步进电机控制实验报告

合集下载

步进电机实验报告册(3篇)

步进电机实验报告册(3篇)

第1篇一、实验目的1. 熟悉步进电机的工作原理和特性。

2. 掌握步进电机的驱动方式及其控制方法。

3. 学会使用常用实验设备进行步进电机的调试和测试。

4. 了解步进电机在不同应用场景下的性能表现。

二、实验设备1. 步进电机:选型为双极性四线步进电机,型号为NEMA 17。

2. 驱动器:选型为A4988步进电机驱动器。

3. 控制器:选型为Arduino Uno开发板。

4. 电源:选型为12V 5A直流电源。

5. 连接线、连接器、电阻等实验配件。

三、实验原理步进电机是一种将电脉冲信号转换为角位移或线位移的电机。

它具有以下特点:1. 转动精度高,步距角可调。

2. 响应速度快,控制精度高。

3. 结构简单,易于安装和维护。

4. 工作可靠,寿命长。

步进电机的工作原理是:通过控制驱动器输出脉冲信号,使步进电机内部的线圈依次通电,从而产生步进运动。

四、实验步骤1. 搭建实验电路(1)将步进电机连接到驱动器上,确保电机线序正确。

(2)将驱动器连接到Arduino Uno开发板上,使用连接线连接相应的引脚。

(3)连接电源,确保电源电压与驱动器要求的电压一致。

2. 编写控制程序(1)使用Arduino IDE编写程序,实现步进电机的正转、反转、调速等功能。

(2)通过串口监视器观察程序运行情况,调试程序。

3. 调试步进电机(1)测试步进电机的正转、反转功能,确保电机转动方向正确。

(2)调整步进电机的转速,观察电机运行状态,确保转速可调。

(3)测试步进电机的步距角,确保步进精度。

4. 实验数据分析(1)记录步进电机的正转、反转、调速等性能参数。

(2)分析步进电机的运行状态,评估其性能。

五、实验结果与分析1. 正转、反转测试步进电机正转、反转功能正常,转动方向正确。

2. 调速测试步进电机转速可调,调节范围在1-1000步/秒之间。

3. 步距角测试步进电机的步距角为1.8度,与理论值相符。

4. 实验数据分析步进电机的性能指标符合预期,可满足实验要求。

步进电控制实验报告

步进电控制实验报告

一、实验目的1. 理解步进电机的工作原理及其应用领域。

2. 掌握单片机控制步进电机的技术方法。

3. 熟悉步进电机的驱动电路设计。

4. 通过实验验证步进电机控制系统的性能。

二、实验原理步进电机是一种将电脉冲信号转换为角位移的电机,具有精度高、响应快、控制简单等优点。

其工作原理是:当输入一定频率的脉冲信号时,步进电机按照一定的步距角转动。

步进电机的步距角与线圈匝数、绕组方式有关。

本实验采用单片机控制步进电机,通过编写程序实现步进电机的正转、反转、停止、转速调节等功能。

三、实验设备1. 单片机实验平台:包括51单片机、电源、按键、数码管等。

2. 步进电机驱动模块:用于驱动步进电机,包括驱动电路和步进电机本体。

3. 实验指导书。

四、实验步骤1. 搭建实验电路(1)连接单片机实验平台,包括电源、按键、数码管等。

(2)连接步进电机驱动模块,包括电源、控制线、步进电机本体等。

(3)检查电路连接是否正确,确保无误。

2. 编写控制程序(1)初始化单片机相关端口,包括P1口、定时器等。

(2)编写步进电机控制函数,包括正转、反转、停止、转速调节等功能。

(3)编写主函数,根据按键输入实现步进电机的控制。

3. 下载程序(1)将编写好的程序下载到单片机实验平台。

(2)检查程序是否下载成功。

4. 测试实验(1)观察数码管显示的转速挡次和转动方向。

(2)通过按键控制步进电机的正转、反转、停止和转速调节。

