汽车发动机悬置系统分析、布置方法、设计流程及悬置软垫的设计
汽车发动机悬置系统分析、布置方法、设计流程及悬置软垫的设计

汽车发动机悬置系统分析、布置方法、设计流程及悬置软垫的设计汽车发动机悬置系统分析、布置方法、设计流程及悬置软垫的设计悬置系统:发动机本身是一个内在的振动源,同时也受到来自外部的各种振动干扰。
引起零部件的损坏和乘坐的不舒适等。
所以设置悬置系统,把发动机传递到支承系统的振动减小到最低限度。
成功地控制振动,主要取决于悬置系统的结构型式、几何位置及悬置软垫的结构、刚度和阻尼等特性。
确定—个合理的悬置系统是一件相当复杂的工作,它要满足—系列静态及动态的性能要求,同时又受到各种条件的约束,这些大大增加了设计的难度。
一般来讲对发动机悬置系统有如下要求。
① 能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其他零部件发生干涉。
同时在发动机大修前,不出现零部件损坏。
② 能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声。
③ 能充分地隔离由于路面不平产生的通过悬置而传向发动机的振动,降低振动噪声。
④ 保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。
悬置系统的激振源:作用于发动机悬置系统的激振源主要如下:① 发动机起动及熄火停转时的摇动;② 怠速运转时的抖动;③ 发动机高速运转时的振动;④ 路面冲击所引起的车体振动;⑤ 大转矩时的摇动;⑥ 汽车起步或变速时转矩变化所引起的冲击;⑦ 过大错位所引起的干涉和破损。
作用在发动机悬置上的振动频率十分广泛。
按振动频率可以把振动分为高频振动和低频振动。
频率低于30Hz的低频振动源如下:① 发动机低速运转时的转矩波动;② 在发动机低速运转时由于惯性力及其力偶使动力总成产生的振动;③ 轮胎旋转时由于轮胎动平衡不好使车身产生的振动;④ 路面不平使车身产生的振动;⑤ 由于传动系的联轴器工作不佳产生附加力偶和推力,使动力装置产生的振动。
频率高于30Hz的高频振动源如下:① 在发动机高速运转时,由于惯性力及其力偶使动力总成产生的振动;② 变速时产生的振动;③ 燃烧压力脉动使机体产生的振动;④ 发动机配气机构产生的振动;⑤ 曲轴的弯曲振动和扭振;⑥ 动力总成的弯曲振动和扭振;⑦ 传动轴不平衡产生的振动。
汽车动力总成悬置系统优化设计PPT课件

旋转惯性力
Pr m1r 2
其水平和垂直的两个分量:
PjⅡ m2r2 cos 2 二级往复惯性力;
注:二级以上往复惯性力很小,已略去。
Prx m1r2 cost Pry m1r 2 sint
二、汽车动力总成悬置系统激振源
2. 发动机的干涉力和力距
c. 惯性力系的平衡 发动机平衡的含义:
惯性力系平衡; 转矩的均匀性。
三、汽车动力总成在车架上的振动
1. 发动机的自由振动
2)系统模型
如图3-1所示。
3)、自由振动方程
整机振动可分解为随同它的质心c点沿 X 、Y 、Z
的三个平动,和绕质心的转动。在微振动条件下,其角
位移可用绕 X 、Y 、Z 轴的转角 、 、 表示。当刚
体作六自由度自由振动时,有如下的表达式:
Mxc Fx
对因汽车摆动造成的车架扭转具有良好的运动顺从性。 阻抗和隔绝动载荷
有效地抑制在汽车行驶中,因道路凹凸不平而引起的激振影响 支承动、静载荷
在所有工况下,承受所有动、静载荷,并使动力总成在所有方 向上的位移处于可接受的范围内,不与底盘上的其他零部件发 生干涉。 保证发动机机体与飞轮壳的连接面弯矩不超过允许值。 保证合理的使用寿命
二、汽车动力总成悬置系统激振源
4. 激振频率分析
经分析可知:
a. 由不平衡量引起的激振力是离心力,它与转速成正比,只有在高转速时其作用 才显著。
b. 均匀点火脉冲的激励作用只有在低速时才明显。由上可知,发动机作为激振源 的激振频率范围为:
c. 地面激振频率范围:
1.5~2.5
可作为悬置设计时依据。
