实验五 步进电机单轴定位控制实验
单轴电机实验报告

一、实验目的1. 熟悉单轴电机的基本结构和工作原理;2. 掌握单轴电机的驱动和控制方法;3. 了解单轴电机在不同负载下的运行特性;4. 学习电机参数的测试和计算方法。
二、实验原理单轴电机是一种将电能转换为机械能的装置,主要由转子、定子、电刷、电枢等部分组成。
当电流通过电枢时,在电枢和磁场之间产生电磁力,从而使转子转动。
本实验主要研究直流电机和步进电机的驱动与控制。
三、实验设备与仪器1. 直流电机:型号为DC12V,功率为12W;2. 步进电机:型号为NEMA17,步距角为1.8°;3. 电机驱动器:直流电机驱动器、步进电机驱动器;4. 可调电源:直流电源;5. 电流表、电压表、转速表、转矩表;6. 电脑、数据采集卡。
四、实验内容及步骤1. 直流电机实验(1)连接电路:将直流电机、驱动器、可调电源、电流表、电压表、转速表、转矩表等连接成电路。
(2)测试电机参数:在空载状态下,记录电机的电压、电流、转速、转矩等参数。
(3)负载实验:在电机轴上加载不同重量的砝码,记录相应的电压、电流、转速、转矩等参数。
(4)数据分析:分析电机在不同负载下的运行特性,计算电机的效率、功率因数等指标。
2. 步进电机实验(1)连接电路:将步进电机、驱动器、可调电源、电脑、数据采集卡等连接成电路。
(2)测试步进电机参数:在空载状态下,记录电机的电压、电流、转速、转矩等参数。
(3)定位实验:通过编程控制步进电机,使其在指定位置停止,记录步进电机的定位精度。
(4)加减速实验:通过编程控制步进电机,使其在给定时间内完成加减速运动,记录电机的加减速性能。
(5)数据分析:分析步进电机在不同负载、定位精度、加减速性能等方面的表现。
五、实验结果及分析1. 直流电机实验结果及分析通过实验,得到了直流电机在不同负载下的电压、电流、转速、转矩等参数。
分析结果表明,随着负载的增加,电机的电压、电流、转矩逐渐增大,而转速逐渐减小。
这说明电机在负载较大时,需要更大的电压和电流来维持正常运转。
实验五 步进电机单轴定位控制实验

方向信号 (a) 脉冲+方向 (b) 正脉冲+负脉冲 实验五 步进电机单轴定位控制实验一、实验目的1. 学习和掌握步进电机及其驱动器的操作和使用方法;2. 学习和掌握步进电机单轴定位控制方法;3.学习和掌握PLC 单轴定位模块的基本使用方法。
二、实验原理步进电动机是一种将电脉冲信号转换为相应的角位移或直线位移量的机电执行元件,即步进电动机输入的是电脉冲信号,输出的是角位移或直线位置。
每给一个脉冲,步进电动机转动一个角度,这个角度称为步距角。
运动速度正比于脉冲频率,角位移正比于脉冲个数。
步进电动机典型控制系统框图如图1-2-9所示。
图1-2-9 步进电动机典型控制系统框图位置控制单元可根据需要的频率和个数以及设定的加减时间控制步进电动机运动。
由于步进电动机需要正反转运动,因此定位单元的输出脉冲形式有“脉冲+方向”和“正脉冲+负脉冲”两种,它们均可控制步进电动机正反转运动。
输出脉冲形式通过参数设定来选择。
其脉冲形式如图1-2-10所示。
图1-2-10 定位模块的两种输出脉冲形式PLS ) 由于步进电动机的电磁惯性和所驱动负载的机械惯性,速度不能突变,因此定位模块要控制升降频过程。
步进电机升、降频过程如图1-2-11。
一般情况下,S 2=S 3。
图 1-2-11 步进电机升、降频示意图其中:f 1——设定的运行频率,应小于步进电动机的最高频率;S 1——设定的总脉冲个数;S 2——升频过程中脉冲个数,由加速时间和运行频率确定;S 3——降频过程中脉冲个数,由减速时间和运行频率确定。
步进电动机驱动器将位置定位模块的输出脉冲信号进行分配并放大后驱动步进电动机的各相绕组,依次通电而旋转。
驱动器也可接受两种不同形式的脉冲信号,通过开关来选择,定位模块和驱动器的脉冲形式要相同。
