高中数学导数的应用教案

合集下载

高中数学《导数》教案

高中数学《导数》教案

高中数学《导数》教案第一章:导数的基本概念1.1 引入导数的概念解释导数的定义强调导数表示函数在某一点的瞬时变化率1.2 导数的计算法则介绍导数的四则运算法则举例说明导数的计算过程1.3 导数的应用解释导数在实际问题中的应用,如速度、加速度等给出实际问题,让学生应用导数进行解答第二章:导数的性质与单调性2.1 导数的性质介绍导数的单调性、连续性、可导性等基本性质证明导数的性质2.2 函数的单调性解释函数的单调性及单调区间利用导数判断函数的单调性2.3 单调性的应用给出实际问题,让学生利用单调性进行解答解释单调性在实际问题中的应用,如最大值、最小值等第三章:导数与曲线的切线3.1 导数与切线的关系解释导数在某一点的含义,即函数在该点的切线斜率给出切线方程的求法3.2 利用导数求曲线的切线举例说明如何利用导数求曲线的切线方程给出实际问题,让学生求曲线的切线方程3.3 切线的应用解释切线在实际问题中的应用,如求解函数零点、不等式等给出实际问题,让学生利用切线进行解答第四章:导数与函数的极值4.1 函数的极值概念解释函数的极值及极值点强调极值与导数的关系4.2 利用导数求函数的极值介绍求函数极值的方法,即导数为零和不存在的点举例说明如何利用导数求函数的极值4.3 极值的判断与应用解释极值在实际问题中的应用,如最大值、最小值等给出实际问题,让学生利用极值进行解答第五章:导数与其他数学概念的联系5.1 导数与积分的关系解释导数与积分的联系,即导数是积分的逆运算举例说明导数与积分的应用5.2 导数与极限的关系解释导数与极限的联系,即导数的极限是函数在该点的值举例说明导数与极限的应用5.3 导数与其他数学概念的联系强调导数与微分方程、泰勒展开等数学概念的联系给出实际问题,让学生利用导数与其他数学概念进行解答第六章:利用导数解决实际问题6.1 应用导数解决线性增长和减少问题解释如何利用导数解决线性函数的增长和减少问题给出实际问题,让学生应用导数解决6.2 应用导数解决曲线的凹凸问题解释如何利用导数解决曲线的凹凸问题给出实际问题,让学生应用导数解决6.3 应用导数解决实际问题案例分析分析实际问题,让学生理解导数在解决实际问题中的应用第七章:利用导数进行优化7.1 解释优化问题的概念解释优化问题及目标函数强调利用导数解决优化问题的方法7.2 利用导数解决线性优化问题解释如何利用导数解决线性优化问题给出实际问题,让学生应用导数解决7.3 利用导数解决非线性优化问题解释如何利用导数解决非线性优化问题给出实际问题,让学生应用导数解决第八章:利用导数解决不等式问题8.1 解释不等式问题的概念解释不等式问题及解集强调利用导数解决不等式问题的方法8.2 利用导数解决单变量不等式问题解释如何利用导数解决单变量不等式问题给出实际问题,让学生应用导数解决8.3 利用导数解决多变量不等式问题解释如何利用导数解决多变量不等式问题给出实际问题,让学生应用导数解决第九章:利用导数解决函数图像问题9.1 解释函数图像问题的概念解释函数图像问题及解决方法强调利用导数解决函数图像问题的方法9.2 利用导数解决函数单调性问题解释如何利用导数解决函数单调性问题给出实际问题,让学生应用导数解决9.3 利用导数解决函数极值性问题解释如何利用导数解决函数极值性问题给出实际问题,让学生应用导数解决第十章:利用导数解决实际应用问题案例分析10.1 分析实际应用问题分析实际应用问题,让学生理解导数在解决实际问题中的应用强调导数在实际问题中的重要性10.2 让学生进行实际问题案例分析让学生分组讨论,分析实际应用问题让学生汇报他们的分析和解决方法10.3 总结总结本节课的重点内容强调导数在解决实际问题中的重要性鼓励学生在日常生活中发现并解决实际问题重点和难点解析一、导数的基本概念难点解析:理解导数的几何意义,即函数图像在某一点的切线斜率。

高中数学教案函数的极值和导数

高中数学教案函数的极值和导数

高中数学教案——函数的极值和导数一、教学目标:1. 理解导数的概念,掌握基本初等函数的导数公式。

2. 学会利用导数判断函数的单调性,理解函数的极值概念。

3. 能够运用导数解决实际问题,提高解决函数问题的能力。

二、教学内容:1. 导数的定义及几何意义2. 基本初等函数的导数公式3. 导数的计算法则4. 利用导数判断函数的单调性5. 函数的极值及其判定三、教学重点与难点:1. 重点:导数的定义、基本初等函数的导数公式、导数的计算法则、利用导数判断函数的单调性、函数的极值及其判定。

2. 难点:导数的应用,如何利用导数解决实际问题。

四、教学方法:1. 采用启发式教学,引导学生主动探究导数的定义及应用。

2. 利用多媒体课件,直观展示函数的导数与单调性、极值之间的关系。

3. 结合实际例子,让学生感受导数在解决实际问题中的重要性。

4. 开展小组讨论,培养学生合作学习的能力。

五、教学过程:1. 导入:回顾初中阶段学习的函数图像,引导学生思考如何判断函数的单调性、2. 讲解导数的定义:通过几何直观,解释导数的含义,引导学生理解导数表示函数在某点的瞬时变化率。

