PLC控制步进电机实验报告

合集下载

PLC实现步进电机的正反转和调整控制

PLC实现步进电机的正反转和调整控制

实训课题三PLC实现步进电机正反转和调速控制一、实验目的1、掌握步进电机的工作原理2、掌握带驱动电源的步进电机的控制方法3、掌握DECO指令实现步进电机正反转和调速控制的程序二、实训仪器和设备1、FX-48MR PLC一台2N2、两相四拍带驱动电源的步进电机一套3、正反切换开关、起停开关、增减速开关各一个三、步进电机工作原理步进电机是纯粹的数字控制电动机,它将电脉冲信号转换成角位移,即给一个脉冲信号,步进电机就转动一个角度,图3-1是一个三相反应式步进电机结图;从图中可以看出,它分成转子和定子两部分;定子是由硅钢片叠成,定子上有六个磁极大极,每两个相对的磁极N、S极组成一对;共有3对;每对磁极都绕有同一绕组,也即形成1相,这样三对磁极有3个绕组,形成三相;可以得出,三相步进电机有3对磁极、3相绕组;四相步进电机有4对磁极、四相绕组,依此类推;反应式步进电动机的动力来自于电磁力;在电磁力的作用下,转子被强行推动到最大磁导率或者最小磁阻的位置,如图3-1a所示,定子小齿与转子小齿对齐的位置,并处于平衡状态;对三相异步电动机来说,当某一相的磁极处于最大导磁位置时,另外两相相必处于非最大导磁位置,如图3-1b所示,即定子小齿与转子小齿不对齐的位置;把定子小齿与转子小齿对齐的状态称为对齿,把定子小齿与转子小齿不对齐的状态称为错齿;错齿的存在是步进电机能够旋转的前提条件,所以,在步进电机的结构中必须保证有错齿的存在,也就是说,当某一相处于对齿状态时,其它绕组必须处于错齿状态;本实验的电机采用两相混合式步进电机,其内部上下是两个磁铁,中间是线圈,通了直流电以后,就成了电磁铁,被上下的磁铁吸引后就产生了偏转;因为中间连接的电磁铁的两根线不是直接连接的,是采用在转轴的位置用一根滑动的接触片;这样如果电磁铁转过了头,原先连接电磁铁的两根线刚好就相反了,所以电磁铁的N极S极就和以前相反了;但是电机上下的磁铁是不变的,所以又可以继续吸引中间的电磁铁;当电磁铁继续转,由于惯性又转过了头,所以电极又相反了;重复上述过程就步进电机转了;根据这个原理,如图3-2所示,两相步进电机的转动步骤,以正转为例:由图可见,现相异步电机正转过程分为四个步骤,即A相正方向电流、B相正方向电流、A向反方向电流和B相反方向电流;反转工作的顺序与之相反;A、B两相线圈不是固定的电流方向,这与其它步进电机的控制逻辑有所不同;因此,控制步进电机转动时,必须考虑用换相的思路设计实验线路;可以根据模拟驱动电路的功能和plc必须的逻辑关系进行程序设计;四、采用步进电机驱动器的控制方式利用步进电机驱动器可以通过PLC的高速输出信号控制步进电机的运动方向、运行速度、运行步数等状态;其中:步进电机的方向控制,只需要通过控制U/D端的On和Off就能决定电机的正转或反转;将光耦隔离的脉冲信号输入到CP端就能决定步进电机的速度和步数;控制FREE信号就能使电机处于自由状态;因此PLC的控制程序相当简单,只需通过PLC的输出就能控制步进电机的方向、转速和步数;不必通过PLC控制电机换相的逻辑关系,也不必另外添加驱动电路;实训面板见图3-4,梯形图见图3-5;本程序是利用D0的变化,改变T0的定时间隔,从而改变步进电机的转速;通过两个触点比较指令使得D0只能在10~50之间变化,从而控制步进间隔是1S~5S之间,I/O分配表见表3-1;表3-1 I/O分配表图3-5 