另外,为了提高步进电动机的低频性能,驱动器一般具有细分功能,多个脉冲步进电动机转动一步,细分系数一般为1、2、4、8、16、32等几种,通过拨码开关来设定。
步进电机控制实训报告

一、实训背景随着科技的飞速发展,步进电机在工业自动化、精密定位、医疗设备等领域得到了广泛的应用。
为了深入了解步进电机的原理和应用,提高自身的动手实践能力,我们进行了步进电机控制实训。
二、实训目标1. 理解步进电机的原理和工作方式。
2. 掌握步进电机的驱动方法和控制方法。
3. 学会使用单片机对步进电机进行编程和控制。
4. 提高团队协作能力和问题解决能力。
三、实训内容1. 步进电机原理步进电机是一种将电脉冲信号转换为角位移或线位移的执行元件。
其特点是响应速度快、定位精度高、控制简单。
步进电机每输入一个脉冲信号,就转动一个固定的角度,称为步距角。
步距角的大小取决于电机的结构,常见的步距角有1.8度、0.9度等。
2. 步进电机驱动步进电机的驱动通常采用步进电机驱动器。
驱动器将单片机输出的脉冲信号转换为驱动步进电机的电流信号,实现对步进电机的控制。
常见的驱动器有L298、A4988等。
3. 单片机控制本实训采用AT89C51单片机作为控制核心。
通过编写程序,控制单片机输出脉冲信号,实现对步进电机的正转、反转、停止、速度等控制。
4. 实训步骤(1)搭建步进电机驱动电路,连接单片机、步进电机、按键等外围设备。
(2)编写程序,实现以下功能:- 正转、反转控制;- 速度控制;- 停止控制;- 按键控制。
(3)使用Proteus仿真软件进行程序调试,验证程序的正确性。
(4)将程序烧录到单片机中,进行实际硬件测试。
四、实训结果与分析1. 正转、反转控制通过编写程序,实现了对步进电机的正转和反转控制。
在Proteus仿真软件中,可以观察到步进电机按照设定的方向转动。
2. 速度控制通过调整脉冲信号的频率,实现了对步进电机转速的控制。
在Proteus仿真软件中,可以观察到步进电机的转速随脉冲频率的变化而变化。
3. 停止控制通过编写程序,实现了对步进电机的停止控制。
在Proteus仿真软件中,可以观察到步进电机在停止信号后立即停止转动。
步进电机控制实验报告

步进电机控制实验报告开课学院及实验室:学院年级、专业、班姓名学号实验课程名称计算机控制技术成绩实验项目名称步进电机控制实验指导老师一、实验目的1.了解步进电机的工作原理。
2.掌握步进电机的驱动及编程方法。
二、实验原理步进电机是一种电脉冲转化为角位移的执行机构。
当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的。
通过设定脉冲数来使步进电机转过一定的角度。
步进电机多为永磁感应式,有两相、四相、六相等多种,实验所用电机为四相八拍式。
三、使用仪器、材料1.TPCC-III计算机控制技术实验箱一台。
2. 数字式万用表一个。
3.微型计算机一台(安装“DICE计算机控制实验软件”)。
四、实验步骤本实验使用的AD35-02M型四相八拍电机,电压为DC12V,其励磁线圈及励磁顺序如下图3-1。
图3-1 励磁线圈及励磁顺序图3-2 实验接线图表3-1 8255B口输出电平在各步中的情况步骤1:按图3-2接线:步骤2:在汇编程序编辑界面输入程序,将宏汇编程序经过汇编,连接后形成.EXE文件。
打开调试窗口,复位,待出现“Welcome to you!”,装入系统,输入命令“G=2000↙”。
EXP3.ASM汇编程序如下:STACK SEGMENT STACKDW 256 DUP(?)STACK ENDSDATA SEGMENTTABLE DB 01H,03H,02H,06H,04H,0CH,08H,09H ;Step of motorDATA ENDSCODE SEGMENTASSUME CS:CODE,DS:DATASTART: MOV AX,DATAMOV DS,AXMAIN: MOV AL,80H ;Initiate 8255 B(OUT)OUT 63H,ALA1: MOV BX,OFFSET TABLEMOV CX,0008H ; Number of stepA2: MOV AL,[BX] ; 8255 outOUT 61H,AL。