3. 学习基本初等函数的导数公式:讲解幂函数、指数函数、对数函数、三角函数的导数公式。

4. 导数的计算法则:讲解导数的四则运算法则,举例说明。

5. 利用导数判断函数的单调性:引导学生利用导数符号判断函数的单调性,讲解“增函数”和“减函数”的概念。

6. 函数的极值及其判定:讲解极值的概念,举例说明如何利用导数判断函数的极值。

7. 课堂练习:布置相关练习题,让学生巩固所学知识。

8. 总结:回顾本节课所学内容,强调导数在研究函数单调性、极值方面的应用。

9. 拓展:引导学生思考导数在其他领域的应用,如物理、经济学等。

10. 课后作业:布置课后作业,巩固所学知识,提高解题能力。

六、教学评价:1. 课后作业:通过布置相关的习题,检验学生对导数概念、基本初等函数的导数公式、导数计算法则、单调性和极值的理解和应用能力。

高中数学 第一章 导数及其应用教案 苏教版选修22

高中数学 第一章 导数及其应用教案 苏教版选修22

第一章导数及其应用1.1导数的概念1.1.1 平均变化率(教师用书独具)●三维目标1.知识与技能通过丰富的实例,让学生经历平均变化率概念的形成过程,体会平均变化率是刻画变量变化快慢程度的一种数学模型.2.过程与方法理解平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率.3.情感、态度与价值观感受数学模型刻画客观世界的作用,进一步领会变量数学的思想,提高分析问题、解决问题的能力.●重点难点重点:平均变化率的概念.难点:平均变化率概念的形成过程.为了使得平均变化率概念的引入自然流畅,可创设实际问题情境,如气球吹气时的平均膨胀率、跳板跳水某段起跳后的平均速度,通过具体的实例提出问题;借助天气预报中某天气温的变化曲线,以形助数,让学生有一个直观的认识,然后从数学的角度,描述这种现象就一目了然了.(教师用书独具)●教学建议本节课是起始课,对导数概念的形成起着奠基作用.平均变化率是个核心概念,它在整个高中数学中占有极其重要的地位,是研究瞬时变化率及其导数概念的基础.在这个过程中,要注意特殊到一般、数形结合等数学思想方法的渗透.●教学流程创设问题情境,提出问题,根据气球的平均膨胀率得出平均变化率的概念.⇒应用平均变化率的概念,完成例1及其变式训练.⇒实际问题中的平均变化率,完成例2及其变式训练.⇒通过例3及其变式训练,进一步理解平均变化率的意义及其应用.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.在吹气球时,气球的半径r(单位:dm )与气球空气容量(体积)V(单位:L )之间的函数关系是r(V)=33V4π.1.当空气容量V 从0增加到1 L 时,气球的平均膨胀率是多少? 【提示】 平均膨胀率为r (1)-r (0)1-0≈0.621=0.62(dm /L ).2.当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少? 【提示】 平均膨胀率为r (V 2)-r (V 1)V 2-V 1.一般地,函数y =f(x)在区间[x 1,x 2]上的平均变化率为f (x 2)-f (x 1)x 2-x 1,其中Δy=f(x 2)-f(x 1)是函数值的改变量.如图所示,函数y =f(x)图象上四点A ,B ,D ,E.1.由Δy =f(x 2)-f(x 1)能否判断曲线在A→B 段的陡峭程度? 【提示】 不能.2.平均变化率f (x 2)-f (x 1)x 2-x 1能否近似刻画曲线在A→B 段的陡峭程度?为什么?曲线段AB 与曲线段DE 哪段更陡峭?【提示】 能.因为k AB =f (x 2)-f (x 1)x 2-x 1表示A ,B 两点所在直线的斜率,所以可近似地刻画曲线段AB 的陡峭程度.由于k DE >k AB ,知曲线段DE 更加陡峭.从平均变化率的定义知,其几何意义是经过曲线y =f(x)上两点P(x 1,y 1),Q(x 2,y 2)的直线PQ 的斜率.因此平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.已知函数f(x)=x 2+x ,分别计算f(x)在区间[1,3],[1,2],[1,1.5]上的平均变化率.【思路探究】 对于给定的三个区间,分别求函数值的增量Δy 与自变量的增量Δx 的比值ΔyΔx. 【自主解答】 (1)函数f(x)在区间[1,3]上的平均变化率为f (3)-f (1)3-1=32+3-(12+1)2=5.(2)函数f(x)在区间[1,2]上的平均变化率为 f (2)-f (1)2-1=22+2-(12+1)1=4.(3)函数f(x)在区间[1,1.5]上的平均变化率为f (1.5)-f (1)1.5-1=1.52+1.5-(12+1)0.5=3.5.1.本题主要依据平均变化率的意义代入公式直接计算,解题的关键是弄清自变量与函数值的增量.2.求函数y =f(x)在区间[x 1,x 2]上的平均变化率的步骤: (1)作差:求Δx =x 2-x 1,Δy =f(x 2)-f(x 1); (2)作商:求Δy Δx ,即f (x 2)-f (x 1)x 2-x 1的值.求函数y =5x 2+6在区间[2,3]上的平均变化率.【解】 函数在区间[2,3]上的平均变化率为f (3)-f (2)3-2=5×32+6-5×22-61=45-20=25.在高台跳水运动中,运动员相对于水面的高度h(单位:m )与起跳后的时间t(单位:s )存在函数关系h(t)=-4.9t 2+6.5t +10.(1)求运动员在第一个0.5 s 内高度h 的平均变化率;(2)求高度h 在1≤t≤2这段时间内的平均变化率.【思路探究】 (1)求函数h(t)=-4.9t 2+6.5t +10在区间[0,0.5]上的平均变化率;(2)求函数h(t)=-4.9t 2+6.5t +10在区间[1,2]上的平均变化率.【自主解答】 (1)运动员在第一个0.5 s 内高度h 的平均变化率为h (0.5)-h (0)0.5-0=4.05(m /s ).(2)在1≤t≤2这段时间内,高度h 的平均变化率为h (2)-h (1)2-1=-8.2(m /s ).1.结合物理知识可知,在第一个0.5 s 内高度h 的平均变化率为正值,表示此时运动员在起跳后处于上升过程;在1≤t≤2这段时间内,高度h 的平均变化率为负值,表示此时运动员已开始向水面下降.事实上平均变化率的值可正、可负也可以是0.2.平均变化率的应用主要有:求某一时间段内的平均速度,物体受热膨胀率,高度(重量)的平均变化率等等.解决这些问题的关键在于找准自变量和因变量.已知某物体运动位移与时间的关系为s(t)=12gt 2,试分别计算t 从3 s 到3.1 s ,3.001s 各段的平均速度,通过计算你能发现平均速度有什么特点吗?【解】 设物体在区间[3,3.1],[3,3.001]上的平均速度分别为V 1,V 2, 则ΔS 1=S(3.1)-S(3)=12g ×3.12-12g ×32=0.305g(m ). ∴物体从3 s 到3.1 s 时平均速度V 1=ΔS 13.1-3=0.305g 0.1=3.05g(m /s ),同理V 2=ΔS 23.001-3=0.003 000 5g 0.001=3.000 5g(m /s ).