式中:Q -比例常数,一阶不平衡力Q=1,二阶不平衡力Q=2 c. 传动轴(变速器挂直接档)不平衡质量引起的激振频率:
汽车动力总成悬置系统布置研究

汽车动力总成悬置系统布置研究汽车动力总成悬置系统是指动力总成(发动机、离合器、变速器及附件等)与车架或车身之间弹性连接的系统,其设计性能对整车的振动噪音水平有重要影响,随着广大消费者对整车舒适性要求的不断提高,动力总成的隔振设计为广大汽车制造企业所重视,每套动力总成的质量特性不同,为达到最佳的动力总成悬置系统性能,理想来说应为每一个动力总成“量身打造”一套悬置系统。
标签:模块化设计;动力总成悬置系统;刚度;模态引言本文论述了基于某平台上动力总成悬置系统的模块化设计,实现了悬置系统元件最大化共用,且满足不同动力总成的悬置系统在该平台中的车身接口一致。
该平台的悬置系统模块化设计满足车型差异化的同时减少了零件数量,降低了设计、验证等工作量,从而有助于企业降低产品的研发与制造成本、提高生产系统的适应能力和客户响应速度。
1动力总成悬置系统模型建立1.1悬置系统六自由度动力学模型汽车动力总成一般通过四点悬置固定到车架上,悬置软垫采用橡胶材料并添加金属片限位,因此可以看作具有三向刚度的弹性阻尼元件。
悬置系统的固有频率远低于动力总成和车架弹性体的固有频率,因此可以把动力总成、车架简化为刚体,建立悬置系统的六自由度力学模型。
文中所设计悬置系统采用四点布置在发动机上。
建立动力总成坐标系O-XYZ,O为动力总成质心,X轴平行于曲轴中心线由飞轮端指向风扇端,Z轴竖直向上。
则动力总成的运动可以分解为沿X、Y、Z轴的平动和绕X、Y、Z轴的转动,共6个自由度,写成广义坐标的形式,表示为:根据拉格朗日法,得到动力总成悬置系统的六自由度振动微分方程式中:M为系统惯性矩阵;K为系统刚度矩阵。
通过MATLAB软件建立数学模型,即可求解出悬置系统的六阶固有频率及振型。
1.2能量解耦法模型车辆行驶过程中,由于发动机产生的激励力不通过质心引起动力总成在多个自由度上的振动响应,从而增加了悬置系统的振动耦合,使其振动幅值增大。
因此降低悬置系统的振动耦合,是提升整车舒适性的有效措施,工程应用中主要关注Z向及θx向的解耦率,一般采用能量解耦法来评价。
汽车悬置系统设计指南(一)2024

汽车悬置系统设计指南(一)引言概述:汽车悬置系统是汽车底盘系统的重要组成部分,对于汽车的驾驶稳定性和乘坐舒适性至关重要。
本文旨在提供汽车悬置系统设计的指南,帮助读者了解悬置系统的基本原理和设计要点,从而优化汽车悬置系统的性能与驾驶舒适。
正文内容:一、悬置系统基本原理1. 悬置系统的定义和作用2. 悬置系统的基本组成部分3. 悬置系统的工作原理4. 悬置系统与驾驶稳定性的关系5. 悬置系统与乘坐舒适性的关系二、悬置系统设计要点1. 悬置系统弹簧的选取和设计2. 悬置系统减震器的选择和调整3. 悬置系统阻尼的调节和优化4. 悬置系统材料的选择与优化5. 悬置系统与车体结构的匹配设计三、悬置系统振动控制1. 悬置系统振动类型与特性2. 悬置系统振动控制的方法3. 悬置系统调频器的设计与优化4. 悬置系统振动控制与驾驶稳定性的关系5. 悬置系统振动控制与乘坐舒适性的关系四、悬置系统磨损与维护1. 悬置系统磨损的原因与表现2. 悬置系统磨损程度的检测方法3. 悬置系统磨损的预防与延长寿命的方法4. 悬置系统维护的注意事项5. 悬置系统维护对驾驶稳定性和乘坐舒适性的影响五、悬置系统创新与发展趋势1. 悬置系统新材料的应用2. 悬置系统主动控制技术的发展3. 悬置系统电子化的趋势4. 悬置系统智能化的发展5. 悬置系统可持续发展的方向结论:通过本文的介绍,读者可以更好地理解汽车悬置系统的设计原理和要点,并在实际应用中引导悬置系统的优化与改进。
汽车悬置系统的设计不仅影响驾驶稳定性和乘坐舒适性,也与汽车的安全性和性能密切相关。
因此,合理设计和维护汽车悬置系统对于提高整车的操控性和乘坐舒适性至关重要。
未来,随着汽车技术的飞速发展,悬置系统将面临更多的创新与发展机遇,我们期待悬置系统能够更好地满足人们对于汽车驾驶体验和乘坐舒适性的需求。