步进电机的控制实验报告

步进电机的控制实验报告一、实验目的本实验旨在深入了解步进电机的工作原理,掌握其控制方法,并通过实际操作和测量,验证控制策略的有效性和准确性。
二、实验原理步进电机是一种将电脉冲信号转换为角位移或线位移的开环控制电机。
它通过按一定顺序依次给电机的各相绕组通电,使电机转子逐步转动。
其转动的角度与输入的脉冲数成正比,转速与脉冲频率成正比。
常见的步进电机控制方式有全步驱动、半步驱动和细分驱动。
全步驱动时,每输入一个脉冲,电机转子转动一个固定的角度(通常为 18°或 09°);半步驱动时,电机转子转动的角度为全步驱动的一半;细分驱动则通过控制各相电流的大小和相位,实现更精细的角度控制。
三、实验设备1、步进电机一台2、驱动控制器3、电源4、示波器5、数字万用表6、计算机及控制软件四、实验步骤1、连接实验设备将步进电机与驱动控制器正确连接,注意相序的对应。
给驱动控制器和电机接通电源。
将示波器和数字万用表分别连接到合适的测量点,以监测电机的电流、电压和脉冲信号。
2、设定控制参数在计算机控制软件中,设置电机的运行模式(全步、半步或细分)、脉冲频率、转动方向等参数。
3、启动电机点击控制软件中的启动按钮,观察电机的转动情况。
4、测量电机性能使用示波器测量电机的驱动脉冲信号,观察其波形和频率。
用数字万用表测量电机的相电流和相电压,记录数据。
5、改变控制参数调整脉冲频率,观察电机转速的变化。
改变转动方向,验证电机转向控制的正确性。
6、重复实验多次改变控制参数,进行重复实验,以获取更准确和可靠的数据。
五、实验数据及分析1、全步驱动模式下脉冲频率为 100Hz 时,电机转速约为 60r/min,相电流平均值为_____A,相电压为_____V。
脉冲频率提高到 500Hz 时,电机转速约为 300r/min,相电流平均值增加到_____A,相电压基本不变。
分析:在全步驱动模式下,脉冲频率越高,电机转速越快,但相电流也会相应增加,可能导致电机发热加剧。
控制步进电机实验报告(3篇)

第1篇一、实验目的1. 理解步进电机的工作原理及控制方法。
2. 掌握单片机与步进电机驱动模块的接口连接方法。
3. 学习使用C语言编写程序,实现对步进电机的正反转、转速和定位控制。
4. 通过实验,加深对单片机控制系统的理解。
二、实验原理步进电机是一种将电脉冲信号转换为角位移或线位移的电机,其特点是控制精度高、响应速度快、定位准确。
步进电机控制实验主要涉及以下几个方面:1. 步进电机驱动模块:常用的驱动模块有ULN2003、A4988等,它们可以将单片机的数字信号转换为步进电机的控制信号。
2. 单片机:单片机是整个控制系统的核心,负责接收按键输入、处理数据、控制步进电机驱动模块等。
3. 步进电机:步进电机分为单相、双相和三相等类型,本实验使用的是双相四线步进电机。
三、实验设备1. 单片机开发板:例如STC89C52、STM32等。
2. 步进电机驱动模块:例如ULN2003、A4988等。
3. 双相四线步进电机。
4. 按键。
5. 数码管。
6. 电阻、电容等元件。
7. 电源。
四、实验步骤1. 硬件连接(1)将步进电机驱动模块的输入端(IN1、IN2、IN3、IN4)分别连接到单片机的P1.0、P1.1、P1.2、P1.3口。
(2)将按键的输入端连接到单片机的P3.0口。
(3)将数码管的段选端连接到单片机的P2口。
(4)将步进电机驱动模块的电源端连接到电源。
(5)将步进电机连接到驱动模块的输出端。
2. 编写程序(1)初始化单片机I/O端口,设置P1口为输出端口,P3.0口为输入端口,P2口为输出端口。
(2)编写按键扫描函数,用于读取按键状态。
