现两个直角的和比∠AOB 多了一个∠DOC.例3 如图所示,已知点A 、O 、B 在一条直线上,∠AOC =∠BOC =∠EOF =90°. (1)指出 ∠COE 的余角;(2)指出 ∠AOE 的补角;(3)指出∠COF 的补角. 分析 运用余角、补角的概念及特征,即可准确地找出(1)、(2)小题 的答案;但寻找∠COF 的补角则要利用等角的余角相等,将其转化为∠AOE .三、拓展提升如图,O 是直线AB 上的一点,OM 是∠AOC 的角平分线,ON 是∠BOC 的角平分线. (1)图中互余的角有几对? (2)图中互补的角有几对?分析 本题首先是要知道OM 与ON 组成的是一个直角,其次是在找的时候要注意同角(或等角)的余角(或补角)是相等的.ABDNMCBOAAO B F CEAOBC D四、课后作业1.32°28′的余角为 ,137°45′的补角是 . 2.若∠1与∠2互余,∠1=(6x +8)º,∠2=(4x -8)º,则∠1= ,∠23.一个锐角的补角比这个角的余角大 °.4.已知互余两个角的差是30º,则这两个角的度数分别是5.如图,∠AOB 为直角,∠COD 为平角,若OC 平分∠AOB ,则 ∠BOD =____________°.6.如图,O 是直线BD 上一点,∠BOC =36º,∠AOB =108º, 则与∠AOB 互补的角有 .7.如图,∠AOC =∠BOD =90º,∠AOD =130º,求∠BOC 的度数.8.已知一个角的余角比它的补角的49还少5º,求这个角.9.如图,已知:∠AOB =∠DOE =90°,∠1=56°,求∠3的度数.10.如图,AOB 为一条直线,∠COD 是直角,且∠1+∠2=90 º.(1)请写出图中相等的角,并说明理由;(2)请分别写出图中互余的角和互补的角.DCBAOBEAD132CB ODCA(第6题图)A B O EC D 216.3 余角、补角、对顶角(一)一、基础训练1.90°,180°2.40°,130°3.24.∠1=∠3,同角的余角相等5.∠1=∠3,同角的补角相等二、典型例题例1.设这个角为x°,则180-x=3(90-x),解得x=45.答:这个角是45°.例2.∵∠AOC为直角,∴∠COD+∠AOD=90,∵∠DOC=28°,∴∠AOD=62°,∴∠AOB=∠AOD+∠BOD=90°+ 62°=152°.例3.(1)∠AOE、∠COF;(2)∠EOB;(3)∠FOB、∠EOB.三、拓展提升(1)4对;(2)5对.四、课后作业1.57°32′,42°15′2.62°,28°3.90°4.30°,60°5.135°6.∠AOD、∠AOC7.50°8.27°9.56°10.(1)∠1=∠AOC,∠BOE=∠BOC;(2)互余的角有∠1与∠2、∠1与∠AOC;互补的角有:∠1与∠BOE、∠1与∠BOC、∠AOC与∠BOE、∠AOC与∠BOC、∠AOD与∠26.3 余角、补角、对顶角(二)一、基础训练1.如果两个角是对顶角,那么这两个角一定________________.2.如图,其中共有________对对顶角.3.如图,直线AB、CD相交于O,且∠AOC+∠BOD=120º,则∠AOC的度数为.4.如图,直线AB和CD相交于O,∠AOE=90º,那么图中∠DOE与∠COA的关系是.二、典型例题例1如图,直线AB、CD相交于点O,OE平分∠BOD,∠DOE=30º,求∠AOC的度数.分析欲求∠AOC,根据对顶角相等只需先求出∠BOD,而利用角平分线的定义 BA DC O EA B CE DGFH(第2题图)ABCDO(第3题图)(第4题图)容易求得∠BOD .例2 如图,直线AB 与CD 相交于点O ,∠BOE =90°,∠COE =30°,求∠AOD 的度数. 分析 欲求∠AOD ,根据对顶角相等只需先求∠BOC ,而∠BOC 即为 ∠BOE 的∠COE 和.例3 如图,两条直线AB 与CD 相交于O ,OE 平分∠AOD ,且∠EOF =90°,∠BOC =30°,求∠COF 的度数.分析 因为∠AOB 为平角,欲求∠COF 只需先求∠AOF ,又∠EOF =90°, 故应先求∠AOE ,而利用对顶角相等及角平分线可容易求得∠AOE .三、拓展提升如图,已知直线AB 、CD 、EF 交于点O ,∠BOC =∠AOC . (1)图中∠AOE 的补角有 ;图中的对顶角共有 对; (2)若∠AOE :∠AOD =1:3,求∠BOF 、∠DOF 的度数.分析 首先通过∠BOC =∠AOC 可知AB 、CD 相交所组成的四个角均是直角,然后根据∠AOE :∠AOD =1:3,可设∠AOE 为x °,∠AOD 为3x °,建立方程来解决.本题在找对顶角时还要注意按顺序,做到不重复也不遗漏.四、课后作业1.图中共有 对对顶角.2.∠1和∠2互余,∠2和∠3是对顶角,且∠1=63°,则∠3=_____. 3.