汽车动力总成悬置系统布置研究

汽车动力总成悬置系统布置研究汽车动力总成的悬置系统布置是整车设计中非常重要的一部分,直接关系到车辆的稳定性、舒适性和安全性。
该系统主要由几何形状、橡胶减震器和刚度等方面的因素组成。
正确的悬置系统布置可以减少车身的震动和扭曲,提高整车的稳定性和舒适性,并降低车辆的噪声、振动和疲劳。
首先,要考虑到悬置系统的几何形状。
通常来说,汽车动力总成的悬置系统规划应尽量避免底盘的干涉和碰撞。
在设计悬置系统时,需要根据车体结构和总成布置来确定最佳的安装位置。
对于前置发动机的车辆,前悬架的位置应该尽量靠前,并且需要满足车轮的位置和角度等技术要求。
后置发动机的车辆则需要考虑后悬架的位置,以确保车辆的稳定性和平衡性。
其次,橡胶减震器也是一个影响悬置系统性能的关键因素。
橡胶减震器可以有效地吸收路面震动和颠簸,从而减少车辆受到的冲击和振动。
因此,在选择和布置橡胶减震器时,需要考虑悬置系统的刚度和阻尼。
在高速行驶时,悬置系统应该具有较高的刚度和阻尼,以保证车辆的稳定性和控制性。
在行驶过程中,悬置系统还需要具有较好的稳定性和可靠性,以避免出现漏油等故障。
最后,悬置系统的刚度也是一个重要的方面。
汽车动力总成的刚度将直接影响车辆的刹车和加速性能,因此需要保证悬置系统的足够刚度。
在悬置系统的刚度设计中,需要综合考虑车辆的重量、驱动轮数量和轴距等要素,以保证车辆的平衡性和可控性。
综上所述,汽车动力总成悬置系统的正确布置和设计对于车辆的稳定性、舒适性和安全性具有重要意义。
在悬置系统的规划和设计中,需要综合考虑几何形状、橡胶减震器和刚度等因素,以确保车辆的性能和可靠性。
未来,随着科技的不断发展,汽车悬置系统将会进一步演进,并且更加注重可持续发展和环保,为驾驶者带来更为安全、舒适和便捷的出行体验。
汽车动力总成悬置系统布置研究

汽车动力总成悬置系统布置研究汽车动力总成悬置系统是指车辆的发动机、变速箱、驱动轴等部件的支撑系统,其目的是保证动力总成在车辆行驶过程中的平稳运行和减少振动噪音,提高车辆的舒适性和安全性。
因此,合理的悬置系统布置设计对车辆的性能和品质至关重要。
一、悬置系统的种类根据不同的悬置部件,车辆的悬置系统可以分为以下几种:1. 弹簧悬挂系统弹簧悬挂系统是最常见的悬挂系统之一,它通过弹簧将动力总成与车轮相连接,可以减轻震动和减少冲击。
空气悬挂系统能够根据路况自动调节车身高度和硬度,同时具有良好的稳定性和舒适性。
液压悬挂系统有很好的减震效果,可使车身保持平稳运行,并具有良好的舒适性和控制性。
电磁悬挂系统通过电磁力来减震和悬挂,使车辆能够更好地保持平稳运行,尤其是在高速行驶时。
二、悬挂系统的设计在设计悬挂系统时,需考虑以下因素:选择合适的悬挂系统类型,并考虑其性能和成本因素。
一般而言,车型越高档,悬挂系统也越先进,成本也越高。
2. 负载和车速。
负载和车速是影响悬挂系统工作的重要因素。
正常情况下,应该设计考虑到负载和车速的变化范围,以保证悬挂系统的稳定性。
3. 频率响应特性。
悬挂系统在不同的频率下响应不同,需要考虑对于不同频率的响应以达到减震效果最佳。
4. 空间约束和紧凑性。
悬挂系统的布置需要考虑到车辆内部的空间约束和布局,以最大程度地减小占用空间从而提高车厢内部的可用性和舒适性。
5. 安装和维修。
悬挂系统的安装和维修应该简单易操作,且可以方便的进行检修和维修。
1. 优化弹簧性能和减震器的优化。
通过改变弹簧和减震器的参数来改变悬挂系统的振动特性和稳定性,达到最佳减震效果。
2. 优化悬挂系统的结构设计。
通过优化悬挂系统的结构设计,如改变部件的刚度、强度和形状等,也可达到减震效果的最佳状态。
加装全球定位系统、车载数据记录系统等,达到更好的控制和调节效果,保证悬挂系统的最佳工作状态。
同时,可以提高与动力总成的协同效果,进一步增强车辆的性能。
发动机悬置设计步骤

由于车型开发中需要对发动机悬置进行设计计算,需贵公司提供如下数据,望贵公司能给予帮助,谢谢。
1、发动机总成的总质量,包括内部注满的机油和冷却液。
2、发动机总成的质心位置.