梯形图五、采用PLC直接控制步进电机方式对于两相步进电机控制,根据其工作原理,必须考虑其换向的控制方式,因此将其步骤用代号分解,则为:①实现电流方向A+→A-、②实现电流方向B+→B-、③实现电流方向A-→A+、④实现电流方向B-→B+;如果反转则按照④、③、②、①的顺序控制;PLC的I/O分配表按照表3-2,分配图按照图3-6,梯形图见图3-7;表3-2 PLC的I/O分配表步进电机正反转和调速控制的梯形图如图3-7所示,程序中采用积算定时器T246为脉冲发生器,因系统配置的PLC为继电器输出类型,其通断频率过高有可能损坏PLC,故设定范围为K200 ms~1000ms,则步进电机可获得1~10步/秒的变速范围,X0为ON时,正转,X1为ON时;反转;X0为ON时,输出正脉冲列,步进电机正转;当X0为ON时,T246以D0值为预置值开始计时,时间到,T246导通,执行DECO指令,根据D1数值首次为0,指定M10输出,Y0、Y4为ON,步进电机A相通电,且实现电流方向A+→A-;D1加1,然后,T246马上自行复位,重新计时,时间到,T246又导通,再执行DECO指令,根据D1数值此次为1,指定M11输出,Y1、Y5为ON,步进电机B相通电,且实现电流方向B+→B-;D1加1,T246马上又自行复位,重新计数,时间到,T246又导通,再执行DECO指令,根据D1数值此次为2,指定M12输出,Y2、Y6为ON,步进电机A相通电,且实现电流方向A-→A+;D1加1,T246马上又自行复位,重新计时,时间到,T246又导通,再执行DECO命令,根据D1数值此次为3,指定M13输出,Y3、Y7为ON,步进电机B相通电,且实现电流方向B-→B+;当M13为ON,D1复位,重新开始新一轮正脉冲系列的产生;X1为ON时,输出反脉冲列,步进电机正转;当X1为ON时,T246以D0值为预置值开始计时,时间到,T246导通,执行DECO指令,根据D1数值首次为0,指定M10输出,Y3、Y7为ON,步进电机B相通电,且实现电流方向B-→B+;依此类推,完成实现A相反方向电流、B相正方向电流、A相正方向电流三个脉冲列输出;当M13为ON,D1复位,重新开始新一轮正脉冲系列的产生;当X2为ON时,程序由自动转为手动模式,当X0X1为ON时,每点动一次X3,对D1数值首次为0加1,分别指定M10、M11、M12及M13输出,从而完成一轮正反脉冲系列的产生;第73步中,当X4为ON,M8012为ON,M4为ON,且D0当前值<K1000,则D0即加1;第88步中,当X5为ON,M8012为ON,M4为ON,且D0>K200,由D0即减1;六、程序调试及执行调速时按X4或X5按钮,观察D0的变化,当变化值为所需速度时释放;如动作情况与控制要求一致表明程序正确,保存程序;如果发现程序运行与控制要求不符,应仔细分析,找出原因,重新修改,直到程序与控制要求相符为止;七、实训思考练习题如果调速需经常进行,可将D0的内容显示出来,试设想方案,修改程序,并实验;图3-7 步进电机正反转和调速控制程序说明1、步骤0,指定脉冲序列输出顺序移位值;2、当X0为ON,输出正脉冲序列,电机正转;当X1为ON,输出负脉冲序列,电机反转;3、当X2为ON,程序由自动转为手动模式,由X3状态单步触发电机运转;4、当X4为ON,如D0小于1000,每100ms对D0加1,从而延长每脉冲输出的时间间隔,降低电机的转速;5、当X5为ON,如D0大于200,每100ms对D0减1,从而缩短每脉冲输出的时间间隔,加快电机的转速;6、T0为频率调整限制;。