通过计算可以发现,随着时间间隔Δt 的变小,平均速度在向3g m /s 靠近,而3g m /s 为物体做自由落体运动时,t =3 s 时的瞬时速度.2012年冬至2013年春,我国北部某省冬麦区遭受严重干旱,根据某市农业部门统计,该市小麦受旱面积如图1-1-1所示,据图回答:图1-1-1(1)2012年11月至2012年12月间,小麦受旱面积变化大吗?(2)哪个时间段内,小麦受旱面积增幅最大?(3)从2012年11月到2013年2月,与从2013年1月到2013年2月间,试比较哪个时间段内,小麦受旱面积增幅较大?【思路探究】利用平均变化率的计算公式及其实际意义进行分析.【自主解答】(1)在2012年11月至2012年12月间,Δs变化不大,即小麦受旱面积变化不大.(2)由图形知,在2013年1月至2013年2月间,平均变化率ΔsΔt较大,故小麦受旱面积增幅最大.(3)在2012年11月至2013年2月间,平均变化率=s B -s A3, 在2013年1月至2013年2月间,平均变化率=s B -s C1=s B -s C ,显然k BC >k AB ,即s B -s C >s B -s A3,∴在2013年1月至2013年2月间,小麦受旱面积增幅较大.1.本例中的(2)(3)可数形结合,利用平均变化率进行分析,抓住平均变化率的几何意义.2.在实际问题中,平均变化率具有现实意义,应根据问题情境,理解其具体意义.为了检测甲、乙两辆车的刹车性能,分别对两辆车进行了测试,甲车从25 m /s 到0 m /s 花了5 s ,乙车从18 m /s 到0 m /s 花了4 s ,试比较两辆车的刹车性能.【解】 甲车速度的平均变化率为0-255=-5(m /s 2),乙车速度的平均变化率为0-184=-4.5(m /s 2),平均变化率为负值说明速度在减少,因为刹车后,甲车的速度变化相对较快,所以甲车的刹车性能较好.实际问题中平均变化率意义不明致误甲、乙二人跑步,路程与时间关系以及百米赛跑路程与时间关系分别如图1-1-2中①②所示,试问:图1-1-2(1)甲、乙二人哪一个跑得快?(2)甲、乙二人百米赛跑,问快到终点时,谁跑得较快?【错解】(1)对于图①,设甲、乙两曲线的右端点分别为A,B,显然有k OB>k OA,故乙的平均变化率大于甲的平均变化率,所以乙比甲跑得快.(2)对于图②,在[0,t0]上,甲、乙的时间、路程相同,平均变化率相等,速度相等,所以两人跑得一样快.【错因分析】在(2)中,题意不明,误求甲、乙在[0,t0]上的平均变化率认为是终点附近的平均速度.【防范措施】(1)在实际问题中,理解平均变化率具有的现实意义;(2)弄清题目的要求,区别平均速度与瞬时速度.【正解】(1)同上面解法.(2)对于图②,在[0,t0]上,甲、乙的平均变化率是相等的,但甲的平均变化率是常数,而乙的变化率逐渐增大,快到终点时,乙的变化率大于甲的变化率,所以,快到终点时,乙跑得较快.1.准确理解平均变化率的意义是求解平均变化率的关键,其实质是函数值增量Δy与自变量取值增量Δx的比值.涉及具体问题,计算Δy很容易出现运算错误,因此,计算时要注意括号的应用,先列式再化简,这是减少错误的有效方法.2.函数的平均变化率在生产生活中有广泛的应用,如平均速度、平均劳动生产率、面积体积变化率等.解决这类问题的关键是能从实际问题中引出数学模型并列出函数关系式,需注意是相对什么量变化的.1.函数y=2x+2在[1,2]上的平均变化率是________.【解析】(2×2+2)-(2×1+2)2-1=2.【答案】 22.圆的半径r 从0.1变化到0.3时,圆的面积S 的平均变化率为________. 【解析】 ∵S=πr 2, ∴ΔS Δr =S (0.3)-S (0.1)0.3-0.1=0.09π-0.01π0.2=0.4π. 【答案】 0.4π3.如图1-1-3,函数y =f(x)在A ,B 两点间的平均变化率是________.图1-1-3【解析】 ∵k AB =y A -y B x A -x B =3-11-3=-1,由平均变化率的意义知y =f(x)在A ,B 两点间的平均变化率为-1. 【答案】 -14.甲企业用2年时间获利100万元,乙企业投产6个月时间就获利30万元,如何比较和评价甲、乙两企业的生产效益?(设两企业投产前的投资成本都是10万元)【解】 甲企业生产效益的平均变化率为100-1012×2-0=154.乙企业生产效益的平均变化率为30-106-0=103.∵154>103, ∴甲企业的生产效益较好.一、填空题1.函数f(x)=1x 在[2,6]上的平均变化率为________.【解析】 f (6)-f (2)6-2=16-126-2=-112.【答案】 -1122.函数f(x)=log 2x 在区间[2,4]上的平均变化率是________. 【解析】 函数的平均变化率是f (4)-f (2)4-2=2-12=12.【答案】 123.已知某质点的运动规律为s(t)=5t 2(单位:米),则在1 s 到3 s 这段时间内,该质点的平均速度为________.【解析】 s (3)-s (1)3-1=5×32-5×122=20(m /s ).【答案】 20 m /s4.若函数f(x)=x 2-c 在区间[1,m]上的平均变化率为3,则m 等于________. 【解析】 由题意得(m 2-c )-(12-c )m -1=3,∴m =2(m =1舍去). 【答案】 25.在雨季潮汛期间,某水文观测员观察千岛湖水位的变化,在24 h 内发现水位从102.7m 上涨到105.1 m ,则水位涨幅的平均变化率是________m /h .【解析】105.1-102.724=0.1(m /h ).【答案】 0.16.服药后,人吸收药物的情况可以用血液中药物的浓度c(单位:mg /mL )来表示,它是时间t(单位:min )的函数,表示为c =c(t),下表给出了c(t)的一些函数值.). 【解析】c (70)-c (30)70-30=0.90-0.9840=-0.002 mg /(mL ·min ). 【答案】 -0.0027.已知某物体运动的速度与时间之间的关系式是v(t)=t +13t 3,则该物体在时间间隔[1,32]内的平均加速度为________.【解析】 平均加速度Δv Δt =32+13·(32)3-(1+13)32-1=3112.【答案】3112图1-1-48.如图1-1-4所示,显示甲、乙在时间0到t 1范围内路程的变化情况,下列说法正确的是________.①在0到t 0范围内甲的平均速度大于乙的平均速度; ②在0到t 0范围内甲的平均速度小于乙的平均速度; ③在t 0到t 1范围内甲的平均速度大于乙的平均速度; ④在t 0到t 1范围内甲的平均速度小于乙的平均速度.【解析】 在[0,t 0]内甲、乙的平均速度为s 0t 0,①②错.在[t 0,t 1]上,v 甲=s 2-s 0t 1-t 0,v乙=s 1-s 0t 1-t 0. ∵s 2-s 0>s 1-s 0,且t 1-t 0>0, ∴v 甲>v 乙,故③正确,④错误. 【答案】 ③ 二、解答题9.求函数f(x)=x 2+1x+4在区间[1,2]上的平均变化率.【解】 f(x)=x 2+1x +4在区间[1,2]上的平均变化率为22+12+4-(12+11+4)2-1=52.10.