(3)编写步进电机控制函数,实现正反转、转速和定位控制。
(4)编写主函数,实现以下功能:a. 初始化数码管显示;b. 读取按键状态;c. 根据按键状态调用步进电机控制函数;d. 更新数码管显示。
3. 调试程序(1)将程序烧写到单片机中;(2)打开电源,观察数码管显示和步进电机运行状态;(3)根据需要调整程序,实现不同的控制效果。
步进电机控制实验实验报告及程序

实验九步进电机控制实验姓名专业通信工程学号成绩一、实验目的1.掌握keil C51软件与proteus软件联合仿真调试的方法;2.掌握步进电机的工作原理及控制方法;3.掌握步进电机控制的不同编程方法;二、实验仪器与设备1.微机1台2.keil C51集成开发环境3.Proteus仿真软件三、实验内容1.用Proteus设计一四相六线步进电机控制电路。
要求利用P1口作步进电机的控制端口,通过达林顿阵列ULN2003A驱动步进电机。
基本参考电路见后面附图。
2.编写程序,实现步进电机的正反转控制。
正反转时间分别持续10S时间,如此循环。
3.设计一可调速步进电机控制电路。
P3.2~P3.5分别接按键k1~k4,其中k1为正反转控制按键,k2为加速按键,k3为减速按键,k4为启动/停止按键,要求速度7档(1~7)可调,加减速各设3档,复位时位于4档,要求每档速度变化明显。
该步进电机控制电路在以上电路的基础上自行修改。
四、实验原理1.步进电机控制原理:1)步进电机是利用电磁铁的作用原理,步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。
每来一个电脉冲,步进电机转动一定角度,带动机械移动一小段距离。
特点A.来一个脉冲,转一个步距角。
B.控制脉冲频率,可控制电机转速。
C.改变脉冲顺序,可改变转动方向。
2)以反应式步进电机为例说明步进电机的结构和工作原理。
三相反应式步进电动机的原理结构图如下,定子内圆周均匀分布着六个磁极,磁极上有励磁绕组,每两个相对的绕组组成一相。
转子有四个齿。
给A相绕组通电时,转子位置如图(a),转子齿偏离定子齿一个角度。
由于励磁磁通力图沿磁阻最小路径通过,因此对转子产生电磁吸力,迫使转子齿转动,当转子转到与定子齿对齐位置时(图b),因转子只受径向力而无切线力,故转矩为零,转子被锁定在这个位置上。
由此可见:错齿是助使步进电机旋转的根本原因。
3)三相反应式步进电动机的控制原理①三相单三拍:A 相→ B 相→ C 相→ A 相②三相六拍:A→AB →B →BC →C → CA→ A③三相双三拍:AB →BC →CA→AB4)步距角计算公式:θ—步距角 Z r—转子齿数 m —每个通电循环周期的拍数2、ULN2003A:七达林顿阵列ULN2003A是集成达林顿管反相驱动电路,内部还集成了一个消线圈反电动势的二极管,可用来驱动电机、继电器等功率器件。
步电机控制实验报告

一、实验目的1. 理解步进电机的工作原理和特性;2. 掌握步进电机的驱动电路设计;3. 学会使用步进电机驱动器;4. 实现步进电机的正反转、转速调节及位置控制。
二、实验器材1. 步进电机:NEMA 17 42BYG250-20042. 步进电机驱动器:A4988步进电机驱动模块3. 电源:12V 2A4. 连接导线5. 实验平台:Arduino Uno6. 实验软件:Arduino IDE三、实验原理步进电机是一种将电脉冲信号转换为角位移的电机,具有响应速度快、定位精度高、控制简单等优点。
步进电机的工作原理是:当输入一个电脉冲时,步进电机内部的转子就旋转一个固定的角度,这个角度称为步距角。
步进电机的步距角取决于其结构,常见的步距角有1.8°、0.9°等。
步进电机的驱动电路主要由电源、驱动模块和步进电机组成。
驱动模块负责将输入的脉冲信号转换为步进电机所需的电流,从而实现电机的转动。