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制

PLC实现步进电机的正反转及调整控制
一、PLC实现步进电机的控制原理
拿步进电机举例,大家可以把它想象成一个隔著一定距离的圆盘,隔着每一环的距离形成齿轮的节点。

步进电机的正向或反向转动,就是将这一环索引和圆盘一起发动转动。

步进电机的转动,是靠每一步索引圆盘来完成的,每一步都有一个控制信号来告诉电机从哪一环节点开始转动,当接收到控制信号时,电机开始转动,并且每转一圈循环转动几个索引。

1、正向、反向控制
要实现步进电机的正向反向控制,就要在PLC程序中控制信号形式来实现,一般可以使用两个控制信号,一个是正反控制信号,一个是步进电机转动的速度,要求PLC程序根据正反控制信号来实现正向和反向控制。

正反控制信号就是设置一个开关量变量,当这个开关量为ON时,电机运行正转,当开关量为OFF时,电机运行反转,具体可以采用T函数来实现,T11=1,电机正转,T12=0,电机反转。

由于步进电机的转动是一布一射的过程,所以需要用一个电位器来控制步进电机的转动速度,当电位器的旋钮调整到一定位置时,就会给出一定频率的步进信号,PLC程序可以根据此步进信号,来控制步进电机的转动速度。

实验三-PLC步进电机控制实验

实验三-PLC步进电机控制实验

实验三 PLC步进电机控制实验一、实验目的1、掌握步进电机工作原理;2、用PLC构成五相步进电机控制系统。

二、实验要求1、通过实验,加深并验证学过的理论知识,掌握实验的基本方法和实验原理;2、正确使用仪器设备;3、认真观察仪器设备的运动方式,独立编写控制程序并进行操作。

4、学生在实验过程中,应学会独立思考,应用所学专业理论知识分析和解决实验中遇到的具体问题;三、实验原理步进电机工作原理步进电机按工作原理可分为电磁式、磁阻式、永磁式、混合式四类。

其中混合式步进电机从定子或转子的导磁体来看,它如反应式步进电机,所不同的是它的转子上置有磁钢,反应式转子则无磁钢。

从它的磁路内含有永久磁钢这一点来说,又可以说它是永磁式,但因其结构不同,使其作用原理及性能方面,都与永磁式步进电机有明显区别。

它好像是反应式和永磁式的结合,所以常称为混合式。

混合式步进电机具有驱动电流小,效率高,过载能力强、控制精度高等特点,是目前市面上应用最为广泛的一种步进电机。

四、实验所用仪器1、三菱FX1N-60MR一台;2、计算机一台;五、实验步骤和方法1、熟悉编程环境,输入所编制的程序;2、接通实验箱电源、串口通讯线;3、将程序下载至PLC并运行。

六、实验注意事项经指导教师检查同意后,方可接通电源进行实验操作。

七、实验预习要求1、预习PLC编程环境,上机前预先将控制程序编制完成;2、预习步进电机工作原理。

八、实验报告要求实验报告的主要内容1、实验目的2、实验所用仪器3、实验原理方法简要说明4、程序清单。

实验报告册样式实验步骤:1、熟悉编程环境,编制程序;2、接通实验箱电源、串口通讯线和各种连线;3、将程序下载至PLC并运行。

步进电机正反转实验报告

步进电机正反转实验报告

一、实验名称:
步进电机正反转训练
二、控制要求
要求实现电机的正转三圈, 反转三圈, 电机正转和反转的频率可不相同, 然后这样循环3次, 3次后电机停止转动。

三、PLC I/O地址分配表
PLC的I/O地址连接的外部设备
Y0 电机转向输出点控制转速点CP
Y1 电机的转速输出点控制转向点CW
四、程序梯形图
五、程序分析:
M11.M12、M13的波形图M21.M22.M23的波形图
电机正转的频率是20赫兹, 通过MOV指令送到D5中, 在电机正传三圈后, 电机反转, 反转的频率是40赫兹, 通过MOV指令送到D5中。

电机正转3次, 反转2次, 再通过M23得电进入正转, 重复上面的循环, 即电机正转后再反转, M23才得电一次, 所以可以加一个M23控制一个计数器计数, 当计数器计数到3时, 再通过计数器的常闭开关把M10线圈断电, 从而实现电机停止。

控制步进电机实验报告(3篇)

控制步进电机实验报告(3篇)