假设在生产8到30台机器的情况下,生产x 台机器的成本是c(x)=x 3-6x 2+15x(元),而售出x 台的收入是r(x)=x 3-3x 2+12x(元),则生产并售出10台至20台的过程中平均利润是多少元?【解】 依题意,生产并售出x 台所获得的利润是 L(x)=r(x)-c(x)=3x 2-3x(元), ∴x 取值从10台至20台的平均利润为L (20)-L (10)20-10=3×202-3×20-(3×102-3×10)10=87(元),故所求平均利润为87元.11.(2013·泰安高二检测)巍巍泰山为我国五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从A 处到B 处会感觉比较轻松,而从B 处到C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化BC 段曲线的陡峭程度吗?图1-1-5【解】 山路从A 到B 高度的平均变化率为 h AB =Δy Δx =10-050-0=15, 山路从B 到C 高度的平均变化率为h BC =Δy Δx =15-1070-50=14, ∴h BC >h AB ,∴山路从B 到C 比从A 到B 要陡峭得多.(教师用书独具)已知气球的体积为V(单位:L )与半径r(单位:dm )之间的函数关系是V(r)=43πr 3.(1)求半径r 关于体积V 的函数r(V);(2)比较体积V 从0 L 增加到1 L 和从1 L 增加到2 L 半径r 的平均变化率;哪段半径变化较快(精确到0.01)?此结论可说明什么意义?【自主解答】 ∵V=43πr 3,∴r 3=3V 4π,r = 33V 4π,即r(V)= 33V4π.(2)函数r(V)在区间[0,1]上的平均变化率约为 r (1)-r (0)1-0=33×14π-01≈0.62(dm /L ),函数r(V)在区间[1,2]上的平均变化率约为r (2)-r (1)2-1= 33×24π- 33×14π≈0.16(dm /L ).显然体积V 从0 L 增加到1 L 时,半径变化快,这说明随着气球体积的增加,气球的半径增加得越来越慢.一块正方形的铁板在0 ℃时,边长为10 cm ,加热铁板会膨胀,当温度为t ℃时,边长变为10(1+at)cm ,a 为常数,试求0~10 ℃内铁板面积S 的平均变化率.【解】 铁板面积S =102(1+at)2, 在区间[0,10]上,S 的平均变化率为S (10)-S (0)10-0=102(1+10a )2-10210=200a +1 000a 2,即0~10 ℃内铁板面积S 的平均变化率为(200a +1 000a 2)cm 2/℃.1.1.2 瞬时变化率——导数(教师用书独具)●三维目标1.知识与技能了解导数概念的实际背景;理解函数在某点处导数以及在某个区间的导函数的概念;会用定义求瞬时速度和函数在某点处的导数.2.过程与方法用函数的眼光来分析研究物理问题;经历由平均速度与瞬时速度关系类比由平均变化率过渡到瞬时变化率的过程,体会数形结合、特殊到一般、局部到整体的研究问题的方法.3.情感、态度与价值观通过导数概念的形成过程,体会导数的思想及其内涵;激发学生兴趣,在从物理到数学,再用数学解决物理问题的过程中感悟数学的价值.●重点难点重点:函数在某一点处的导数的概念及用导数概念求函数在一点处的导数.难点:从实例中归纳、概括函数瞬时变化率的定量分析过程,及函数在开区间内的导函数的理解.为了突出重点、突破难点,在导数概念的教学中,积极创设问题情境,从学生已有的认知入手,例如物理学中的瞬时速度、曲线割线的斜率等,采用相互讨论、探究规律和引导发现的教学方法,通过不断出现的一个个问题,一步步创设出使学生有兴趣探索知识的“情境”,通过反映导数思想和本质的实例,引导学生经历由平均变化率到瞬时变化率的过程,从而更好地理解导数概念.(教师用书独具)●教学建议新课标对“导数及其应用”内容的处理有较大的变化,它不介绍极限的形式化定义及相关知识,而是按照“平均变化率——曲线在某一点处的切线——瞬时速度(加速度)——瞬时变化率——导数的概念”这样的顺序来安排,用“逼近”的方法来定义导数,这种概念建立的方式直观、形象、生动,又易于理解,突出导数概念的形成过程.因此,在教学中采用教师启发诱导与学生动手操作、自主探究、合作交流相结合的教学方式,引导学生动手操作、观察、分析、类比、抽象、概括,并借助excel及几何画板演示,调动学生参与课堂教学的主动性和积极性.●教学流程利用割线逼近切线的方法探究曲线上一点处的切线.⇒通过缩小时间间隔,由平均速度得出瞬时速度.⇒会求瞬时速度和瞬时加速度,完成例1与变式训练.⇒利用瞬时变化率得出导数的概念,会求函数在某点处的导数,完成例2及互动探究.⇒根据导数的几何意义,完成例3及其变式训练.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.1.曲线的切线与曲线只有一个公共点吗?曲线上在某一点处的切线的含义是什么?【提示】 切线与曲线不一定只有一个公共点,如图,曲线C 在点P 处的切线l 与曲线C 还有一个公共点Q.曲线上某一点处的切线,其含义是以该点为切点的切线.2.运动物体在某一时刻的瞬时加速度为0,那么该时刻物体是否一定停止了运动? 【提示】 不是.瞬时加速度刻画的是速度在某一时刻的变化快慢,瞬时加速度为0,并不是速度为0.1.曲线上一点处的切线设Q 为曲线C 上不同于P 的一点,这时,直线PQ 称为曲线的割线,随着点Q 沿曲线C 向点P 运动,割线PQ 在点P 附近越来越逼近曲线C.当点Q 无限逼近点P 时,直线PQ 最终就成为在点P 处最逼近曲线的直线l ,这条直线l 称为曲线在点P 处的切线.2.瞬时速度、瞬时加速度(1)如果当Δt 无限趋近于0时,运动物体位移S(t)的平均变化率S (t 0+Δt )-S (t 0)Δt 无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时速度,即位移对于时间的瞬时变化率.(2)如果当Δt 无限趋近于0时,运动物体速度v(t)的平均变化率v (t 0+Δt )-v (t 0)Δt 无限趋近于一个常数,那么这个常数称为物体在t =t 0时的瞬时加速度,即速度对于时间的瞬时变化率.1.导数设函数y =f(x)在区间(a ,b)上有定义,x 0∈(a ,b),若Δx 无限趋近于0时,比值Δy Δx=f (x 0+Δx )-f (x 0)Δx无限趋近于一个常数A ,则称f(x)在x =x 0处可导,并称该常数A 为函数f(x)在x =x 0处的导数,记作f ′(x 0).2.导数的几何意义导数f′(x 0)的几何意义就是曲线y =f(x)在点P(x 0,f(x 0))处的切线的斜率,切线PT 的方程是y -f(x 0)=f ′(x 0)(x -x 0).求瞬时速度、瞬时加速度已知质点M的运动速度与运动时间的关系为v=3t2+2(速度单位:cm/s,时间单位:s),(1)当t=2,Δt=0.01时,求ΔvΔt;(2)求质点M在t=2时的瞬时加速度.【思路探究】【自主解答】ΔvΔt=v(t+Δt)-v(t)Δt=3(t+Δt)2+2-(3t2+2)Δt=6t+3Δt.(1)当t=2,Δt=0.01时,ΔvΔt=6×2+3×0.01=12.03(cm/s2).(2)当Δt无限趋近于0时,6t+3Δt无限趋近于6t,则质点M在t=2时的瞬时加速度为12 cm/s2.1.