四、实验步骤1. 步进电机驱动电路搭建(1)将步进电机驱动模块的VCC、GND、ENA、IN1、IN2、IN3、IN4分别连接到电源的12V、GND、GND、Arduino Uno的数字引脚2、3、4、5;(2)将步进电机的A、B、C、D分别连接到驱动模块的A、B、C、D;(3)连接电源和步进电机。
2. 步进电机控制程序编写(1)在Arduino IDE中创建一个新的项目,命名为“StepMotorControl”;(2)编写如下代码:```cpp#include <Stepper.h>const int stepsPerRevolution = 200; // 步进电机每转一周的步数Stepper myStepper(stepsPerRevolution, 2, 3, 4, 5);void setup() {myStepper.setSpeed(60); // 设置步进电机的转速,单位为步/秒}void loop() {myStepper.step(stepsPerRevolution); // 正转一周delay(1000);myStepper.step(-stepsPerRevolution); // 反转一周delay(1000);}```(3)将编写好的代码上传到Arduino Uno。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方向信号 (a) 脉冲+方向 (b) 正脉冲+负脉冲 实验五 步进电机单轴定位控制实验一、实验目的1. 学习和掌握步进电机及其驱动器的操作和使用方法;2. 学习和掌握步进电机单轴定位控制方法;3.学习和掌握PLC 单轴定位模块的基本使用方法。
二、实验原理步进电动机是一种将电脉冲信号转换为相应的角位移或直线位移量的机电执行元件,即步进电动机输入的是电脉冲信号,输出的是角位移或直线位置。
每给一个脉冲,步进电动机转动一个角度,这个角度称为步距角。
运动速度正比于脉冲频率,角位移正比于脉冲个数。
步进电动机典型控制系统框图如图1-2-9所示。
图1-2-9 步进电动机典型控制系统框图位置控制单元可根据需要的频率和个数以及设定的加减时间控制步进电动机运动。
由于步进电动机需要正反转运动,因此定位单元的输出脉冲形式有“脉冲+方向”和“正脉冲+负脉冲”两种,它们均可控制步进电动机正反转运动。
输出脉冲形式通过参数设定来选择。
其脉冲形式如图1-2-10所示。
图1-2-10 定位模块的两种输出脉冲形式频 率 (HZ ) 脉冲数(PLS ) f 1S 2 S 3S 1由于步进电动机的电磁惯性和所驱动负载的机械惯性,速度不能突变,因此定位模块要控制升降频过程。
步进电机升、降频过程如图1-2-11。
一般情况下,S 2=S 3。
图 1-2-11 步进电机升、降频示意图其中:f 1——设定的运行频率,应小于步进电动机的最高频率;S 1——设定的总脉冲个数;S 2——升频过程中脉冲个数,由加速时间和运行频率确定;S 3——降频过程中脉冲个数,由减速时间和运行频率确定。
步进电动机驱动器将位置定位模块的输出脉冲信号进行分配并放大后驱动步进电动机的各相绕组,依次通电而旋转。
驱动器也可接受两种不同形式的脉冲信号,通过开关来选择,定位模块和驱动器的脉冲形式要相同。
另外,为了提高步进电动机的低频性能,驱动器一般具有细分功能,多个脉冲步进电动机转动一步,细分系数一般为1、2、4、8、16、32等几种,通过拨码开关来设定。
步进电动机驱动生产机械的运动部件。
图1-2-12 实验系统结构框图位置定位模块、步进电动机及驱动器种类很多,本实验中采用的是三菱FX2N 系列PLC 中的双轴定位模块FX2N-20GM ,该模块与PLC 相连,可以单独或同时控制两个步进电动机,步进电动机和驱动器为和利时产品。
实验系统结构框图如图1-2-12所示。
工作原理:PLC及20GM实现对步进电动机系统的通电控制和定位控制,步进电动机通过丝杆带动工作台做直线运动。
步进电动机转动一步机械实际移动的位移量称为脉冲当量,脉冲当量是数控系统中很重要的参数。