第1篇一、实验目的1. 理解步进电机的工作原理及控制方法。

2. 掌握单片机与步进电机驱动模块的接口连接方法。

3. 学习使用C语言编写程序,实现对步进电机的正反转、转速和定位控制。

4. 通过实验,加深对单片机控制系统的理解。

二、实验原理步进电机是一种将电脉冲信号转换为角位移或线位移的电机,其特点是控制精度高、响应速度快、定位准确。

步进电机控制实验主要涉及以下几个方面:1. 步进电机驱动模块:常用的驱动模块有ULN2003、A4988等,它们可以将单片机的数字信号转换为步进电机的控制信号。

2. 单片机:单片机是整个控制系统的核心,负责接收按键输入、处理数据、控制步进电机驱动模块等。

3. 步进电机:步进电机分为单相、双相和三相等类型,本实验使用的是双相四线步进电机。

三、实验设备1. 单片机开发板:例如STC89C52、STM32等。

2. 步进电机驱动模块:例如ULN2003、A4988等。

3. 双相四线步进电机。

4. 按键。

5. 数码管。

6. 电阻、电容等元件。

7. 电源。

四、实验步骤1. 硬件连接(1)将步进电机驱动模块的输入端(IN1、IN2、IN3、IN4)分别连接到单片机的P1.0、P1.1、P1.2、P1.3口。

(2)将按键的输入端连接到单片机的P3.0口。

(3)将数码管的段选端连接到单片机的P2口。

(4)将步进电机驱动模块的电源端连接到电源。

(5)将步进电机连接到驱动模块的输出端。

2. 编写程序(1)初始化单片机I/O端口,设置P1口为输出端口,P3.0口为输入端口,P2口为输出端口。

(2)编写按键扫描函数,用于读取按键状态。

(3)编写步进电机控制函数,实现正反转、转速和定位控制。

(4)编写主函数,实现以下功能:a. 初始化数码管显示;b. 读取按键状态;c. 根据按键状态调用步进电机控制函数;d. 更新数码管显示。

3. 调试程序(1)将程序烧写到单片机中;(2)打开电源,观察数码管显示和步进电机运行状态;(3)根据需要调整程序,实现不同的控制效果。

PLC实验报告电机控制与调速

PLC实验报告电机控制与调速

PLC实验报告电机控制与调速PLC实验报告:电机控制与调速一、实验目的本实验旨在通过使用PLC(可编程逻辑控制器)来实现电机的控制与调速,并掌握PLC在工业自动化领域中的应用。

二、实验器材与软件1. 实验器材:- 电机(选择适合的电机型号)- 电机驱动器(可与PLC通信的型号)- PLC设备(选择适合的型号)2. 实验软件:- PLC编程软件(根据所选PLC型号选择相应的软件)三、实验步骤与内容1. 硬件连接根据所选择的电机、电机驱动器和PLC设备的型号,按照产品手册或者相关说明书进行硬件连接。

确保连接正确、稳固。

2. PLC编程2.1 确认所使用的PLC编程软件已经正确安装并打开。

创建一个新的项目。

2.2 首先,通过PLC软件中的输入/输出配置功能,配置所使用的输入输出点位。

根据电机驱动器的要求,将PLC的输出点位与电机驱动器连接。

将电机驱动器的输出点位与电机连接。

2.3 接下来,编写PLC程序。

根据电机控制与调速的要求,编写相应的逻辑控制程序。

程序中应包括控制电机启动、停止、正转、反转的逻辑,并且可以通过改变设定值来实现电机的调速功能。

2.4 在编写完成后,通过软件的仿真功能进行仿真测试,确保程序的正确性。

3. 实验验证3.1 将已编写好的PLC程序下载至PLC设备中。

3.2 按照电机启动、停止、正转、反转的要求进行实验验证。

记录下所使用的设定值和实际调速效果,并进行比较分析。

3.3 根据实验结果,对PLC程序进行优化调整,并再次进行实验验证。

四、实验结果与分析1. 实验结果记录下各个设定值对应的电机实际转速,形成一张表格。

可以通过表格的对比,分析电机控制与调速的性能。

2. 实验分析通过实验结果的分析可以得出电机控制与调速的性能评估。

对于不满足要求的部分,可以进一步优化PLC程序,改进电机控制系统的性能。

五、实验总结与心得体会通过本实验,我深刻理解了PLC在电机控制与调速中的重要性。

通过合理的硬件连接和PLC程序的编写,我们能够实现对电机的精确控制和调速。

plc步进电机控制实验报告

plc步进电机控制实验报告

PLC步进电机控制实验报告引言在工业控制领域中,步进电机是一种常用的驱动设备。

为了实现对步进电机的精确控制,我们采用了PLC(可编程逻辑控制器)作为控制器。

本文将详细介绍PLC步进电机控制实验的步骤和结果。

实验目的本实验旨在通过PLC控制步进电机,实现对电机运动的精确控制。

具体实验目标如下: 1. 学习PLC的基本原理和编程方法; 2. 掌握步进电机的工作原理及其控制方法; 3. 设计并实施一个简单的步进电机控制系统。

实验设备本实验使用的设备包括: - PLC控制器 - 步进电机 - 电源 - 开关 - 传感器实验步骤步骤一:PLC编程1.打开PLC编程软件,并创建一个新的项目。