求瞬时速度的关键在于正确表示“位移的增量与时间增量的比值”,求瞬时加速度的关键在于正确表示“速度的增量与时间增量的比值”,注意二者的区别.2.求瞬时加速度:(1)求平均加速度ΔvΔt;(2)令Δt →0,求出瞬时加速度.质点M 按规律s(t)=at 2+1做直线运动(位移单位:m ,时间单位:s ).若质点M 在t =2 s 时的瞬时速度为8 m /s ,求常数a 的值.【解】 ∵Δs =s(2+Δt)-s(2)=a(2+Δt)2+1-a·22-1=4a Δt +a(Δt)2, ∴ΔsΔt=4a +a Δt. 当Δt →0时,ΔsΔt→4a. ∵在t =2时,瞬时速度为8 m /s ,∴4a =8,∴a =2.求函数y =f(x)=x -1x在x =1处的导数.【思路探究】求Δy =f (1+Δx )-f (1)―→求Δy Δx→令Δx →0,求ΔyΔx→A 的值 【自主解答】 ∵Δy =(1+Δx)-11+Δx -(1-11)=Δx +1-11+Δx =Δx +Δx1+Δx.∴ΔyΔx=Δx +Δx 1+Δx Δx =1+11+Δx ,当Δx →0时,ΔyΔx→1+1=2. ∴f ′(1)=2.1.本题是利用定义求f′(1),解题的关键是求出ΔyΔx并化简,利用定义求解的步骤为:①求函数的增量Δy =f(x 0+Δx)-f(x 0);②求平均变化率ΔyΔx;③当Δx 无限趋近于0时,确定ΔyΔx的无限趋近值. 2.求f′(x 0)也可先求出导函数f′(x),再将x =x 0代入,即求出f′(x)在点x =x 0处的函数值.在例题中,若条件改为f′(x 0)=54,试求x 0的值.【解】 ∵Δy =f(x 0+Δx)-f(x 0)=(x 0+Δx)-1x 0+Δx -(x 0-1x 0)=Δx +Δxx 0(x 0+Δx )∴Δy Δx =1+1x 0(x 0+Δx )当Δx →0时,Δy Δx →1+1x 20. 又f′(x 0)=54,则1+1x 20=54.∴x 0=±2.已知抛物线y =2x 2,求抛物线在点(1,2)处的切线方程.【思路探究】 根据导数的几何意义求出切线的斜率,然后利用点斜式即可写出切线方程.【自主解答】 因为点(1,2)在抛物线上,所以抛物线在点(1,2)处的切线斜率为函数y =2x 2在x =1处的导数f′(1).因为Δy Δx =f (1+Δx )-f (1)Δx =2(1+Δx )2-2×12Δx=4+2Δx ,当Δx 无限趋近于0时,4+2Δx 无限趋近于4,所以f ′(1)=4. 所以切线方程为y -2=4(x -1),即4x -y -2=0.1.本题是“给出曲线和切点(x 0,f(x 0))求切线方程”,此时切线的斜率就是f′(x 0),则该点处的切线方程为y -f(x 0)=f′(x 0)(x -x 0).2.若求“过点(x 0,y 0)的切线方程”,此时所给的点有可能不是切点,切线的斜率还用f′(x 0)则可能会出错.此时应先设出切点坐标P(x′0,y ′0),由已知条件列出切点横坐标的方程,求x′0,然后再求解.曲线y =x 3+11在点P(1,12)处的切线与y 轴交点的纵坐标是________.【解析】 ∵Δy Δx =(x 0+Δx )3+11-x 30-11Δx=3x 0Δx +3x 20+(Δx)2,∴当x 0=1,Δx →0时,k =f′(1)=3.∴曲线y =x 3+11在点P(1,12)处的切线为y =3x +9. ∴当x =0时,y =9.因此所求切线与y 轴交点的纵坐标为9. 【答案】 9对导数定义理解不透彻致误已知f′(1)=-2,则当Δx →0时,f (1+2Δx )-f (1)Δx→________.【错解】 当Δx →0时,f (1+2Δx )-f (1)Δx →-2.【答案】 -2【错因分析】 产生错解的原因是对导数定义的理解不透彻,一味地套用公式.本题分子中自变量的增量是2Δx ,即(1+2Δx)-1=2Δx ,而错解中分母中的增量为Δx ,二者不是等量的.【防范措施】 在导数定义中,增量Δx 的形式是多种多样的,但无论如何变化,其实质是分子中的自变量的增量与分母中的增量必须保持一致.【正解】f (1+2Δx )-f (1)Δx =2·f (1+2Δx )-f (1)2Δx当Δx →0时,f (1+2Δx )-f (1)2Δx →f ′(1),∴2·f (1+2Δx )-f (1)2Δx →2f ′(1)=2×(-2)=-4. 【答案】 -41.不管是求切线的斜率、瞬时速度和瞬时加速度,还是求实际问题中的瞬时变化率,它们的解题步骤都是一样的——(1)计算Δy ,(2)求Δy Δx ,(3)看Δx 无限趋近于0时,Δy Δx无限趋近于哪个常数.2.准确理解导数的概念,正确求y =f(x)在点x =x 0处的导数注意两点:(1)Δy =f(x +Δx)-f(x)不能误认为Δy =f(Δx);(2)求解时不给出Δx 的具体值,否则求出的是平均变化率,而不是瞬时变化率(导数).3.求过某点曲线的切线方程的类型及求法.(1)若已知点(x 0,y 0)为切点,则先求出函数y =f(x)在点x 0处的导数,然后根据直线的点斜式方程,得切线方程y -y 0=f′(x 0)(x -x 0).(2)若题中所给的点(x 0,y 0)不是切点,首先应设出切点坐标,然后根据导数的几何意义列出等式,求出切点坐标,进而求出切线方程.因此求曲线的切线方程一定要明确切点的位置,分清楚是“曲线在某点处的切线”还是“过某点的曲线切线”.1.如果质点A 按规律s =3t 2运动,则在t =3时的瞬时速度为________.【解析】 Δs Δt =3(3+Δt )2-3×32Δt=18+3Δt ,当Δt →0时,ΔsΔt→18+3×0=18. ∴质点A 在t =3时的瞬时速度为18. 【答案】 182.已知f(x)=2x +5,则f(x)在x =2处的导数为________.【解析】 Δy =f(2+Δx)-f(2)=2(2+Δx)+5-(2×2+5)=2Δx , ∴ΔyΔx=2,∴f ′(2)=2. 【答案】 23.抛物线y =14x 2在点Q(2,1)处的切线方程为______.【解析】 Δy Δx =14(2+Δx )2-14×22Δx =1+14Δx.当Δx →0时,ΔyΔx→1,即f′(2)=1, 由导数的几何意义,点Q 处切线斜率k =f′(2)=1. ∴切线方程为y -1=1(x -2)即y =x -1. 【答案】 y =x -14.求函数y =x 在x =1处的导数. 【解】 法一 ∵Δy =1+Δx -1,∴Δy Δx =1+Δx -1Δx =11+Δx +1, 当Δx 无限趋近于0时,Δy Δx =11+Δx +1无限趋近于12, ∴函数y =x 在x =1处的导数为12.法二Δy Δx =x +Δx -x Δx =1x +Δx +x, 当Δx →0时,Δy Δx →12x ,所以y′=12x. 当x =1时,y ′=12.∴函数y =x 在x =1处的导数为12.一、填空题1.设函数f(x)在x =x 0处可导,当h 无限趋近于0时,对于f (x 0+h )-f (x 0)h 的值,以下说法中正确的是________.①与x 0,h 都有关;②仅与x 0有关而与h 无关; ③仅与h 有关而与x 0无关;④与x 0,h 均无关.【解析】 导数是一个局部概念,它只与函数y =f(x)在x =x 0处及其附近的函数值有关,与h 无关.【答案】 ②2.