3、发动机总成主惯性袖的位置;
4、动力总成绕三个主惯性铀的转动惯量;
5、发动机机体后端面与飞轮壳接合面上的静态弯矩,
6、发动机的最大扭矩及怠速转速,
8、计算发动机变速器总成在悬置软垫上可能引起的最大转矩反作用力.可用两种计算标准,一是发动机发出最大扭矩时,另一是发动机在额定功率点时(包括最大变速器减速比),然后根据软垫制造商提供的软点"负荷-变形"曲线,核对所选择的软垫是否能承受这一作用力及软垫的最大变形量是否在合理的范围内
9、按实际应用情况,确定动态负荷冲击加速度的数值.
10、设计悬置支架按动态负荷进行强度校核若发动机制造商没有提供机体后端面与飞轮壳结合部位的静态弯矩限制,则应按动态负荷计算该部位的弯矩和工作应力,保证该薄弱环节安全可靠
11、选择合适的悬置软垫,应能承受上述动静态负荷,并满足隔振要求,确定软垫的刚度12、根据所选择的软垫的压缩和剪切刚度及系统布置形式,分别计算前后悬置的垂直综合刚度,侧向综合刚度和扭矩综合刚度及相应的固有频率(如果是平置式布置,则系统的垂直方向固有频率和隔振效率可从软垫制造商提供的坐标图上根据静态变形量确定)
13、确定发动机的外激振频率
14、通过软垫制造商提供的坐标图,按照软垫的静态压缩量以及外激振频率,确定悬置系统的隔振效率.
15、检查悬置系统是否具备克服其他外力和惯性力的能力,必要时应设置限位装置
16、选择能满足工作环境条件的需要的悬置软垫的材料
17、校核悬置系统的结构布置能否适应整车提供的空间,确保不与周围的零部件发生干涉18、试验。
汽车动力总成悬置系统布置研究

汽车动力总成悬置系统布置研究汽车动力总成悬置系统布置是汽车设计中十分重要的一环,它直接关系到车辆的行驶稳定性和舒适性。
随着汽车工业的不断发展和技术的不断革新,汽车动力总成悬置系统的布置也在不断完善和创新。
本文将就汽车动力总成悬置系统布置进行研究探讨。
1. 悬置系统的基本结构汽车动力总成悬置系统主要由悬架、减震器和弹簧三部分组成。
悬架分为独立悬架和非独立悬架。
不同的悬架类型对车辆的行驶稳定性、操控性、车身高度和舒适性都有不同的影响。
减震器的作用是减少悬架运动时产生的振动和对车辆的充分接地性能进行控制。
常见的减震器有液压减震器和气压减震器。
液压减震器主要是利用液体在缸筒与活塞间的阻尼和压力进行减震,而气压减震器则是利用了空气的弹性和压力来实现减震。
弹簧的主要作用是支撑车辆的重量和吸收路面的冲击力,将地面的不平顺力传递到车辆上部。
弹簧一般采用金属弹簧和橡胶弹簧,它们的材料、形状和刚度对车辆的悬架调整具有重要的影响。
2. 悬架系统的布置原则汽车动力总成悬置系统的布置需要遵循一些基本原则,以确保车辆的行驶稳定性和乘坐舒适性。
如下:(1) 配置恰当的悬挂器:悬挂器类型和刚度应该恰当地选择依据车辆的性质和用途。
例如,运动型车辆较偏向采用独立悬架,而舒适型车辆较偏向采用非独立式悬架。
弹簧刚度与车重成比例,太硬的弹簧将降低乘坐舒适性,太软的弹簧则会影响车辆的稳定性。
(2) 掌握悬挂器的减震能力:一个合理的悬架系统除了有合适的弹簧和悬架,还需要有减震器。
减震器的好坏将直接影响到车辆的舒适性和稳定性。
减震器的刚度应该适合车辆的基本配置,比如运动型车辆和其他车型在减震器的选择和调整上存在巨大差异。
(3) 取舍悬架类型:车型的确定直接关系到悬架类型的选择。
在减少成本和提高性能之间需要权衡取舍。
现代汽车中大多数都采用独立悬架,但非独立悬架的性价比更高。