(3)观察步进电机的转动情况,验证控制程序的正确性。

五、实验结果与分析1. 实验结果(1)通过按键控制步进电机的正转、反转、停止和转速调节。

(2)数码管显示转速挡次和转动方向。

(3)步进电机按照设定的方向和转速转动。

2. 实验分析(1)通过实验验证了单片机控制步进电机的可行性。

(2)实验结果表明,控制程序能够实现步进电机的正转、反转、停止和转速调节等功能。

(3)实验过程中,需要对步进电机驱动模块进行合理设计,以确保步进电机的稳定运行。

步进电机控制实训报告

步进电机控制实训报告

一、实训背景随着科技的飞速发展,步进电机在工业自动化、精密定位、医疗设备等领域得到了广泛的应用。

为了深入了解步进电机的原理和应用,提高自身的动手实践能力,我们进行了步进电机控制实训。

二、实训目标1. 理解步进电机的原理和工作方式。

2. 掌握步进电机的驱动方法和控制方法。

3. 学会使用单片机对步进电机进行编程和控制。

4. 提高团队协作能力和问题解决能力。

三、实训内容1. 步进电机原理步进电机是一种将电脉冲信号转换为角位移或线位移的执行元件。

其特点是响应速度快、定位精度高、控制简单。

步进电机每输入一个脉冲信号,就转动一个固定的角度,称为步距角。

步距角的大小取决于电机的结构,常见的步距角有1.8度、0.9度等。

2. 步进电机驱动步进电机的驱动通常采用步进电机驱动器。

驱动器将单片机输出的脉冲信号转换为驱动步进电机的电流信号,实现对步进电机的控制。

常见的驱动器有L298、A4988等。

3. 单片机控制本实训采用AT89C51单片机作为控制核心。

通过编写程序,控制单片机输出脉冲信号,实现对步进电机的正转、反转、停止、速度等控制。

4. 实训步骤(1)搭建步进电机驱动电路,连接单片机、步进电机、按键等外围设备。

(2)编写程序,实现以下功能:- 正转、反转控制;- 速度控制;- 停止控制;- 按键控制。

(3)使用Proteus仿真软件进行程序调试,验证程序的正确性。

(4)将程序烧录到单片机中,进行实际硬件测试。

四、实训结果与分析1. 正转、反转控制通过编写程序,实现了对步进电机的正转和反转控制。

在Proteus仿真软件中,可以观察到步进电机按照设定的方向转动。

2. 速度控制通过调整脉冲信号的频率,实现了对步进电机转速的控制。

在Proteus仿真软件中,可以观察到步进电机的转速随脉冲频率的变化而变化。

3. 停止控制通过编写程序,实现了对步进电机的停止控制。

在Proteus仿真软件中,可以观察到步进电机在停止信号后立即停止转动。

步进电机控制实验报告

步进电机控制实验报告

步进电机控制实验报告一、实验要求利用P0输出脉冲序列,74LS244输入开关量,开关K2-K8控制步进电机转换(分6挡),K0、K1控制步进电机转向。

必须要K2-K8中一开关和K0、K1中一开关同时为‘1’时步进电机才启动,其他情况步进电机不工作。

步进电机驱动原理是通过对它每线圈中的电流的顺序切换来使电机作步进式旋转。

驱动电路又脉冲信号来控制,所以调节脉冲信号的频率便可改变步进电机的转速。

微电脑控制步进电机最合适。

二、试验目的1、了解步进电机控制的基本原理。

2、掌握控制步进电机转动编程方法。

三、步进电机工作原理步进电机是将给定的电脉冲信号转变为角位移或线位移的开环控制元件。

给定一个电脉冲信号,步进电机转子就转过相应的角度,这个角度就称作该步进电机的步距角。

目前常用步进电机的步距角大多为1.8度(俗称一步)或0.9度(俗称半步)。

以步距角为0.9度的进步电机来说,当我们给步进电机一个电脉冲信号,步进电机就转过0.9度;给两个脉冲信号,步进电机就转过1.8度。