(2013·徐州高二检测)函数f(x)=x 2在x =3处的导数等于________.【解析】 Δy Δx =(3+Δx )2-32Δx=6+Δx ,令Δx →0,得f′(3)=6. 【答案】 63.(2013·合肥高二检测)函数y =f(x)的图象在点P 处的切线方程是y =-2x +9,若P 点的横坐标为4,则f(4)+f′(4)=________.【解析】 由导数的几何意义,f ′(4)=-2. 又f(4)=-2×4+9=1. 故f(4)+f′(4)=1-2=-1. 【答案】 -14.已知物体的运动方程为s =-12t 2+8t(t 是时间,s 是位移),则物体在t =2时的速度为________.【解析】 Δs =-12(2+Δt)2+8(2+Δt)-(8×2-12×22)=6Δt -12(Δt)2,则Δs Δt =6-12Δt , 当Δt →0时,ΔsΔt→6. 【答案】 65.曲线f(x)=x 3在x =0处的切线方程为________.【解析】 Δy Δx =f (0+Δx )-f (0)Δx =(Δx )3-0Δx=(Δx)2.当Δx →0时,ΔyΔx→0. ∴由导数的几何意义,切线的斜率k =f′(0)=0. 因此所求切线方程为y =0. 【答案】 y =06.若点(0,1)在曲线f(x)=x 2+ax +b 上,且f′(0)=1,则a +b =________. 【解析】 ∵f(0)=1,∴b =1.又Δy Δx =f (0+Δx )2-f (0)Δx=Δx +a. ∴当Δx →0时,ΔyΔx→a ,则f′(0)=a =1. 所以a +b =1+1=2. 【答案】 27.高台跳水运动员在t 秒时距水面高度h(t)=-4.9t 2+6.5t +10(单位:米),则该运动员的初速度为________米/秒.【解析】 Δh Δt =-4.9(Δt )2+6.5·(Δt )+10-10Δt=6.5-4.9Δt∵当Δt 无限趋近于0时,-4.9Δt +6.5无限趋近于6.5, ∴该运动员的初速度为6.5米/秒. 【答案】 6.58.(2013·泰州高二检测)已知函数f(x)在区间[0,3]上的图象如图1-1-6所示,记k 1=f′(1),k 2=f′(2),k 3=f(2)-f(1),则k 1,k 2,k 3之间的大小关系为________.图1-1-6【解析】 k 1表示曲线在x =1处的切线的斜率,k 2表示曲线在x =2处的切线的斜率, k 3表示两点(1,f(1)),(2,f(2))连线的斜率, 由图可知:k 1>k 3>k 2. 【答案】 k 1>k 3>k 2 二、解答题9.已知函数f(x)=2x 2+4x ,试求f′(3). 【解】 Δy =f(3+Δx)-f(3)=2(3+Δx)2+4(3+Δx)-30=2(Δx)2+16Δx , ∴ΔyΔx=2Δx +16, 当Δx →0时,ΔyΔx→16. 因此f′(3)=16.10.子弹在枪筒中的运动可以看作匀加速直线运动,运动方程为s =12at 2,如果它的加速度是a =5×105m /s 2,子弹在枪筒中的运动时间为1.6×10-3s ,求子弹射出枪口时的瞬时速度. 【解】 运动方程为s =12at 2.因为Δs =12a(t 0+Δt)2-12at 20=at 0(Δt)+12a(Δt)2,所以Δs Δt =at 0+12a(Δt).所以当Δt →0时,ΔsΔt→at 0. 由题意知,a =5×105m /s 2,t 0=1.6×10-3s ,所以at 0=8×102=800(m /s ), 即子弹射出枪口时的瞬时速度为800 m /s . 11.已知曲线y =1t -x 上两点P(2,-1),Q(-1,12). 求:(1)曲线在点P ,Q 处的切线的斜率; (2)曲线在点P ,Q 处的切线方程. 【解】 将P(2,-1)代入y =1t -x ,得t =1,∴y =11-x ,设f(x)=11-x, ∵f (x +Δx )-f (x )Δx =11-(x +Δx )-11-x Δx=Δx[1-(x +Δx )](1-x )Δx=1(1-x -Δx )(1-x ),∴当Δx →0时,1(1-x -Δx )(1-x )→1(1-x )2.∴f ′(x)=1(1-x )2.(1)由导数的几何意义,知曲线在点P 处的切线斜率f′(2)=1. 曲线在点Q 处的切线斜率f′(-1)=14.(2)曲线在点P 处的切线方程为y -(-1)=x -2,即x -y -3=0,曲线在点Q 处的切线方程为y -12=14[x -(-1)],即x -4y +3=0.(教师用书独具)已知曲线y =2x +1,问曲线上哪一点处的切线与直线y =-2x +3垂直,并求切线方程.【自主解答】 设切点坐标为(x 0,y 0),Δy Δx =2x 0+Δx +1-(2x 0+1)Δx=2x 0+Δx -2x 0Δx =2[(x 0+Δx )2-(x 0)2]Δx (x 0+Δx +x 0)=2x 0+Δx +x 0.当Δx →0时,2x 0+Δx +x 0→2x 0+x 0=1x 0, 又直线y =-2x +3的斜率为-2, 所以所求切线的斜率为12,故1x 0=12.所以x 0=4,y 0=5,所以切点坐标为(4,5), 切线方程为y -5=12(x -4),即x -2y +6=0.已知曲线y =x 2+1,问是否存在实数a ,使得经过点(1,a)能够作出该曲线的两条切线?若存在,求出实数a 的取值范围;若不存在,请说明理由.【解】 设切点为P(t ,t 2+1).∵Δy Δx =(t +Δx )2+1-(t 2+1)Δx=2t +Δx , 当Δx →0时,ΔyΔx→2t. 由导数的几何意义,在点P(t ,t 2+1)处切线的斜率k =f′(t)=2t , ∴切线方程为y -(t 2+1)=2t(x -t), 将(1,a)代入,得a -(t 2+1)=2t(1-t), 即t 2-2t +(a -1)=0, 因为切线有两条,所以Δ=(-2)2-4(a -1)>0, 解得a <2.故存在实数a,使得经过点(1,a)能够作出该曲线的两条切线,a的取值范围是(-∞,2).1.2导数的运算1.2.1 常见函数的导数(教师用书独具)●三维目标1.知识与技能能够用导数的定义求几个常用函数的导数,会利用它们解决简单的问题.2.过程与方法使学生掌握由定义求导数的三个步骤,推导四种常见函数的导数公式.3.情感、态度与价值观通过本节的学习进一步体会导数与物理知识之间的联系,提高数学的应用意识,注意培养学生归纳类比的能力.●重点难点重点:利用导数公式,求简单函数的导数.难点:对导数公式的理解与记忆.在初等函数的求导公式中,对数函数与指数函数的求导公式比较难记忆,要区分公式的结构特征,找出他们之间的差异去记忆.(教师用书独具)●教学建议导数的定义不仅阐明了导数概念的实质,也给出了利用定义求导数的方法,但是,如果对每一个函数都直接按定义去求它的导数,往往是极为复杂和困难的,甚至是不可能的,因此,我们希望找到一些简单函数的导数(作为我们的基本公式),借助它们来简化导数的计算过程.因此教材直接给出了基本初等函数的导数公式,使得用定义求导数比较麻烦、计算量很大的问题得以解决,为以后导数的研究带来了方便,同时也将所学的导数和实际应用问题结合起来,使得导数的优越性发挥得淋漓尽致.●教学流程创设情境,回忆导数的概念与导数的求法.⇒利用导数的定义求y=x n(n=1,2,3,。

