2023年中考数学专题复习:二次函数应用之拱桥问题(提优篇)

合集下载

中考数学总复习《拱桥问题(实际问题与二次函数)》专项提升训练题-附答案

中考数学总复习《拱桥问题(实际问题与二次函数)》专项提升训练题-附答案

中考数学总复习《拱桥问题(实际问题与二次函数)》专项提升训练题-附答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线的AA的距离为8m.最高点C离地面1(1)按如图所示的直角坐标系,求该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m,宽为4m,如果该隧道内设双向行车道,那么这辆货车能否安全通过?2.如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的.正常水PO=),小孔水面宽位时,大孔水面宽度AB为30m,大孔顶点P距水面10m(即10mQD=),建立如图所示的平面直角坐标系.度BC为12m,小孔顶点Q距水面6m(即6m(1)求大孔抛物线的解析式;(2)现有一艘船高度是6m,宽度是18m,这艘船在正常水位时能否安全通过拱桥大孔?并说明理由.(3)当水位上涨4m时,求小孔的水面宽度EF.3.如图是一座拱桥,图2是以左侧桥墩与水面接触点为原点建立的平面直角坐标系,OB=,拱顶A到水面的距离为5m.其抛物线形桥拱的示意图,经测量得水面宽度20m(1)求这条抛物线的表达式;(2)为迎接新年,管理部门在桥下悬挂了3个长为0.4m的灯笼,中间的灯笼正好悬挂在A 处,两边灯笼与最中间灯笼的水平距离为8m,为了安全,要求灯笼的最低处到水面的距离不得小于1m.根据气象局预报,过年期间将会有一定量的降雨,桥下水面会上升0.3m,请通过计算说明,现在的悬挂方式是否安全.4.上杭县紫金中学校园内未名湖中央有一座石拱桥,桥体呈抛物线形状,桥孔呈圆弧型,共同组成一个漂亮的轴对称图形.为进一步了解桥体,小明和小张同学带着一把皮尺和一根一端系着铅块的绳子(铅锤绳)来到石拱桥.首先他们利用皮尺测量了石拱桥点水平宽度(12AB=米),然后来到石拱桥最顶端O处,把铅锤绳的一端放在O处,含铅的一端自然下垂,经过调整让铅块落在直线AB 上的C 点处(此时OC AB ⊥),做好标记测量得到 3.6OC =米,用同样的方法测得0.6OD =米.圆弧与AB 交于M 、N 两点,在N 点处测得2PN =米(此时PN 垂直AB ).根据以上数据,请你帮助他们处理下列问题:(1)根据图形,建立恰当的平面直角坐标系,求出抛物线解析式; (2)根据数据,请判断圆弧MDN 是否为半圆?说明理由; (3)请求出圆弧MDN 所在圆的半径.5.某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为248m ,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求给出了设计方案,现把这个方案中的拱门图形放入平面直角坐标系中,如图所示:抛物线型拱门的跨度12m ON =,拱高4m PE =,其中,点N 在x 轴上PE ON ⊥,OE EN =要在拱门中设置高为3m 的矩形框架,(框架的粗细忽略不计).矩形框架ABCD 的面积记为S ,点A 、D 在抛物线上,边BC 在ON 上,请你根据以上提供的相关信息,解答下列问题:(1)求抛物线的函数表达式;(2)当3mAB=时,求矩形框架ABCD的面积S.6.如图,隧道的截面由抛物线AED和矩形ABCD构成,矩形的长BC为8m,宽AB为2m,以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直坐标系,y 轴也是抛物线的对称轴,顶点E到坐标原点O的距离为6m.(1)求抛物线的解析式..,宽为2.8m,它能从正中间通过该隧道吗?(2)现有一辆货运卡车,高为56mOA=米时,7.图1是一座拱桥,拱桥的拱形呈抛物线形状,在拱桥中,当水面宽度为12水面离桥洞最大距离为4米,如图2,以水平面为x轴,点O为原点建立平面直角坐标系.(1)求该拱桥抛物线的解析式;(2)当河水上涨,水面离桥洞的最大距离为2米时,求拱桥内水面的宽度.AB=,当水位上升8.如图,某市新建的一座抛物线型拱桥,在正常水位时水面宽20m3m时,水面宽10mCD=.(1)按如图所示的直角坐标系,此抛物线的函数表达式为.(2)有一条船以5km/h的速度向此桥径直驶来,当船距离此桥35km时,桥下水位正好在AB处,之后水位每小时上涨0.25m,当水位达到CD处时,将禁止船只通行.