如图,∠AOB =90°,直线CD 过点O ,且∠AOC =50°, 则∠DOB = °. 4.如图,射线OB 的反向延长线表示的方位是 .5.如图,直线AB 、CD 相交于点O ,OE 是射线,OD 是∠BOE 的角平分线,且∠DOE =35°,则∠AOC = °.6.如图,直线AB 、CD 相交于点O ,OA 平分∠COE ,∠DOB =40°,求∠DOE .ABDOCEAOBCDE F(第1题图)30︒OB东北西(第4题图)ED BOAC (第5题图)COBD E A FA BEDOC7.如图,直线AB 、CD 相交于点O ,OE 是∠AOD 的平分线,∠FOC =90 º,∠1=54º,求∠2与∠3的度数.8.如图,直线AB 、CD 相交于点O ,已知∠AOC =80 º,OE 把∠BOD 分成两个角,且∠BOE :∠EOD =2:3,求∠EOD 的度数.9.如图,直线AB 、CD 、EF 相交于同一点O ,而且∠BOC =∠AOC ,∠ DOF =21∠BOE ,求∠EOC 的度数.6.3余角、补角、对顶角(二) 一、基础训练 1.相等 2.4 3.60 4.互与 二、典型例题例1.∵OE 平分∠BOD ,∴∠BOD =2∠DOE =60°,∵∠BOD 与∠AOC 是对顶角,∴∠AOC =∠BOD =60°例2.∵∠BOE =90°,∠COE =30°,∴∠BOC =∠BOE +∠COE =120°,∵∠AOD 与∠BOC 是对顶角,∴∠AOD =∠BOC =120°例3.∵∠AOD 与∠BOC 是对顶角,∴∠AOD =∠BOC =30°,∵OE 平分∠AOD ,∴∠AOE =21∠ABCD OEA OB CF DE 132 ABDCE FOAOD=15°,∴∠AOF=∠EOF -∠AOE=75°,∴∠COF=180°-∠AOF -∠BOC=75°.三、拓展提升(1)∠BOE、∠AOF;6(2)∠BOF=22.5°、∠DOF=67.5°四、课后作业1.22.273.1404.南偏西30°5.356.100°7.∠2=36°、∠3=72°8.48°9.30°。
苏科版2020年数学七上6.3《余角、补角、对顶角》 课后练习(含答案)

苏科版2020年数学七上6.3《余角、补角、对顶角》 课后练习1.判断:⑴︒90的角叫余角,︒180的角叫补角. ( )⑵如果︒=∠+∠+∠180321,那么21∠∠、与3∠互补. ( )⑶如果两个角相等,则它们的补角相等. ( )⑷如果βα∠>∠,那么α∠的补角比β∠的补角大. ( )2.你记住了吗?⑴∵1∠和2∠互余,∴=∠+∠21___________(或2_____1∠-=∠)⑵∵1∠和2∠互补,∴=∠+∠21___________(或2_____1∠-=∠)3.7150'︒=∠α,则它的余角等于_____;β∠的补角是2183102'''︒,则β∠=______.4.一个角是︒36,则它余角是 ,它补角是_______.它的补角比它余角大 °.5.如图,点O 在直线PQ 上,OA 是QOB ∠的平分线,OC 是POB ∠的平分线,,那么下列说法错误的是 ( )A .AOB ∠与POC ∠互余B .POC ∠与QOA ∠互余C .POC ∠与QOB ∠互补D .AOP ∠与AOB ∠互补6.下列叙述正确的是 ( )A .︒180的角是补角B .︒110和︒90的角互为补角C .︒︒︒602010、、 的角互为余角D .︒120和︒60的角互为补角7.如果一个角的补角是150°,那么这个角的余角的度数是 ( )A . 30°B . 60°C . 90°D . 120°8.已知α∠和β∠互为补角,其中βα∠>∠,那么β∠的余角为 ( ) A .)(21βα∠+∠ B .)(21βα∠-∠ C .α∠21 D .不能确定 9.若互余的两个角有一条公共边,则这两个角的角平分线所组成的角 ( )A .等于︒45 B .小于︒45 C .小于或等于︒45 D .大于或等于︒4510.如图,将两块三角板的直角顶点重合后重叠在一起,如果∠l =40O,那么∠2=_______.11.一个角的补角的余角等于这个角的52,求这个角的度数.12.已知α∠与β∠互为补角,且α∠比β∠大︒25,求这两个角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版数学七年级上提优练习
内容:余角、补角、对顶角
1.(2020独家原创试题)如图6—3—1,A,0,B在一条直线上,∠1=∠2,∠3=∠4,则图中互余的角共有( )
A.5对 B.4对 C.3对 D.2对
2.如果∠α和互∠β补,且∠α<∠β [0/<,下列式子:①900一∠α②∠β—900;
③
2
1
(∠α+
∠β);④
2
1
(∠β -∠α ).中是∠α的余角的有 ( )
A.1个 B.2个 C.3个 D.4个
3.∠1和∠2互余,∠2和∠3互补,如果∠l=630.那么∠3= .