高中数学教案应用导数解决最优化问题

高中数学教案应用导数解决最优化问题

高中数学教案应用导数解决最优化问题尊敬的教师:在高中数学教育中,了解和应用导数的概念及其相关知识是十分重要的。

导数在数学和实际应用中具有广泛的作用,其中之一就是解决最优化问题。

本教案旨在帮助学生理解导数的概念,并通过实际问题引导他们应用所学知识来解决最优化问题。

1. 引言最优化问题是在给定条件下,寻找函数取得最大值或最小值的问题。

数学上,我们可以通过导数的求解来解决这类问题。

本教案将通过几个实际问题,引导学生应用导数来解决最优化问题。

2. 导数的基本概念回顾在开始解决最优化问题前,我们需要对导数的基本概念进行回顾。

导数可以理解为函数的变化率,表示了函数在某一点处的斜率。

学生需要掌握导数的定义、求导法则和求导技巧,以便在解决最优化问题时能够灵活应用。

3. 最小路径问题问题描述:一个人在一座公园中从点A到达点B,公园中有一条弯曲的小路连接着这两个点。

他想找到一条路径,使得他走过的总路程最短。

如何确定这条最短路径?解决思路:假设小路的形状可以用一条函数曲线来表示,我们可以建立一个数学模型来描述这个问题。

引导学生根据问题描述,设定坐标系,并表示小路的形状函数。

然后,通过导数的求解找到函数取得最小值的情况,得出最短路径。

4. 最大盒子问题问题描述:一个制作盒子的工厂打算生产一种长方体盒子,该盒子的体积为固定值V。

为了节省材料成本,工厂希望制作的盒子表面积最小。

如何确定这样的盒子的尺寸?解决思路:引导学生设立长方体的长、宽、高分别为x、y、z,建立体积V与表面积S的函数关系式。

然后,通过导数的求解找出函数的极值,从而得到表面积的最小值。

引导学生通过求解极值问题,确定最优的盒子尺寸。

5. 最大收益问题问题描述:一个农民种植苹果,他希望通过调整种植面积来最大化收益。

他已经对不同种植面积下的苹果产量与售价进行了调查。

如何确定最佳的种植面积,使得收益最大化?解决思路:引导学生对问题进行数学建模,设定种植面积为x,通过导数的求解找出收益函数的极值。

高中数学《导数》教案

高中数学《导数》教案

高中数学《导数》教案一、教学目标1. 让学生理解导数的定义和几何意义,掌握导数的计算方法。

2. 培养学生运用导数解决实际问题的能力,提高其数学思维品质。

3. 通过对导数的学习,使学生感受数学与实际生活的紧密联系,培养其应用意识。

二、教学内容1. 导数的定义2. 导数的几何意义3. 导数的计算方法4. 导数在实际问题中的应用三、教学重点与难点1. 教学重点:导数的定义、几何意义、计算方法及应用。

2. 教学难点:导数的计算方法,特别是复合函数的导数。

四、教学方法1. 采用问题驱动法,引导学生通过探究、合作、交流的方式学习导数。

2. 利用多媒体课件,直观展示导数的几何意义,增强学生对概念的理解。

3. 结合具体实例,让学生感受导数在实际问题中的应用,提高其应用能力。

五、教学过程1. 导入新课:通过复习初等函数的图像,引入导数的定义。

2. 讲解导数的定义:引导学生理解导数的极限思想,讲解导数的定义及计算方法。

3. 导数的几何意义:利用多媒体课件,展示导数表示切线斜率的直观图形,让学生理解导数的几何意义。

4. 导数的计算方法:讲解基本函数的导数公式,引导学生掌握导数的计算方法,特别注意复合函数的导数。

5. 导数在实际问题中的应用:通过具体实例,让学生运用导数解决实际问题,如运动物体的瞬时速度、加速度等。

6. 课堂练习:布置具有代表性的习题,巩固所学内容。

8. 课后作业:布置适量作业,巩固所学知识,提高学生自主学习能力。

六、教学评价1. 通过课堂讲解、练习和作业,评估学生对导数定义、几何意义和计算方法的掌握程度。

2. 结合实际问题解决案例,评价学生运用导数分析问题和解决问题的能力。

3. 利用课后作业和阶段测试,了解学生对导数知识的巩固情况,为后续教学提供反馈。

七、教学反思1. 课后及时反思教学效果,针对学生的掌握情况调整教学策略。

2. 关注学生在学习过程中的困惑和问题,及时解答并提供针对性的辅导。

3. 探索更多有效的教学方法,如案例分析、小组讨论等,提高教学质量和学生的学习兴趣。

高中数学导数的应用教案

高中数学导数的应用教案

高中数学导数的应用教案
教学目标:学生能够理解导数的概念,掌握导数在实际问题中的应用,并能够运用导数解决相关问题。

教学重点和难点:掌握导数在实际问题中的应用。

教学准备:教师准备课件、实例题目,学生准备笔记本、笔。

教学过程:
一、导入(10分钟)
通过一个生活实例引入导数的概念,让学生初步了解导数在实际中的意义。

二、概念讲解(15分钟)
1. 温故导数的定义和性质;
2. 导数的应用领域;
3. 导数在实际问题中的意义和作用。

三、实例分析(20分钟)
教师通过实例问题,引导学生运用导数进行问题求解,如最值问题、速度问题等。

四、练习(15分钟)
让学生在课堂上进行练习题目,加深对导数应用的理解。

五、总结(10分钟)
通过讨论和总结,让学生掌握导数在实际问题中的应用方法,并复习导数的相关概念。

六、作业布置(5分钟)
布置相关作业,让学生巩固所学知识。

教学反思:
通过实例讲解和练习,能够有效帮助学生掌握导数在实际问题中的应用方法。

同时,通过讨论和总结,可以使学生更深入地理解导数的概念和性质。

高中数学备课教案函数与导数的应用弧长与曲线的旋转体

高中数学备课教案函数与导数的应用弧长与曲线的旋转体

高中数学备课教案函数与导数的应用弧长与曲线的旋转体高中数学备课教案:函数与导数的应用——弧长与曲线的旋转体本教案主要介绍了高中数学中函数与导数的应用——弧长与曲线的旋转体的相关概念和计算方法。