如果该船的速度不变继续向此桥行驶35km时,它能否安全通过此桥?9.有一座抛物线型拱桥,在正常水位时(AB所示),桥下水面宽度为20m,拱顶距水面4m.(1)在如图所示的直角坐标系中,求该抛物线的解析式;(2)突遇暴雨,当水面上涨1m时(CD所示),水面宽度减少了多少?(3)雨势还在继续,一满载防汛物资的货船欲通过此桥,已知该船满载货物时浮在水面部分的横截面可近似看成是宽6m,高2m的矩形.那么当水位又上涨了0.5m时,此船是否可以通过,说明理由.10.河上有一座桥孔为抛物线形的拱桥,水面宽为6米时,水面离桥孔顶部4米.如图1,桥孔与水面交于A、B两点,以点A为坐标原点,AB所在水平线为横轴,过原点的铅垂线为纵轴,建立如图所示的平面直角坐标系.(1)请求出此抛物线对应的二次函数表达式;(2)因降暴雨水位上升1.5米,一艘装满货物的小船,露出水面部分的高为0.5m,宽为4.5m(横截面如图2),暴雨后,这艘小船能从这座石拱桥下通过吗?请说明理由.11.某加工厂要加工一种抛物线型钢材构件,如图所示,该抛物线型构件的底部宽度12OM =米,顶点P 到底部OM 的距离为9米.将该抛物线放入平面直角坐标系中,点M 在x 轴上.其内部支架有两个符合要求的设计方案:方案一:“川”字形内部支架(由线段AB PN DC ,,构成),点B N C ,,在OM 上,且OB BN NC CM ===,点A D ,在抛物线上,AB PN DC ,,均垂直于OM ;方案二:“H ”形内部支架(由线段A B '',D C ''和EF 构成),点B ',C '在OM 上,且OB B C C M ''''==,点A ',D 在抛物线上,A B '',D C ''均垂直于OM E F ,,分别是A B '',D C ''的中点.(1)求该抛物线的函数表达式;(2)该加工厂要用某一规格的钢材来加工这种构件,那么哪一个方案的内部支架节省材料?请说明理由.12.如图,一座拱桥的轮廓呈抛物线型,拱高6m ,在高度为10m 的两支柱AC 和BD 之间,还安装了三根立柱,相邻两立柱间的距离均为5m ;(1)建立如图所示的平面直角坐标系,求拱桥抛物线的表达式; (2)求立柱EF 的长;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3.2m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.13.如图,有一条双向隧道,其横断面由抛物线和矩形ABCO 的三边组成,隧道的最大高度为4.9米;10AB =米, 2.4BC =米(1)在如图所示的坐标系中,求抛物线的解析式.(2)若有一辆高为4米,宽为2米装有集装箱的汽车要通过隧道,则汽车靠近隧道的一侧离开隧道壁m 米,才不会碰到隧道的顶部,又不违反交通规则,问m 的取值范围是多少?14.有一个抛物线形的拱形桥洞,当桥洞的拱顶(P 抛物线最高点)离水面的距离为4米时,水面的宽度OA 为12米.现将它的截面图形放在如图所示的直角坐标系中.(1)求这条抛物线的解析式.(2)当洪水泛滥,水面上升,水面的宽度小于5米时,则必须马上采取紧急措施.某日涨水后,观察员测得桥洞的拱顶P 到水面CD 的距离只有1.5米,问:是否要采取紧急措施?并说明理由.15.“卢沟晓月”是著名的北京八景之一,每当黎明斜月西沉,月色倒影水中,更显明媚饺洁.古时乾隆皇帝曾在秋日路过卢沟桥,赋诗“半钩留照三秋淡,一练分波平镜明”于此,并题“卢沟晓月”,立碑于桥头.卢沟桥主桥拱可以近似看作抛物线,桥拱在水面的跨度OB 约为20米,若按如图所示的方式建立平面直角坐标系,则主桥拱所在抛物线可以表示为()211016y x k =-++,求主桥拱最高点A 与其在水中倒影A '之间的距离.参考答案: 1.(1)21832y x =-+ (2)这辆货车能安全通过2.(1)221045y x =-+ (2)这艘船在正常水位时能安全通过拱桥大孔,(3)43m3.(1)2120y x x =-+ (2)安全4.(1)21 3.610y x =-+ (2)圆弧MDN 不是半圆(3)2565.(1)21493y x x =-+; (2)218m .6.(1)2164y x =-+ (2)这辆货运卡车不能从正中间通过该隧道.7.(1)该拱桥抛物线的解析式为()21y x 649=--+; (2)拱桥内水面的宽度62米.8.(1)2125y x =- (2)该船的速度不变继续向此桥行驶35km 时,它能安全通过此桥。