以此类推,连续给定脉冲信号,步进电机就可以连续运转。

由于电脉冲信号与步进电机转角存在的这种线性关系,使得步进电机在速度控制、位置控制等方面得到了广泛的应用。

步进电机的使用至少需要三个方面的配合,一是电脉冲信号发生器,它按照给定的设置重复为步进电机输送电脉冲信号,目前这种信号大多数由可编程控制器或单片机来完成;二是驱动器(信号放大器),它除了对电脉冲信号进行放大、驱动步进电机转动以外,还可以通过它改善步进电机的使用性能,事实上它在步进电机系统中起着重要的作用,一般一种步进电机可以根据不同的工况具有多种驱动器;三是步进电机,它有多种控制原理和型号,现在常用的有反应式、感应子式、混合式等。

步进电机的速度控制是通过输入的脉冲频率快慢实现的。

当发生脉冲的频率减小时,步进电机的速度就下降;当频率增加时,速度就加快。

还可以通过频率的改变而提高步进电机的速度或位置精度。

控制步进电机实验报告(3篇)

控制步进电机实验报告(3篇)

第1篇一、实验目的1. 理解步进电机的工作原理及控制方法。

2. 掌握单片机与步进电机驱动模块的接口连接方法。

3. 学习使用C语言编写程序,实现对步进电机的正反转、转速和定位控制。

4. 通过实验,加深对单片机控制系统的理解。

二、实验原理步进电机是一种将电脉冲信号转换为角位移或线位移的电机,其特点是控制精度高、响应速度快、定位准确。

步进电机控制实验主要涉及以下几个方面:1. 步进电机驱动模块:常用的驱动模块有ULN2003、A4988等,它们可以将单片机的数字信号转换为步进电机的控制信号。

2. 单片机:单片机是整个控制系统的核心,负责接收按键输入、处理数据、控制步进电机驱动模块等。

3. 步进电机:步进电机分为单相、双相和三相等类型,本实验使用的是双相四线步进电机。

三、实验设备1. 单片机开发板:例如STC89C52、STM32等。

2. 步进电机驱动模块:例如ULN2003、A4988等。

3. 双相四线步进电机。

4. 按键。

5. 数码管。

6. 电阻、电容等元件。

7. 电源。

四、实验步骤1. 硬件连接(1)将步进电机驱动模块的输入端(IN1、IN2、IN3、IN4)分别连接到单片机的P1.0、P1.1、P1.2、P1.3口。

(2)将按键的输入端连接到单片机的P3.0口。

(3)将数码管的段选端连接到单片机的P2口。

(4)将步进电机驱动模块的电源端连接到电源。

(5)将步进电机连接到驱动模块的输出端。

2. 编写程序(1)初始化单片机I/O端口,设置P1口为输出端口,P3.0口为输入端口,P2口为输出端口。

(2)编写按键扫描函数,用于读取按键状态。

(3)编写步进电机控制函数,实现正反转、转速和定位控制。

(4)编写主函数,实现以下功能:a. 初始化数码管显示;b. 读取按键状态;c. 根据按键状态调用步进电机控制函数;d. 更新数码管显示。

3. 调试程序(1)将程序烧写到单片机中;(2)打开电源,观察数码管显示和步进电机运行状态;(3)根据需要调整程序,实现不同的控制效果。

步电机控制实验报告

步电机控制实验报告

一、实验目的1. 理解步进电机的工作原理和特性;2. 掌握步进电机的驱动电路设计;3. 学会使用步进电机驱动器;4. 实现步进电机的正反转、转速调节及位置控制。

二、实验器材1. 步进电机:NEMA 17 42BYG250-20042. 步进电机驱动器:A4988步进电机驱动模块3. 电源:12V 2A4. 连接导线5. 实验平台:Arduino Uno6. 实验软件:Arduino IDE三、实验原理步进电机是一种将电脉冲信号转换为角位移的电机,具有响应速度快、定位精度高、控制简单等优点。