通过本次教学,学生能够掌握使用函数与导数求解弧长和曲线的旋转体问题的方法和技巧。

一、引入在上一堂课中,我们学习了函数与导数的基本概念和计算方法,掌握了求解函数极值、函数图像的拐点等问题的技巧。

今天,我们将进一步学习函数与导数的应用,具体涉及弧长和曲线的旋转体的计算。

二、导数与弧长1. 弧长的定义在平面直角坐标系中,曲线的弧长是曲线的一部分的长度。

我们考虑函数y=f(x)在区间[a,b]上的一段曲线弧,将这段弧分割成若干小弧段,由若干小弧段的长度之和逼近曲线弧的长度。

2. 弧长的计算方法为了计算曲线弧的长度,我们可以将曲线弧分割成若干小弧段,然后对这些小弧段的长度进行求和。

当小弧段越来越细,分割点越来越多时,这个和将逼近曲线弧的长度。

3. 导数与弧长的关系我们已经学习了函数的导数的计算方法,导数表示函数在某一点的斜率。

如果函数f(x)在区间[a,b]上连续,并且在这个区间上导数存在且有界,那么函数f(x)在这个区间上的弧长可以通过积分公式进行求解。

三、导数与曲线的旋转体1. 曲线的旋转体的定义在平面中,我们将曲线y=f(x)绕x轴旋转一周,形成的图形称为曲线的旋转体。

我们可以通过计算曲线绕x轴旋转一周所形成的图形的体积来研究函数与导数的应用问题。

2. 曲线的旋转体的计算方法为了计算曲线绕x轴旋转一周所形成的图形的体积,我们可以将曲线沿x轴方向进行分割,然后计算每个小圆柱的体积,并将其求和。

当小圆柱的数量越来越多,每个小圆柱越来越细时,这个和将逼近曲线绕x轴旋转一周所形成的图形的体积。

3. 导数与曲线的旋转体的关系如果函数f(x)在区间[a,b]上连续,并且在这个区间上导数存在且有界,那么曲线y=f(x)绕x轴旋转一周所形成的图形的体积可以通过积分公式进行求解。

高中数学教案应用导数解决曲线的切线与法线问题

高中数学教案应用导数解决曲线的切线与法线问题

高中数学教案应用导数解决曲线的切线与法线问题高中数学教案:应用导数解决曲线的切线与法线问题尊敬的同学们,今天我们将探讨数学中的一个重要概念——导数,并学习如何应用导数来解决曲线的切线与法线问题。

这是一种在数学上非常有用的方法,它不仅能够帮助我们找到曲线上某一点的切线和法线,还能提供深入了解曲线变化的信息。

接下来,我们将逐步学习导数的概念、计算方法以及如何将其应用于具体问题中。

一、导数的概念和计算方法1. 导数的定义:导数描述了函数在某一点处的变化率。

对于函数f(x),其在点x=a处的导数表示为f'(a)或df(x)/dx|_(x=a)。

导数可以用数学式子表示为lim_(h→0)[f(a+h)-f(a)]/h。

2. 导数的计算方法:为了计算导数,我们可以采用以下几种方法:- 利用导数的定义进行计算:根据导数定义的极限表达式,我们可以直接计算导数。

- 使用基本导数公式:对于常见的基本函数,我们可以利用其导数公式来计算导数。

- 利用导数的性质:导数具有一系列的运算性质,如链式法则、乘积法则和商法则等,通过运用这些性质,我们可以简化导数的计算过程。

二、曲线的切线问题1. 切线的定义:切线是曲线在某一点处与曲线相切的直线,它与曲线有且只有一个公共点,并且在该点处具有与曲线相同的斜率。

2. 求解切线的步骤:- 确定曲线上某一点的坐标:假设我们需要求解曲线y=f(x)在点P(a, f(a))处的切线。

- 求解导数:计算函数f(x)在点x=a处的导数f'(a)。

- 构造切线方程:使用点斜式或一般式等方法,根据导数的定义和点P的坐标,构造出切线方程。

三、曲线的法线问题1. 法线的定义:与切线垂直且经过切点的直线称为曲线的法线。

切线和法线在切点处的交点即为切点的坐标。

2. 求解法线的步骤:- 确定曲线上某一点的坐标:与求解切线类似,我们需要确定曲线上某一点的坐标。

- 求解导数:计算函数f(x)在点x=a处的导数f'(a)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学导数的应用教案
一、课程背景
在高中数学中,导数是一个重要的概念,它的掌握和使用会为学
生们提供很多有用的信息。

比如,我们可以使用它来计算物体运动的
速度和加速度,解决函数在某点的单调性问题以及搜索函数局部最大
值或者最小值等等。

因此,掌握导数在高中数学中的重要作用,培养
学生正确使用它的能力则显得十分必要。

二、课程内容
1. 介绍定义
由于导数涉及到微分运算,学生在学习之前需要先对函数、极限
和导数的定义有所了解。

因此,在本课程中,将会介绍函数的定义、
极限的定义以及导数的定义,使学生对导数有一个初步的了解。

2. 计算导数
除了只要学生能够理解导数的定义外,他们也要掌握如何计算一
个函数的导数。

因此,在本课程中,将会教授学生函数的定义域、定
义域和函数的一阶导数的计算方法,使学生能够根据所给函数求其一
阶导数。

3. 应用导数
学习完如何计算一个函数的一阶导数之后,学生需要掌握如何应
用导数来解决问题、求极值等等。

因此,在本课程中,学生需要掌握
函数单调性的判断方法,以及函数求局部最大值、最小值的方法,并
通过实际例子进行练习。

4. 小结
本节课的内容主要包括三大部分,即导数的定义,导数的计算以
及导数的应用,帮助学生正确使用导数,解决问题。

三、课程评价
通过上述教案,学生在学习课程时可以系统、有序地掌握导数的
概念和技能。

他们总结函数的定义、极限定义及导数的定义,学会计
算一阶导数,以及根据导数的性质,判断函数的单调性和求局部最大、
最小值。

同时,学生还可以尝试解决一些相关的习题,进一步巩固课程所学的知识。

相关文档
最新文档