《实际问题与二次函数》(拱桥问题)

《实际问题与二次函数》(拱桥问题)

2023-11-06•引言•拱桥问题建模•数值模拟与优化•实验设计与实施•结论与展望目录01引言背景介绍在过去的几十年中,随着科技的发展和工程材料的进步,拱桥设计得到了更多的创新和改进。

然而,拱桥问题仍然是一个具有挑战性的研究领域,需要进一步探索和研究。

拱桥作为一种传统的桥梁形式,具有悠久的历史和广泛的应用。

研究目的和意义研究拱桥问题的目的是为了更好地了解其力学性能和设计优化。

拱桥作为重要的交通枢纽,其安全性和可靠性对于保障人们的生命财产安全具有重要意义。

通过研究拱桥问题,有助于提高桥梁设计水平,促进交通基础设施的发展。

02拱桥问题建模拱桥结构与受力分析拱桥结构拱桥是一种常见的桥梁结构,其特点是在承受载荷时可以将压力转化为张拉力,因此具有较好的抗压性能。

拱桥的主体结构由拱圈和桥墩组成,拱圈是主要的承载结构,桥墩则起到支撑和固定拱圈的作用。

受力分析在承受载荷时,拱桥的拱圈主要承受压应力,而张拉应力则主要由钢筋承受。

桥面上的车辆等载荷通过桥面传递到拱圈上,进而传递到拱桥的支撑结构上。

根据载荷的大小和分布情况,拱桥的支撑结构需要满足一定的强度和稳定性要求。

二次函数在数学中,二次函数是一种常见的函数形式,一般形式为f(x)=ax^2+bx+c。

二次函数的图像是一个抛物线,其形状受到二次项系数a的影响。

拱桥形状拱桥的形状是一个抛物线形,其跨度和拱高受到二次函数的影响。

通过调整二次函数的系数,可以改变拱桥的形状和跨度。

在实际设计中,通常需要根据桥梁的使用要求和地理条件来确定拱桥的形状和跨度。

二次函数与拱桥形状的关联物理意义在拱桥问题中,二次函数的参数具有明确的物理意义。

例如,二次项系数a代表拱桥的跨度,一次项系数b代表拱桥的高度,常数项c代表拱桥的宽度。

这些参数不仅影响拱桥的形状,还与桥梁的性能和使用要求密切相关。

约束条件在设计和建造拱桥时,需要满足一些约束条件。

例如,桥梁需要满足承载能力、稳定性、耐久性和施工可行性等方面的要求。

2022年中考数学专题复习:二次函数实际问题(拱桥问题)

2022年中考数学专题复习:二次函数实际问题(拱桥问题)

2022年中考数学专题复习:二次函数实际问题(拱桥问题)一、单选题1.如图,一座拱桥的纵向截面是抛物线的一部分,拱桥的跨度为4.9m ,当水面宽4m 时,拱顶离水面2m ,如图,以拱顶为原点,抛物线的对称轴为y 轴,建立平面直角坐标系,抛物线的函数表达式为( )A .22.45y x =-B .22y x =-C .212y x =-D .214y x =- 2.如图,某涵洞的截面是抛物线形,现测得水面宽AB =1.6m ,涵洞顶点O 与水面的距离CO 是2m ,则当水位上升1.5m 时,水面的宽度为( )A .0.4mB .0.6mC .0.8mD .1m 3.如图所示,一座抛物线形的拱桥在正常水位时,水而AB 宽为20米,拱桥的最高点O 到水面AB 的距离为4米.如果此时水位上升3米就达到警戒水位CD ,那么CD 宽为( )A. B .10米 C. D .12米 4.如图所示,一座抛物线形的拱桥在正常水位时,水面AB 宽为20米,拱桥的最高点O 到水面AB 的距离为4米.如果此时水位上升3米就达到警戒水位CD ,那么CD 宽为( )A .B .10米C .米 D .12米 5.如图,一个涵洞的截面边缘是抛物线形.现测得当水面宽 1.6m AB 时,涵洞顶点与水面的距离是2m .这时,离开水面1.5m 处,涵洞的宽DE 为( )ABC .0.4D .0.8 6.有一拱桥洞呈抛物线形,这个桥洞的最大高度是16m ,跨度为40m ,现把它的示意图(如图)放在坐标系中,则抛物线的解析式为( )A .y =125x 2+58xB .y =-125x 2+85x C .y =-58x 2-125x D .y =-125x 2+85x +16 7.如图是抛物线形拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降2.5m ,那么水面宽度为( )m .A .3B .6C .8D .98.如图所示的抛物线形构件为某工业园区的新厂房骨架,为了牢固起见,构件需要每隔0.4m 加设一根不锈钢的支柱,构件的最高点距底部0.5m ,则该抛物线形构件所需不锈钢支柱的总长度为( )A .0.8mB .1.6mC .2mD .2.2m二、填空题 9.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是___________米.10.如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 达到警戒水位时,水面CD 的宽是10m .如果水位以0.25m/h 的速度上涨,那么达到警戒水位后,再过________h 水位达到桥拱最高点O .11.某桥梁的桥洞可视为抛物线,12m AB =,最高点C 距离水面4m ,以AB 所在直线为x 轴(向右为正向),若以A 为原点建立坐标系时,该抛物线的表达式为21493y x x =-+,已知点D 为抛物线上一点,位于点C 右侧且距离水面3m ,若以点D 为原点,以平C 行于AB 的直线为x 轴(向右为正向)建立坐标系时,该物线的表达式为___________.12.赵州桥的桥拱横截面是近似的抛物线形,其示意图如图所示,其解析式为y =﹣125x 2.当水面离桥拱顶的高度DO 为4m 时,水面宽度AB 为____m .。

【重点突围】2023学年九年级数学上册专题提优训练(人教版) 用二次函数解决实际问题(解析版)

【重点突围】2023学年九年级数学上册专题提优训练(人教版)  用二次函数解决实际问题(解析版)