2.配置PLC的输入输出模块,并设置相应的IO口。

3.编写PLC的控制程序,实现对步进电机的控制逻辑。

4.调试程序,确保程序的正确性。

步骤二:步进电机的接线1.将步进电机的驱动器与PLC的输出模块连接。

2.将步进电机的电源与PLC的电源模块连接。

3.连接步进电机的传感器,以便监测电机的运动状态。

步骤三:实验验证1.通过PLC的编程软件,将编写好的程序下载到PLC控制器中。

2.打开PLC电源,确保PLC控制器正常工作。

3.通过PLC的输入模块输入控制信号,观察步进电机的运动情况。

4.通过传感器监测步进电机的运动状态,并与编写的控制程序进行比较。

实验结果通过本次实验,我们成功实现了对步进电机的精确控制。

控制程序的设计使步进电机按照预定的速度和方向运动,并且可以根据需要随时改变运动状态。

同时,通过传感器的监测,我们可以及时获取步进电机的运动信息,确保系统的稳定性和安全性。

实验总结本实验通过PLC控制步进电机,深入了解了PLC编程的基本原理和步进电机的工作原理。

通过实践,我们掌握了PLC编程的方法和步进电机控制的技巧。

在实际应用中,PLC控制步进电机具有广泛的应用前景,可以在自动化生产线、机械加工等领域中发挥重要作用。

参考文献[1] PLC步进电机控制实验教学单元.(2018)。

plc控制电机实验报告

plc控制电机实验报告

plc控制电机实验报告PLC控制电机实验报告引言:PLC(可编程逻辑控制器)是一种广泛应用于工业自动化领域的控制设备,通过编程实现对各种设备和系统的自动化控制。

在本次实验中,我们将使用PLC 控制电机,探索其在工业控制中的应用。

一、实验目的本次实验旨在通过PLC控制电机,理解PLC的工作原理和应用场景。

具体目标包括:1. 掌握PLC的基本原理和工作方式;2. 理解电机的基本结构和工作原理;3. 学习使用PLC控制电机的方法和技巧。

二、实验设备和材料1. PLC控制器(例如西门子S7-1200);2. 电机(直流电机或交流电机);3. 电源;4. 电线、开关等连接设备。

三、实验步骤1. 将PLC控制器与电源连接,并通过编程软件进行设置和编程。

2. 将电机与PLC控制器连接,确保电路连接正确。

3. 编写PLC程序,实现对电机的控制。

可以设置不同的运行模式、速度和方向等参数。

4. 调试程序,确保电机能够按照预期的方式运行。

5. 观察电机的工作状态和性能,记录实验数据。

6. 分析实验结果,总结PLC控制电机的优缺点,并探讨其在工业控制中的应用前景。

四、实验结果与讨论经过实验,我们成功地使用PLC控制器控制了电机的运行。

通过调整程序中的参数,我们能够实现电机的正转、反转、变速等操作。

此外,PLC控制电机具有以下优点:1. 灵活性:通过编程,可以根据实际需求灵活调整电机的运行模式和参数。

2. 可靠性:PLC控制器具有较高的稳定性和可靠性,能够保证电机长时间稳定运行。

3. 高效性:PLC控制电机能够实现快速响应和精确控制,提高生产效率和产品质量。

然而,PLC控制电机也存在一些限制和挑战:1. 成本:PLC控制器相对较昂贵,对于一些小规模企业来说可能难以承担。

2. 编程难度:PLC编程需要一定的专业知识和技能,对于初学者来说可能存在一定的学习曲线。

3. 维护和升级:PLC控制器的维护和升级需要专业人员进行,增加了企业的运营成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东技术师范学院实验报告
学院:专业:班级:成绩:
姓名:学号:

别:
组员:
实验地点:实验日期:指导教师签名:
实验(3)项目名称: PLC控制四相步进电机1.实验项目名称
PLC控制四相步进电机
2.实验目的和要求
(1)掌握功能指令的用法
(2)掌握步进电机步进控制程序的设计
3.主要仪器设备
(1)DICE-PLC01可编程序控制器实验箱1台
(2)编程电缆1根
(3)连接导线若干
4.实验内容及步骤
(1)控制要求
四相步进电机按四相八拍运行。

按下启动按钮、正转按钮、快速按钮时,首先A相通电(A灯亮),然后按照A→AB→B→BC→C→CD→D→DA→A →AB……循环下去,每个状态持续5秒钟。

当按下启动按钮、反转按钮、慢速按钮时,首先A相通电(A灯亮),然后按照A→AD→D→DC→C→CB→B →BA→A→AD……循环下去,每个状态持续10秒钟。

当按下停止按钮时,步进电机完成一个循环后停止。

图1 四相步进电机控制示意图
参考实验接线表见表1,可以修改试验模块对应的主机编号。

表1 参考实验接线图
(2)确定输入、输出端口,连接好导线,并编写程序
(3)编译程序,无误后下载至PLC主机的存储器中,并运行程序
(4)调试程序,直至符合设计要求
5.实验梯形图
请画出你的实验接线表和程序梯形图(在快速正转、慢速正转、快速反转、慢速反转四种状态中至少要包括两种状态)。

相关文档
最新文档