实验系统中,步进电动机与丝杆直接连接,因此,脉冲当量的计算公式为:脉冲当量=丝杆螺距/{3600 /(步距角×细分系数)}在实验系统中,丝杆的螺距为5mm,步进电动机的步距角为1.80,细分系数为所设定的数据。
正限位和负限位开关的安装位置由丝杆的导程确定,保证丝杆不被损坏,即当这两个开关的位置确定后,定位模块保证工作台的运动只能在这两个行程开关之间进行。
原位开关用来确定机械坐标原点的位置。
位置控制模块回原点操作,就是使机械原点和电气原点统一。
三、实验内容及步骤(一) 系统通电和准备1.在断电的情况下,按图1-2-13接线(虚线框外的连线已接好);2.征得老师同意后,合上断路器QF1和QF2;3.将编程电缆连于PLC 上,利用PC机上的编程软件“FXGP/WIN-C”向PLC输入PLC控制程序(此时,PLC处于中止运行状态);4.将编程电缆连于20GM上,利用PC机上的定位软件“FXVPS-E”向20GM输入定位程序(此时,20GM的状态开关拔向手动位置“MANU”);5.将PLC设置为运行状态,运行PLC,Y30输出1,KA1得电,接触器KM2的主触头闭合,驱动器SH-20403得电;6.将20GM的状态开关拔向自动位置“AUTO”,运行20GM;7.按“复位”按钮,X轴原位,此时的位置为坐标原点,记下该位置A。
(二)基本定位1.设定步进电动机细分系数为8(实验中以按该系数进行了脉冲当量的计算和设定);2.设定相对于A点的目标位置(单位为mm,正值在A点的右边,负值在A点的左边)和运动速度(单位为cm/min),把它们用参数设定的方法分别输入到位置量寄存器D2(实验程序定义)和速度寄存器D4(实验程序定义)中;3.按“启动”按钮,X轴以设定的速度运动到指定的位置B,观测运动速度,运动结束后,测量A到B之间的距离,与设定位置比较;4.重新设定目标位置和运动速度,重复3;5.设定目标位置为0,让工作台回到A点。
(三)细分1.使细分系数不为8;2.设定位置值和运动速度;3.按“启动”按钮,X轴以设定的速度运动到指定的位置B,观测运动速度,运动结束后,测量A到B之间的距离,与设定位置比较;4.设定目标位置为0,让工作台回到A点。
(四)频率特性实验1.设定步进电动机细分系数为1,输入20GM的步进特性实验程序;2.当步进电动机的运行频率大于最高运行频率时,步进电动机会失步,影响定位精度,步进电动机应工作在最大运行频率以下。
实验中所使用步进电动机的最大运行频率大约为1KHz,计算出运动机构的最高运动速度;3.设定位置值和运行速度,并使运行速度大于最高运动速度;4.按“启动”按钮,观察运动机构的运动想象,运动结束后测量运动的实际位置;5.步进电机在较低的频率下运行时,步进电机就会振动,从而引起机械振动。
步进电机应避免在振动频率下运行。
实验中所用步进电动机的振动频率大约为200脉冲/S以下,计算出相对应的机械运动速度;6.设定位置值和运行速度,并使运行速度在振荡速度区间;7.重复4;图1-2-13控制系统接线图四、实验说明及注意事项1.A点一定通过回原点得到;2.系统中坐标为相对坐标,因此运动前后的位置值要不同,工作台才有移动;3.回原位后,测量一下A点到左边行程开关之间的距离(负向位置最大值)和A点到右边行程开关的距离(正向位置最大值);4.位置值设定为正时要小于正向位置最大值,位置值设定为负时要小于负向位置最大值。
五、实验用仪器工具PC 机 1台PLC 1台20GM 1个RS232电缆线1根编程电缆1根断路器(QF1、QF2)2个继电器(KA2)1个接触器(KM2)1个驱动器(SH-20806C) 1台步进电机(57BYG250E)1台六、实验前的准备预习实验报告及附录,并画出PLC控制程序和20GM定位程序。
七、实验报告要求1.画出PLC梯形图,并写出指令代码。
2.写出定位程序。
3.计算并分析实验结果。
4.写上实验目的、原理、步骤及电路图。