用二次函数解决实际问题考点一 用二次函数解决增长率问题 考点二 用二次函数解决销售问题考点三 用二次函数解决拱桥问题 考点四 用二次函数解决喷水问题考点五 用二次函数解决投球问题 考点六 用二次函数解决图形问题考点七 用二次函数解决图形运动问题考点一 用二次函数解决增长率问题例题:(2022·全国·九年级课时练习)某工厂实行技术改造 产量年均增长率为x 已知2020年产量为1万件 那么2022年的产量y (万件)与x 间的关系式为___________.【答案】2(1)y x =+【解析】【分析】因为产量的平均增长率相同 所以2021的产量为()11+x ⨯ 2022年的产量为()()11+1+x x ⨯⨯ 由此即可知道2022年的产量y (万件)与x 间的关系式.【详解】解:∵2020年产量为1万件 且产量年均增长率为x .∴2021年产量为()11+x ⨯;2022年的产量为()()()211+1+=1x x x ⨯⨯+. ∴2022年的产量y (万件)与x 间的关系式为2(1)y x =+.故答案为:2(1+)y x =【点睛】本题考查二次函数的实际问题 能够根据题意分步列出相关的代数式是解题的关键.【变式训练】1.(2022·江西萍乡·七年级期末)某厂有一种产品现在的年产量是2万件 计划今后两年增加产量 如果每年都比上一年的产量增加x 倍 那么两年后这种产品的产量y (万件)将随计划所定的x 的值而确定 那么y 与x 之间的关系式应表示为________.【答案】2242y x x =++或22(1)y x =+【解析】【分析】根据平均增长问题 可得答案.【详解】解:y 与x 之间的关系应表示为y =2(x +1)2.故答案为:y =2(x +1)2.【点睛】本题考查了函数关系式 利用增长问题获得函数解析式是解题关键 注意增加x 倍是原来的(x +1)倍. 2.(2022·全国·九年级专题练习)为积极响应国家“旧房改造”工程 该市推出《加快推进旧房改造工作的实施方案》推进新型城镇化建设 改善民生 优化城市建设.(1)根据方案该市的旧房改造户数从2020年底的3万户增长到2022年底的4.32万户 求该市这两年旧房改造户数的平均年增长率;(2)该市计划对某小区进行旧房改造 如果计划改造300户 计划投入改造费用平均20000元/户 且计划改造的户数每增加1户 投入改造费平均减少50元/户 求旧房改造申报的最高投入费用是多少元?【答案】(1)20%;(2)6125000(元)【解析】【分析】(1)设平均增长率为x 根据题意列式求解即可;(2)设多改造y 户 最高投入费用为w 元 根据题意列式()()()230020000505050612500w a a a =+⨯-=--+ 然后根据二次函数的性质即可求出最大值.【详解】解:(1)设平均增长率为x 则x >0由题意得:()231+ 4.32x =解得:x =0.2或x =-2.2(舍)答:该市这两年旧房改造户数的平均年增长率为20%;(2)设多改造a 户 最高投入费用为w 元由题意得:()()()230020000505050612500w a a a =+⨯-=--+∵a =-50 抛物线开口向下∴当a -50=0 即a =50时 w 最大 此时w =612500元答:旧房改造申报的最高投入费用为612500元.【点睛】本题考查二次函数的实际应用 解题的关键是正确读懂题意列出式子 然后根据二次函数的性质进行求解.考点二 用二次函数解决销售问题例题:(2021·宁夏·吴忠市利通区扁担沟中心学校九年级期中)一商店销售某种商品 平均每天可售出20件 每件盈利40元.为了扩大销售、增加盈利 该店采取了降价措施 在每件盈利不少于25元的前提下 经过一段时间销售 发现销售单价每降低1元 平均每天可多售出2件.(1)若降价3元 则平均每天销售数量为件:(2)当每件商品降价多少元时 该商店每天销售利润最大?【答案】(1)26(2)当每件商品降价15元时 该商店每天销售利润最大.【解析】【分析】(1)由题意可直接进行求解;(2)设每件商品降价x 元 每天销售利润为w 元 由题意可列出函数关系式 进而问题可求解.(1)解:由题意得:平均每天销售数量为202326+⨯=(件);故答案为26;(2)解:设每件商品降价x 元 每天销售利润为w 元 由题意得:()()()22402022608002151250w x x x x x =-+=-++=--+∵每件盈利不少于25元∴4025x -≥ 解得:15x ≤∵-2<0 对称轴为直线15x =∴当15x 时w有最大值答:当每件商品降价15元时该商店每天销售利润最大.【点睛】本题主要考查二次函数的应用熟练掌握二次函数的应用是解题的关键.【变式训练】1.(2021·广东·陆丰市甲东镇钟山中学九年级期中)某商场要经营一种新上市的文具进价为20元/件试营销阶段发现:当销售单价是25元/件时每天的销售量为250件销售单价每上涨1元每天的销售量就减少10件.求销售单价为多少元时该文具每天的销售利润最大;最大利润为多少元?【答案】x=35时w最大值2250元【解析】【分析】设每天所得的销售利润w(元)与销售单价x(元)利用每件利润×销量=总利润进而得出w与x的函数关系式;再利用配方法求出二次函数最值进而得出答案.【详解】解:设每天所得的销售利润w(元)与销售单价x(元)由题意可得:w=(x﹣20)[250﹣10(x﹣25)]=﹣10(x﹣20)(x﹣50)=﹣10x2+700x﹣10000;∵w=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250∴当x=35时w取到最大值2250即销售单价为35元时每天销售利润最大最大利润为2250元.