4.已知一个角韵补角比这个角的4倍大l5。
,求这个角的余角.
5.(2020独家原创试题)如罔6—3—2,直线a,b相交与点0.因为∠l+∠2=1800,
∠3+2∠=1800,所以∠1=∠3,这是根据 ( )
A.同角的余角相等 B.等角的余角相等 c.同角的补角相等D.等角的补角相等
6.如图6—3—3所示,点0在直线AB上,且∠AOC=∠BOC=900.∠EOF=900,试判断
∠AOE,∠COE与∠BOF的关系.
7.∠l与∠2是对顶角的是 ( )
8.如图6—3—4,直线AB、CD相交于点0,∠AOC=67.50.OE把∠BOD分成两个角,
且∠DOE:∠BOE=1:2.
(1)求∠DOE的度数;
(2)若OF平分A∠OE,试说明OA平分∠COF.
9.(2020江苏南京江宁期未,15,★☆☆)如图6—3—5,∠AOB与∠AOC互余,∠AOD
与∠AOC互补,OC平分∠BOD,则∠AOB的度数是 ( )
10.(2019江苏泰州l姜堰期末,6,★☆☆)如图6—3—6所示,直线AB与CD相交于
点0,0B平分∠DOE,若∠DOE=600.则∠AOE的度数是 ( )
11.(2020江苏苏州I相城期末,10,★☆☆)大雁迁徙时常排成人字形.这个人字形的一边与其飞行方向夹角是54044/8//,从空气动力学角度看,这个角度对于大雁伍飞行最佳,所受阻力最小.54044/8//的补角是________________.
12.(2019江苏徐州l云龙期末,15,★★☆)两条直线相交所成的四个角中,有两个角分别是(2x一l0)0和(110一x)0,则x=__________.
13.(2019广东广州培正中学期未,23,★☆☆)如图6—3—7所示.直线AB与DF相交于点0,OC平分∠AOD,OE在∠BOD内,且∠DOE=∠AOD,∠COE=780.
(1)求∠EOB的度数;
(2)写出∠DOE的所有补角.
14.(2018广西贺州中考,2,★☆☆)如图6-3-8,下列各组角中.互为对顶角的是( )
15.(2017广东中考.3.★☆☆)已知∠A=700,则∠A的补角为 ( )
A.1100 B.700 C.300 D.200
16.(2019江苏常州中考,12,★☆☆)如果∠a=350,那么
∠a的余角等于___________。
.
17.(2015广西梧州中考,16,★★☆)如图6—3—9,已知直线AB与CD相交于点0,ON平分∠DOB,若∠BOC=1100,则∠AON的度数为________。
.
18.如图6-3一l0①,已知∠MON=140。
,∠AOC与∠BOC互余,OC平分∠MOB.
(1)在图6—3—10①巾,若∠AOC=40。
,则∠BOC=_______,∠NOB=_________;
(2)在图6—3—10①中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须
写出推理的主要过程,但每一步后面不必写出理由);
(3)在已知条件不变的前提下,当∠AOB绕着点0顺时针转动到如图6—3—10②的位置时,α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.
19.如图6—3一ll①.B、0、C在同一条直线上,∠AOB=α(00<α<600)
(1)若∠BOD=900,∠AOD=700∠AOE=700,如图6-3—11②,求∠EOB与∠AOB的比值;
(2)若LBOD=∠AOE=90。
,0F平分∠AOD,OG平分∠AOC,如图6—3—11⑧,请比较∠AOF 与∠GOC的大小,并求出∠FOG的度数;
(3)若∠AOM与∠AOB互余,∠BON也与∠AOB互余,请直接写出∠MON的度数(用含α的式子表示).。