(4) 确保配件的合理匹配:制造的不同部分应该有合适的匹配,以构建一个坚固、平衡的悬架系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车发动机悬置系统分析、布置方法、设计流程及悬置软垫的设计汽车发动机悬置系统分析、布置方法、设计流程及悬置软垫的设计悬置系统:发动机本身是一个内在的振动源,同时也受到来自外部的各种振动干扰。
引起零部件的损坏和乘坐的不舒适等。
所以设置悬置系统,把发动机传递到支承系统的振动减小到最低限度。
成功地控制振动,主要取决于悬置系统的结构型式、几何位置及悬置软垫的结构、刚度和阻尼等特性。
确定—个合理的悬置系统是一件相当复杂的工作,它要满足—系列静态及动态的性能要求,同时又受到各种条件的约束,这些大大增加了设计的难度。
一般来讲对发动机悬置系统有如下要求。
① 能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其他零部件发生干涉。
同时在发动机大修前,不出现零部件损坏。
② 能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声。
③ 能充分地隔离由于路面不平产生的通过悬置而传向发动机的振动,降低振动噪声。
④ 保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。
悬置系统的激振源:作用于发动机悬置系统的激振源主要如下:① 发动机起动及熄火停转时的摇动;② 怠速运转时的抖动;③ 发动机高速运转时的振动;④ 路面冲击所引起的车体振动;⑤ 大转矩时的摇动;⑥ 汽车起步或变速时转矩变化所引起的冲击;⑦ 过大错位所引起的干涉和破损。
作用在发动机悬置上的振动频率十分广泛。
按振动频率可以把振动分为高频振动和低频振动。
频率低于30Hz的低频振动源如下:① 发动机低速运转时的转矩波动;② 在发动机低速运转时由于惯性力及其力偶使动力总成产生的振动;③ 轮胎旋转时由于轮胎动平衡不好使车身产生的振动;④ 路面不平使车身产生的振动;⑤ 由于传动系的联轴器工作不佳产生附加力偶和推力,使动力装置产生的振动。
频率高于30Hz的高频振动源如下:① 在发动机高速运转时,由于惯性力及其力偶使动力总成产生的振动;② 变速时产生的振动;③ 燃烧压力脉动使机体产生的振动;④ 发动机配气机构产生的振动;⑤ 曲轴的弯曲振动和扭振;⑥ 动力总成的弯曲振动和扭振;⑦ 传动轴不平衡产生的振动。
总之,使发动机总成产生振动的主要振源概括起来有两类:一为内振源,主要是由于燃烧脉动、活塞和连杆的运动产生的不平衡力和力矩。
二为外振源,主要来源于不平的道路或传动系。
这两种振源几乎总是同时作用,使发动机处于复杂的振动状态。
(1) 燃烧激振频率这是由发动机气缸内混合气燃烧,曲轴输出脉冲转矩,由于转矩周期性地发生变化,导致发动机上反作用转矩(又称倾覆力矩)的波动。
这种波动使发动机产生周期性的扭转振动,其振动频率实际上就是发动机的发火频率,计算公式为:f1=2×i×n/60/τ式中:f1-点火干扰频率;Hzτ-发动机冲程数;(2或4)i-发动机气缸数;n-曲轴转速,r/min(2) 惯性力激振频率由不平衡的旋转质量和往复运动的质量所引起的惯性激振力和力矩的激振频率为:f2=Q×n/60式中:f2-惯性力激振频率;Q-比例系数(一级不平衡力或力矩Q=1,二级不平衡力或力矩Q=2)。
不平衡惯性力的激振频率与发动机的缸数无关,但惯性力的不平衡量与发动机缸数和结构特征有着密切的关系。
关于外振源,归根结底是路面的激励,通过车轮、驱动系统、转向系统及车架等而传递到动力总成,所以在选择悬置系统的固有频率时,需要考虑到车辆与发动机连接部分的共振频率。