【点睛】此题主要考查了二次函数的应用根据销量与售价之间的关系得出函数关系式是解题关键.2.(2022·山东德州·九年级期末)某商厦灯具部投资销售一种进价为每件20元的护眼台灯销售过程中发现每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500 在销售过程中销售单价不低于成本价而每件的利润不高于成本价的60%.(1)设每月获得利润为w(元)求每月获得利润w(元)与销售单价x(元)之间的函数关系式并直接写出自变量x的取值范围.(2)如果想要每月获得的利润为2000元那么每月的单价定为多少元?(3)当销售单价定为多少元时 每月可获得最大利润?每月的最大利润是多少?【答案】(1)w =-10x 2+700x -10000(20≤x ≤32)(2)如果张明想要每月获得的利润为2000元 张明每月的单价定为30元(3)当销售单价定为32元时 每月可获得最大利润 最大利润是2160元【解析】【分析】(1)由题意得 每月销售量与销售单价之间的关系可近似看作一次函数 利润=(定价-进价)×销售量 从而列出关系式;(2)把2000元代入上述二次函数关系式 根据函数性质 确定单价;(3)首先确定二次函数的对称轴 然后根据其增减性确定最大利润即可.(1)解:由题意得:w =(x -20)•y=(x -20)•(-10x +500)=-10x 2+700x -10000即w =-10x 2+700x -10000(20≤x ≤32);(2)由题意可知:-10x 2+700x -10000=2000解这个方程得:x 1=30 x 2=40.由(1)得 20≤x ≤32∴如果张明想要每月获得的利润为2000元 张明每月的单价定为30元;(3)对于函数w =-10x 2+700x -10000的图象的对称轴是直线x =()700210-⨯-=35.又∵a =-10<0 抛物线开口向下.∴当20≤x ≤32时 w 随着x 的增大而增大∴当x =32时 w =2160答:当销售单价定为32元时 每月可获得最大利润 最大利润是2160元.【点睛】此题考查了二次函数的应用 还考查抛物线的性质 另外将实际问题转化为求函数最值问题 从而来解决实际问题.考点三 用二次函数解决拱桥问题例题:(2022·四川广安·中考真题)如图是抛物线形拱桥 当拱顶离水面2米时 水面宽6米 水面下降________米 水面宽8米.【答案】149##519【解析】【分析】根据已知得出直角坐标系 通过代入A 点坐标(-3 0) 求出二次函数解析式 再根据把x =4代入抛物线解析式得出下降高度 即可得出答案.【详解】解:建立平面直角坐标系 设横轴x 通过AB 纵轴y 通过AB 中点O 且通过C 点 则通过画图可得知O 为原点 由题意可得:AO =OB =3米 C 坐标为(0 2)通过以上条件可设顶点式y =ax 2+2 把点A 点坐标(-3 0)代入得∴920a +=∴29a =- ∴抛物线解析式为:2229y x =-+; 当水面下降 水面宽为8米时 有把4x =代入解析式 得2221442162999y =-⨯+=-⨯+=-; ∴水面下降149米; 故答案为:149; 【点睛】 此题主要考查了二次函数的应用 根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.【变式训练】1.(2022·山东德州·九年级期末)如图是抛物线型拱桥 当拱顶高距离水面2m 时 水面宽4m 如果水面上升1.5m 则水面宽度为________.【答案】2m【解析】【分析】根据题意建立合适的平面直角坐标系 设出抛物线的解析式 从而可以求得水面的宽度增加了多少 本题得以解决.【详解】解:如图建立平面直角坐标系设抛物线的解析式为y =ax 2由已知可得 点(2 -2)在此抛物线上则-2=a ×22 解得12a =-∴212y x =- 当y =-0.5时 210.52x解得x =±1 此时水面的宽度为2m故答案为:2m .【点睛】本题考查二次函数的应用 解题的关键是明确题意 找出所求问题需要的条件 建立合适的平面直角坐标系.2.(2022·甘肃定西·模拟预测)有一个抛物线的拱形桥洞 桥洞离水面的最大高度为4m 跨度为10m 如图所示 把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)如图 在对称轴右边1m 处 桥洞离水面的高是多少?【答案】(1)()245425y x =--+ (2)在对称轴右边1m 处 桥洞离水面的高是9625m 【解析】【分析】(1)根据题意设抛物线解析式为顶点式 然后根据抛物线过点()0,0 代入即可求解;(2)根据对称轴为:5x = 得出对称轴右边1m 处为:6x = 代入即可求解.(1)解:由题意可得:抛物线顶点坐标为()5,4设抛物线解析式为:()254y a x =-+∵抛物线过点()0,0∴()20054a =-+ 解得:425a =- ∴这条抛物线所对应的函数关系式为:()245425y x =--+. (2)解:对称轴为:5x = 则对称轴右边1m 处为:6x =将6x =代入()245425y x =--+ 可得:()2465425y =--+ 解得:9625y = 答:在对称轴右边1m 处 桥洞离水面的高是9625m . 【点睛】本题考查了二次函数的应用 解答此题的关键是明确题意 求出抛物线的解析式.