步进电机的工作原理是:当输入一个电脉冲时,步进电机内部的转子就旋转一个固定的角度,这个角度称为步距角。

步进电机的步距角取决于其结构,常见的步距角有1.8°、0.9°等。

步进电机的驱动电路主要由电源、驱动模块和步进电机组成。

驱动模块负责将输入的脉冲信号转换为步进电机所需的电流,从而实现电机的转动。

四、实验步骤1. 步进电机驱动电路搭建(1)将步进电机驱动模块的VCC、GND、ENA、IN1、IN2、IN3、IN4分别连接到电源的12V、GND、GND、Arduino Uno的数字引脚2、3、4、5;(2)将步进电机的A、B、C、D分别连接到驱动模块的A、B、C、D;(3)连接电源和步进电机。

2. 步进电机控制程序编写(1)在Arduino IDE中创建一个新的项目,命名为“StepMotorControl”;(2)编写如下代码:```cpp#include <Stepper.h>const int stepsPerRevolution = 200; // 步进电机每转一周的步数Stepper myStepper(stepsPerRevolution, 2, 3, 4, 5);void setup() {myStepper.setSpeed(60); // 设置步进电机的转速,单位为步/秒}void loop() {myStepper.step(stepsPerRevolution); // 正转一周delay(1000);myStepper.step(-stepsPerRevolution); // 反转一周delay(1000);}```(3)将编写好的代码上传到Arduino Uno。

实验5 步进电机控制实验

实验5 步进电机控制实验

实验五、步进电机控制实验5.1实验目的1.学习步进电机的控制方法。

2.学会用8255控制步进电机。

5.2实验内容1.学习步进电机的控制方法,编写程序,利用8255的B口来控制步进电机的运动。

2.计算步进电机的步距角、齿距角。

5.3 实验原理使用开环控制方式能对步进电机的转动方向、速度、角度进行调节。

所谓步进,就是指每给步进电机一个递进脉冲,步进电机各绕组的通电顺序就改变一次,即电机转动一次。

实验平台可连接的步进电机为四相八拍电机,电压为DC12V,其励磁线圈及其励磁顺序如图4-l-1及表4-1-l 所示。

实验中PB端口各线的电平在各步中的情况如表4-1-2所示。

实验电路如图4-1-2 所示。

5.4 实验步骤及说明Data segmentTTABLE DB 01H,03H,02H,06H,04H,0CH,08H,09H;Data endsMOV DX,MY8255_MODE ;定义8255工作方式MOV AL,80H ;工作方式0,B口为输出OUT DX,ALMOV BX,OFFSET TTABLEMOV CX,0008H MOV AL,[BX]MOV DX,MY8255_BOUT DX,ALCALL DALLY在返回DOS之前,给B口清零MOV AL,0MOV DX,MY8255_BOUT DX,ALDALLY PROC NEAR ;软件延时子程序PUSH CXPUSH AXMOV CX,0FFFHD1: MOV AX,5000HD2: DEC AXJNZ D2LOOP D1POP AX POP CXRET DALLY ENDP;***************根据CHECK 配置信息修改下列符 号值******************* IOY0 EQU 9C00H ;片选IOY0对应的端口始地址 ;***************************************************************** MY8255_A EQU IOY0+00H*4 ;8255的A 口地址 MY8255_B EQU IOY0+01H*4 ;8255的B 口地址 MY8255_C EQU IOY0+02H*4 ;8255的C 口地址 MY8255_MODE EQU IOY0+03H*4 ;8255的控制寄存器地址 STACK1 SEGMENT STACK DW 256 DUP(?) STACK1 ENDS DATA SEGMENT TTABLE DB 01H,03H,02H,06H,04H,0CH,08H,09H DATA ENDS CODE SEGMENTASSUME CS:CODE,DS:DATA START: MOV AX,DATA MOV DS,AXMAIN: MOV DX,MY8255_MODE ;定义8255工作方式MOV AL,80H ;工作方式0,A 口和B 口为输出OUT DX,ALA1: MOV BX,OFFSET TTABLEMOV CX,0008H A2: MOV AL,[BX]MOV DX,MY8255_B OUT DX,ALCALL DALLYINC BX LOOP A2MOV AH,1 ;判断是否有按键按下INT 16HJZ A1 ;无按键则跳回继续循环,有则退出 QUIT: MOV AL,0MOV DX,MY8255_B OUT DX,AL MOV AX,4C00H ;返回到DOS INT 21H DALLY PROC NEAR ;软件延时子程序 PUSH CX PUSH AX MOV CX,0FFFH D1: MOV AX,5000H D2: DEC AX JNZ D2 LOOP D1 POP AX POP CX RET DALLY ENDP CODE ENDS END START。