因此,悬置系统特性的选择首先要隔离发动机自身的振动,即不让发动机不平衡力造成的振动过分地传向车体。
这就要求悬置系统的固有频率低于发动机怠速工况下激振频率的0.7倍。
车体结构振动的降低,十分有利于降低结构振动造成的噪声。
目前汽车发动机的悬置软垫都相当软,发动机的固有频率大多处在6-20Hz的范围内。
如此低的频率,当汽车以正常车速行驶时,刚好处于不平道路的低频激励阶段,这就带来了路面激励下发动机的晃动问题。
在低频段内,发动机的固有频率与整车特性匹配不当时,路面激励所造成的发动机晃动可能引起汽车乘坐舒适性下降,也可能影响到汽车的操作性。
悬置系统的布置1) 悬置点的数量悬置点的数量根据动力总成的长度、质量、用途和安装方式等决定。
悬置系统可以有3、4、5点悬置,典型的布置见图3-16-1。
一般在汽车上采用三点及四点悬置系统。
因为在振动比较大时,如果悬置点的数目增多,当车架变形时,有的悬置点会发生错位,使发动机或悬置支架受力过大而造成损坏。
三点式悬置与车架的顺从性最好,因为三点决定一个平面,不受车架变形的影响,而且固有频率低,抗扭转振动的效果好。
值得推荐的是前悬置采用两点左、右斜置,后端一点紧靠主惯性轴的布置方案,这种布置具有较好的隔振功能。
在四缸机上得到广泛应用。
而前一点、后两点的三点式多用于六缸机。
四点式悬置的稳定性好、能克服较大的转矩反作用力,不过扭转刚度较大,不利于隔离低频振动。
但经过合理设计,仍可满足四缸机、更能满足六缸机的要求。
四点式悬置在六缸机上的使用最为普遍。
图3-16-2是典型的三点式和四点式悬置。
在重型汽车上,因为其动力总成质量和长度大,为了避免发动机机体后端面与飞轮壳接合面上产生过大的弯矩,一般在变速器上增加一个辅助支点,从而形成五点式悬置。
由于该支点距动力总成的质心最远,又是过定位点,因此辅助支点刚度不能太大,以避免因车架变形而损坏变速器或悬置支架。
2) 悬置系统的解耦(1) 悬置系统解耦的目的当弹性支承的刚体在一个自由度上的自由振动独立于另一个自由度上的自由振动时,我们说这两个自由度的振动是解耦的。
发动机悬置系统实际上具有六个自由度,并且是互为耦合的。
耦合的作用使发动机振动互相激励而加大,振动频率范围变宽。
这样要想达到同解耦时相同的隔振效果,就需要更软的悬置软垫,这就使得动力总成与周围零件之间有较大的相对位移,造成风扇与护风罩相碰或其他部件之间产生振动干扰,给整车布置造成困难。
由于软垫的较大位移,使橡胶内应变增大而影响其使用寿命。
另外,由于各自由度振动的互为耦合,很难对某个产生共振的自由度上的频率进行个别改进而不影响其他自由度上的隔振性能。
(2) 悬置系统弹性中心作用于被支承物体上的一个任意方向的外力,如果通过弹性支承系统的弹性中心,则被支承物只会发生平移运动,而不会产生转动。
反之,被支承物体在产生平移运动的同时,还会产生转动,即两个自由度上产生运动耦合。
同样,如果一个外力矩绕弹性中心主轴线作用于被支承物体上,该物体只会产生转动而不会产生平移运动。
反之,物体在产生转动的同时,还会产生平移运动,同样出现两个自由度上的运动耦合。
弹性中心是由弹性元件的刚度和几何布置决定的,与被支承物体的质量无关。
它对弹性系统而言,犹如质心之于刚体。
如果刚体质心与支承系统的弹性中心重合,则振动将大为简化。
理论上,如果使发动机悬置系统的弹性中心同发动机总成的质心重合(图3-16-3),就可获得所有六个自由度上的振动解隅。
实际上完全解耦在悬置设计中是难以实现的,因为发动机的主要激振力只有垂直和扭转两种,而悬置设计中存在较多的约束。