考点四 用二次函数解决喷水问题例题:(2022·河南·中考真题)小红看到一处喷水景观 喷出的水柱呈抛物线形状 她对此展开研究:测得喷水头P 距地面0.7m 水柱在距喷水头P 水平距离5m 处达到最高 最高点距地面3.2m ;建立如图所示的平面直角坐标系 并设抛物线的表达式为()2y a x h k =-+ 其中x (m )是水柱距喷水头的水平距离 y (m )是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方 且距喷水头P 水平距离3m 身高1.6m 的小红在水柱下方走动 当她的头顶恰好接触到水柱时 求她与爸爸的水平距离.【答案】(1)()20.15 3.2y x =--+(2)2或6m【解析】【分析】(1)根据顶点()5,3.2 设抛物线的表达式为()25 3.2y a x =-+ 将点()0,0.7P 代入即可求解; (2)将 1.6y =代入(1)的解析式 求得x 的值 进而求与点()3,0的距离即可求解.(1)解:根据题意可知抛物线的顶点为()5,3.2设抛物线的解析式为()25 3.2y a x =-+将点()0,0.7代入 得0.725 3.2a =+解得0.1a =-∴抛物线的解析式为()20.15 3.2y x =--+ (2)由()20.15 3.2y x =--+ 令 1.6y =得()21.60.15 3.2x =--+解得121,9x x ==爸爸站在水柱正下方 且距喷水头P 水平距离3m∴当她的头顶恰好接触到水柱时 她与爸爸的水平距离为312-=(m ) 或936-=(m ). 【点睛】本题考查了二次函数的实际应用 掌握顶点式求二次函数解析式是解题的关键.【变式训练】1.(2022·四川南充·中考真题)如图 水池中心点O 处竖直安装一水管 水管喷头喷出抛物线形水柱 喷头上下移动时 抛物线形水柱随之竖直上下平移 水柱落点与点O 在同一水平面.安装师傅调试发现 喷头高2.5m 时 水柱落点距O 点2.5m ;喷头高4m 时 水柱落点距O 点3m .那么喷头高_______________m 时 水柱落点距O 点4m .【答案】8【解析】【分析】由题意可知 在调整喷头高度的过程中 水柱的形状不发生变化 则当喷头高2.5m 时 可设y =ax 2+bx +2.5 将(2.5 0)代入解析式得出2.5a +b +1=0;喷头高4m 时 可设y =ax 2+bx +4 将(3 0)代入解析式得9a +3b +4=0 联立可求出a 和b 的值 设喷头高为h 时 水柱落点距O 点4m 则此时的解析式为y =ax 2+bx +h 将(4 0)代入可求出h .【详解】解:由题意可知 在调整喷头高度的过程中 水柱的形状不发生变化当喷头高2.5m 时 可设y =ax 2+bx +2.5将(2.5 0)代入解析式得出2.5a +b +1=0①喷头高4m 时 可设y =ax 2+bx +4将(3 0)代入解析式得9a +3b +4=0② 联立可求出23a =- 23b = 设喷头高为h 时 水柱落点距O 点4m∴此时的解析式为22233y x x h =-++ 将(4 0)代入可得22244033h -⨯+⨯+= 解得h =8.故答案为:8.【点睛】本题考查了二次函数在实际生活中的运用 重点是二次函数解析式的求法 直接利用二次函数的平移性质是解题关键.2.(2022·浙江台州·中考真题)如图1 灌溉车沿着平行于绿化带底部边线l的方向行驶为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2 可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG其水平宽度3mDE=竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到上边缘抛物线最高点A离喷水口的水平距离为2m高出喷水口0.5m灌溉车到l的距离OD为d(单位:m).(1)若 1.5h=0.5mEF=;①求上边缘抛物线的函数解析式并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带求d的取值范围;(2)若1mEF=.要使灌溉车行驶时喷出的水能浇灌到整个绿化带请直接写出h的最小值.【答案】(1)①6m;②(2,0);③2231d≤≤(2)65 32【解析】【分析】(1)①根据顶点式求上边缘二次函数解析式即可;②设根据对称性求出平移规则再根据平移规则由C点求出B点坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带则上边缘抛物线至少要经过F点下边缘抛物线OB d≤计算即可;(2)当喷水口高度最低且恰好能浇灌到整个绿化带时点D F恰好分别在两条抛物线上设出D、F 坐标计算即可.(1)(1)①如图1 由题意得(2,2)A 是上边缘抛物线的顶点设2(2)2y a x =-+.又∵抛物线经过点(0,1)5.∴1.542a =+∴18a =-. ∴上边缘抛物线的函数解析式为21(2)28y x =--+. 当0y =时 21(2)208x --+= ∴16x = 22x =-(舍去).∴喷出水的最大射程OC 为6m .图1②∵对称轴为直线2x =∴点(0,1)5.的对称点的坐标为(4,1.5). ∴下边缘抛物线是由上边缘抛物线向左平移4m 得到的即点B 是由点C 向左平移4m 得到 则点B 的坐标为(2,0).③如图2 先看上边缘抛物线∵0.5EF =∴点F 的纵坐标为0.5.抛物线恰好经过点F 时21(2)20.58x --+=. 