实验六 步进电机控制实验

实验六   步进电机控制实验

实验六步进电机控制实验一、实验目的:1.了解步进电机的原理以及控制方法。

2.掌握对步进电机的编程。

二、实验内容:1.编写程序实现步进电机的正反转。

2.编写程序实现对步进电机的单步运行。

三、实验设备:1.ARM教学实验平台。

2. ADS 1.2集成开发环境和ARM仿真器。

3.串口连接线。

四、实验原理:1.步进电机介绍步进电机是将电脉冲信号转变为角位移或线位移的开环控制组件。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。

使得在速度、位置等控制领域用步进电机来控制变的非常的简单。

单相步进电动机有单路电脉冲驱动,输出功率一般很小,其用途为微小功率驱动。

多相步进电动机有多相方波脉冲驱动,用途很广。

使用多相步进电动机时,单路电脉冲信号可先通过脉冲分配器转换为多相脉冲信号,在经功率放大后分别送入步进电动机各项绕组。

每输入一个脉冲到脉冲分配器,电动机各相的通电状态就发生变化,转子会转过一定的角度(称为步距角)。

正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。

在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。

2.常用步进电机类型反应式步进电动机(VR):结构简单,生产成本低,步距角可以做的相当小,但动态性能相对较差。

永磁式步进电动机(PM):出力大,动态性能好;但步距角一般比较大。

混合步进电动机(HB):综合了反映式和永磁式两者的优点,步距角小,出力大,动态性能好,是性能较好的一类步进电动机。

3.步进电机参数和指标步进电机的静态指标术语相数:产生不同对极 N、S 磁场的激磁线圈对数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

步进电机控制实验报告开课学院及实验室:
学院年级、专
业、班
姓名学号
实验课程名称计算机控制技术成绩
实验项目名称步进电机控制实验指导老师
一、实验目的
1.了解步进电机的工作原理。

2.掌握步进电机的驱动及编程方法。

二、实验原理
步进电机是一种电脉冲转化为角位移的执行机构。

当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。

可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的。

通过设定脉冲数来使步进电机转过一定的角度。

步进电机多为永磁感应式,有两相、四相、六相等多种,实验所用电机为四相八拍式。

三、使用仪器、材料
1.TPCC-III计算机控制技术实验箱一台。

2. 数字式万用表一个。

3.微型计算机一台(安装“DICE计算机控制实验软件”)。

四、实验步骤
本实验使用的AD35-02M型四相八拍电机,电压为DC12V,其励磁线圈及励磁顺序如
下图3-1。

图3-1 励磁线圈及励磁顺序图3-2 实验接线图
表3-1 8255B口输出电平在各步中的情况
步骤1:按图3-2接线:
步骤2:在汇编程序编辑界面输入程序,将宏汇编程序经过汇编,连接后形成.EXE文件。

打开调试窗口,复位,待出现“Welcome to you!”,装入系统,输入命令“G=2000↙”。

EXP3.ASM汇编程序如下:
STACK SEGMENT STACK
DW 256 DUP(?)
STACK ENDS
DATA SEGMENT
TABLE DB 01H,03H,02H,06H,04H,0CH,08H,09H ;Step of motor
DATA ENDS
CODE SEGMENT
ASSUME CS:CODE,DS:DATA
START: MOV AX,DATA
MOV DS,AX
MAIN: MOV AL,80H ;Initiate 8255 B(OUT)
OUT 63H,AL
A1: MOV BX,OFFSET TABLE
MOV CX,0008H ; Number of step
A2: MOV AL,[BX] ; 8255 out
OUT 61H,AL。

相关文档
最新文档