因此只要在几个主要方向上获得近似解耦就行了。
3) 悬置系统的布置动力总成一般有三个弯曲模态,如果把前悬置点布置在节点上,使得弯曲模态在节点上不能被激发,则可将车架与发功机引起的弯曲振动激振力相隔离,发动机的垂直振动不致传到车架上。
通常应尽可能将前悬置点布置在动力总成一阶弯曲模态的一个节点上,以减小振动传递。
出于解耦的考虑,应根据撞击中心理论将后悬置布置在前悬置点的共轭点上,使前、后悬置点的冲击不至于相互影响,从而达到良好的隔振效果。
Lf ?LR=Jy/m式中:Lf-前悬置点离动力总成质心G的纵向距离;LR-后悬置点离动力总成质心G的纵向距离;JY-动力总成绕Y轴的转动惯量;M-发动机-变速器动力总成的质量。
前、后悬置的刚度还要根据承载量及到质心的距离合理地匹配,达到垂直及俯仰方向上的解耦。
KFV?LF=KRV?LR式中:KFV、KRV-分别为前后悬置的垂直刚度 N/cm。
悬置点如为一点,则尽可能靠近动力总成的最小惯性轴。
如为两点,出于解耦的目的,最好是呈V形布置,一般倾斜角度θ:40°~45°,如图3-16-4所示。
V型布置的悬置系统的弹性中心较低,在设计中通过倾角及位置的调整容易使其弹性中心落在或接近动力总成的主惯性型轴上。
如果假设悬置软垫在两个剪切方向上的刚度近似相等,有下列公式:垂直刚度:KV=2(kpsin2θ+kscos2θ)侧向刚度:KL=2(kpcos2θ+kssin2θ)扭转刚度:Kθ=2B2kpks/(kpcos2θ+kssin2θ)θ-α=arctan(tanθ/k0)式中k0—悬置软垫的压缩刚度与剪切刚度之比,即 k0=kp/ks;A—弹性中心高度;B—软垫支点到半水平距;α—弹性中心到支点的连线的仰角;θ—悬置软垫的安装倾斜角;在实际设计中还有许多其他的布置形式。
如非对称的V形布置、平置、吊挂式等。
4)轿车发动机的悬置布置特点轿车发动机一般采用四缸四冲程发动机.发动机前置、横置、前轮驱动,即FF式布置。
FF驱动方式下驱功反力矩直接作用于动力总成上,使发动机悬置受到较大的力。
因此,为限制发动机及排气系统等的位移,发动机悬置要有必要的刚度。
另一方面,为了减小怠速及中高速区域的振动噪声,要求发动悬置具有具有较好的柔件,达到良好的隔振性能。
作用于发动机悬置上的驱动反力矩,在FR式场合,就是动力总成输出最人转矩时所产生的最大反作用力矩,即倾覆力矩,它等于发动机最大转矩乘变速器最大减速比。
这—倾覆力矩主要由后悬置来承担,力矩方向与发动机旋转方向相反。
因此在后悬置一侧的软垫上将产牛很大的额外压缩负荷。
但在 FF式的车辆上,则为差速器(驱动轴)的输出转矩。
因此FF式的驱动反力矩为阳式的3~4倍。
此外,在主要采用横置发动机的轿车上,差速器的驱动反力矩与发动机转矩波功的激振方向一致,并和车身弯曲的方向相同,因此在横置发动机的悬置布置中,有以下特点:①因降低发动机的扭转刚度应有一定的难度,很难确保对发动机转矩波动激振的隔离。
②因为车身弯曲共振频率接近于发动机扭转振动频率域,且振动方向一致,所以容易发生低速时的振动。
③发动机、变速器及差速器成为—体,所以瞬态变化剧烈。
根据上述特点,在悬置设计上大体分为低速区域的转短波动激振及中高速区的惯性激振两部分。
悬置系统一般采用四点支承,其中一点为辅助点。
在设计上尽时能减小振动的耦合度。
采用非线性、变刚度的悬置软垫,提高低转矩时的隔振效率、减小大转矩时的振动位移。
图3—16—5,给出的前置发动机前轮驱动汽车发动机的悬置布置方案中,利用A、B、C 三个悬置支承发动机装置的质量。