解得223x =±∵0x >∴223x =+当0x >时 y 随着x 的增大而减小∴当26x ≤≤时 要使0.5y ≥则223x ≤+∵当02x ≤<时 y 随x 的增大而增大 且0x =时 1.50.5y =>∴当06x ≤≤时 要使0.5y ≥ 则023x ≤≤+∵3DE = 灌溉车喷出的水要浇灌到整个绿化带∴d 的最大值为(23)331+-=.再看下边缘抛物线 喷出的水能浇灌到绿化带底部的条件是OB d ≤∴d 的最小值为2.综上所述 d 的取值范围是231d ≤≤.(2)h 的最小值为6532. 由题意得(2,0.5)A h +是上边缘抛物线的顶点∴设上边缘抛物线解析式为2(2)0.5y a x h =-++.∵上边缘抛物线过出水口(0 h )∴40.5y a h h =++= 解得18a =- ∴上边缘抛物线解析式为21(2)0.58y x h =--++ ∵对称轴为直线2x =∴点(0,)h 的对称点的坐标为(4,)h .∴下边缘抛物线是由上边缘抛物线向左平移4m 得到的∴下边缘抛物线解析式为21(2)0.58y x h =-+++. 当喷水口高度最低 且恰好能浇灌到整个绿化带时 点D F 恰好分别在两条抛物线上∵DE =3∴设点(),0D m ()3,0E m + 213,(32)0.58F m m h ⎛⎫+-+-++ ⎪⎝⎭∵D 在下边缘抛物线上∴21(2)0.508m h -+++= ∵EF =1∴21(32)0.518m h -+-++= ∴21(32)0.58m h -+-++-21(2)0.518m h ⎡⎤-+++=⎢⎥⎣⎦解得 2.5m =代入21(2)0.508m h -+++= 得6532h =. 所以h 的最小值为6532. 【点睛】 本题考查二次函数的实际应用中的喷水问题 构造二次函数模型并把实际问题中的数据转换成二次函数上的坐标是解题的关键.考点五 用二次函数解决投球问题例题:(2022·上海市张江集团中学八年级期末)如图 以地面为x 轴 一名男生推铅球 铅球行进高度y (单位:米)与水平距离x (单位:米)之间的关系是21251233y x x =-++.则他将铅球推出的距离是___米.【答案】10【解析】【分析】成绩就是当高度y =0时x 的值 所以解方程即可求解本题. 【详解】 解:当y =0时 212501233x x -++= 解得:x 1=10 x 2=-2(不合题意 舍去)所以推铅球的距离是10米;故答案为:10.【点睛】本题主要考查二次函数的应用 把函数问题转化为方程问题来解 渗透了函数与方程相结合的解题思想.【变式训练】 1.(2022·重庆实验外国语学校八年级期末)小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为21(3)9y x k =--+ 其中y 是实心球飞行的高度 x 是实心球飞行的水平距离.已知该同学出手点A 的坐标为16(0,)9则实心球飞行的水平距离OB 的长度为( )A .7mB .7.5mC .8mD .8.5m【答案】C【解析】【分析】 根据题意待定系数法求解析式 再令0y = 即可求解.【详解】解:∵实心球运动的抛物线的解析式为21(3)9y x k =--+ 点A 的坐标为16(0,)9 ∴2161399k =-⨯+ 解得259k =∴2125(3)99y x =--+令0y = 2125(3)099x --+= 即()2325x -=解得12x =-(舍去)2,8x =故选:C .【点睛】本题考查了二次函数的应用 待定系数法求解析式 求二次函数与坐标轴的交点 掌握二次函数的性质是解题的关键.2.(2022·贵州安顺·九年级阶段练习)如图是小明站在点O 处长抛篮球的路线示意图 球在点A 处离手 且1m OA =.第一次在点D 处落地 然后弹起在点E 处落地 篮球在距O 点6m 的点B 处正上方达到最高点 最高点C 距地面的高度4m BC = 点E 到篮球框正下方的距离2m EF = 篮球框的垂直高度为3m .据试验 两次划出的抛物线形状相同 但第二次的最大高度为第一次的12 以小明站立处点O 为原点 建立如图所示的平面直角坐标系.(1)求抛物线ACD 的函数解析式;(2)求篮球第二次的落地点E 到点O 的距离.(结果保留整数)(3)若小明想一次投中篮球框 他应该向前走多少米?(结果精确到0.1m )(参考数据:36 2.45≈)【答案】(1)()()2164043612y x x =--+≤≤ (2)篮球第二次的落地点E 到点O 的距离为23m ;(3)小明想一次投中篮球框 他应该向前走15.3m .【解析】【分析】(1)设抛物线ACD 的函数解析式为()()20y a x k h a =-+≠ 将()()0164A C ,、,代入即可求解; (2)将()216412y x =--+向下平移两个单位得 ()216212y x =--+ 令0y =得12626626x x =+=-,(3)令3y =得 ()2136412x =--+ 解得:12623623x x =+=-, 由()43468m OF OE EF =+=即可求解.