八、思考题1.试说明坐标轴的正向和负向的规定方法。
2.影响步进电机单轴定位精度的主要因素是什么?3.什么叫前极限、后极限、机械原点、电气原点?4.怎样实现步进电机的连续路径循环控制:正向移动20MM 反向移动20MM 正向移动20MM。
5.在本实验中,如果要使X轴正向移动50MM,20GM须给步进电机发多少个脉冲?实验六交流伺服电机单轴定位控制实验一、实验目的1. 学习和掌握交流伺服系统的使用方法;2. 学习和掌握交流伺服电机单轴定位控制程序的设计方法。
二、实验内容伺服电动机也成为执行电机,在控制系统中用作执行元件,将电信号转换为轴上的转角和速度,以带动控制对象。
伺服电动机分交流和直流两种,本实验中采用是交流伺服。
交流伺服电动机典型控制系统框图如图1-2-14所示。
图1-2-14 伺服电动机典型控制系统框图伺服驱动器是专用来对伺服电动机进行控制的电气系统,通过改变输入信号达到改变电动机的速度和转角的控制。
目前伺服驱动器的输入有两种形式:一是模拟量控制式,这种方式的驱动器,通过改变输入电压的大小控制转速或转角;二是数字控制式,这种方式驱动器与步进电动机控制相同,通过脉冲信号实现转角、速度和方向的控制。
由图1-2-14可知:系统为一个半闭环系统,位置控制单元给出位置理论值,伺服驱动器将理论值和从电动机轴上测得的实际值进行比较,控制电动机运动。
位置定位模块、伺服电动机即驱动器种类很多,本实验中采用的是三菱FX2N系列PLC 的高速输出功能实现脉冲输出和方向控制,伺服电动机和驱动器为松下。
实验系统结构框图如图1-2-15所示。
图1-2-15 实验系统示意图工作原理:PLC高速输出端输出脉冲和方向信号,实现对伺服电动机系统的通电控制和定位控制,伺服电动机通过丝杆带动工作台做直线运动。
伺服电动机转动一步机械实际移动的位移量称为脉冲当量,脉冲当量是数控系统中很重要的参数。
本系统中的脉冲当量的计算公式如下:脉冲当量=丝杆螺距/伺服电动机每转所需脉冲数在实验系统中,丝杆的螺距为5mm,伺服电动机每转所需脉冲数为2500(pls/r)。
正限位和负限位开关的安装位置由丝杆的导程确定,保证丝杆不被损坏,即当这两个开关信号接入到交流伺服控制器的相应的输入端或送到位置控制器时,就可保证工作台的运动只能在这两个行程开关之间进行。
原位开关用来确定机械坐标原点的位置。
位置控制模块回原点操作,就是使机械原点和电气原点统一。
实验电路原理图如图1-2-16所示。
图1-2-16 实验电路原理图脉冲频率(HZ ) 总脉冲数 (PLS ) Y0或Y1 X10 工作原理:合上QF1和QF3,PLC 通电、交流伺服系统接通控制电压,PLC 使输出Y31为1,KA2得电,触头使KM3线圈得电,主触头闭合,伺服系统强电接通,然后PLC 使Y4为1,给交流伺服使能,此时,交流伺服完全准备好,可以执行定位控制。
定位脉冲信号由PLC 的Y1发出,方向由Y3控制。
三菱FX2N 系列PLC 只有两个高速输出端Y0和Y1,使用专用脉冲输出指令“DPLSY ”发送脉冲信号,其指令形式为 :前、后限位开关直接接入交流伺服驱动器的专用输入端,进行限位保护。
三、实验步骤1. 学生根据图1-2-17接线,为安全起见,伺服电机和驱动器的主控电路以及PLC 外围的继电器KA3、接触器KM3输出线路已接好。
2. 征得老师同意后,合上断路器QF1和QF3。
3. 将面板上“工作方式”旋钮旋至“点动” 。
4. 输入PLC 程序, 然后运行。
5. 按“启动”按钮,接触器KM3的主触头闭合,伺服电机得电,延时2秒输出Y4 ,使伺服电机准备好 。
1. 按“正向”或“反向”按钮,将Y 轴移动至原位和正极限之间 。
2. 按“复位”按钮,使伺服电机驱动Y 轴回原位,读取此时指针指向的标尺位置A 。
8. 将面板上“工作方式”旋钮旋至“自动”,Y 轴反向移动50MM ,读取此时指针指向的 标尺位置B 。
9. 按“停止”按钮,接触器KM3的主触头断开,驱动器断电 。