(1)解:由题意知 ()()0164A C ,、, 设抛物线ACD 的函数解析式为()()20y a x k h a =-+≠; 将()()0164A C ,、,代入表达式得 ()21064a =-+ 解得:112a =-; ∴()216412y x =--+; 令0y =得 ()4360D ,∴抛物线ACD 的函数解析式为()()2164043612y x x =--+≤≤; (2)由题意 将()216412y x =--+向下平移两个单位得 ()216212y x =--+ 令0y =得 ()2106212x =--+ 解得:12626626x x =+=-,∴(4366264326--= ∴432662643466+= ∴()434660E ,∴()4346623m OE =≈(3)令3y =得 ()2136412x =--+ 解得:12623623x x =+=-,()43468m OF OE EF =+=(()434686234623215.3m -+=≈∴小明想一次投中篮球框 他应该向前走15.3m .【点睛】本题主要考查二次函数的图形及性质正确解读题意并结合二次函数图像及性质进行解答是解题的关键.考点六用二次函数解决图形问题例题:(2021·江苏镇江·九年级期中)如图利用一面墙(墙长26米)用总长度49米的栅栏(图中实线部分)围成一个矩形围栏ABCD且中间共留两个1米的小门设栅栏BC长为x米.(1)AB=米(用含x的代数式表示);(2)若矩形围栏ABCD面积为210平方米求栅栏BC的长;(3)能围成比210平方米更大的矩形围栏ABCD吗?如果能请求出最大面积;如果不能请说明理由.【答案】(1)(51﹣3x)(2)10米(3)能最大面积为867 4【解析】【分析】(1)设栅栏BC长为x米根据栅栏的全长结合中间共留2个1米的小门即可用含x的代数式表示出AB 的长;(2)根据矩形围栏ABCD面积为210平方米即可得出关于x的一元二次方程解之取其较大值即可得出结论;(3)根据矩形围栏ABCD面积为S=(51-3x)x=-3(x-172)2+8674,利用二次函数最值即可求解.(1)解:设栅栏BC长为x米∵栅栏的全长为49米且中间共留两个1米的小门∴AB=49+2﹣3x=51﹣3x(米)故答案为:(51﹣3x);(2)解:依题意得:(51﹣3x)x=210整理得:x2﹣17x+70=0解得:x1=7 x2=10.当x=7时AB=51﹣3x=30>26 不合题意舍去当x=10时AB=51﹣3x=21 符合题意答:栅栏BC的长为10米;(3)解:能S=(51-3x)x=-3(x-172)2+8674,∵-3<0∴当x=172时S有最大值最大值为8674即最大面积为8674∵8674>210∴能围成比210平方米更大的矩形围栏ABCD.【点睛】本题考查了一元二次方程的应用、二次函数的应用列代数式以及根的判别式解题的关键是:(1)根据各数量之间的关系用含x的代数式表示出AB的长;(2)找准等量关系正确列出一元二次方程;(3)正确列出面积与BC的二次函数关系.【变式训练】1.(2021·宁夏·吴忠市利通区扁担沟中心学校九年级期中)如图利用一面墙(墙长10米)用20米的篱笆国成一个矩形场地.设垂直于墙的一边为x米.矩形场地的面积为s平方米.(1)求s与x的函数关系式并求出x的取值范围;(2)若矩形场地的面枳最大应该如何设计长与宽.【答案】(1)2220(510)s x x x=-+<.(2)当矩形场地长为10米 宽为5米时 矩形的面积最大.【解析】【分析】(1)由AD x = 可得出202AB x =- 由墙长10米 可得出关于x 的一元一次不等式组 解之即可得出x 的取值范围 再利用矩形的面积公式即可得出s 关于x 的函数关系式;(2)根据(1)可利用二次函数的性质可进行求解. (1)解:AD BC x ==202AB x ∴=-.又墙长10米∴20210220x x -⎧⎨<⎩ 510x ∴<.2(202)220(510)s x x x x x ∴=-=-+<.(2)解:由(1)可知:()222202550s x x x =-+=--+∴当5x =时 矩形的场地面积最大 最大值为50;答:当矩形场地长为10米 宽为5米时 矩形的面积最大.【点睛】本题主要考查二次函数的应用 熟练掌握二次函数的图象与性质是解题的关键.2.(2022·山东烟台·九年级期中)某城门的截面由一段抛物线和一个正方形(OMNE 为正方形)的三条边围成 已知城门宽度为4米 最高处距地面6米.如图1所示 现以O 点为原点 OM 所在的直线为x 轴 OE 所在的直线为y 轴建立直角坐标系.(1)求上半部分抛物线的函数表达式 并写出其自变量的取值范围;(2)有一辆宽3米 高4.5米的消防车需要通过该城门 请问该消防车能否正常进入?(3)为营造节日气氛 需要临时搭建一个矩形“装饰门”ABCD 该“装饰门”关于抛物线对称轴对称 如图2所示 其中AB AD CD 为三根承重钢支架 A 、D 在抛物线上 B C 在地面上 已知钢支架每米70元 问搭建这样一个矩形“装饰门” 仅钢支架一项 最多需要花费多少元?【答案】(1)2124(04)2y x x x =-++ (2)能正常进入 理由见解析(3)910元【解析】【分析】(1)根据所建坐标系知顶点和与y 轴交点E 的坐标 可设解析式为顶点式 进行求解 由城门宽度为4米知x 的取值范围是0≤x ≤4;(2)根据对称性当车宽3米时 x =12 求此时对应的纵坐标的值 与车高4.5米进行比较得出结论; (3)求三段和的最大值须先列式表示三段的和 再运用性质求最大值 可设点B 的坐标 表示三段的长度从而得出表达式.(1)解:由题意知 抛物线的顶点(2,6)∴设抛物线的表达式为2(2)6y a x =-+ 抛物线过点(0,4)E446a ∴=+12a ∴=- ∴抛物线的表达式为21(2)62y x =--+ 即2124(04)2y x x x =-++; (2)解:由题意知 当消防车走最中间时 进入的可能性最大 即当12x =时 211124 4.875 4.5222y ⎛⎫=-⨯+⨯+=> ⎪⎝⎭∴消防车能正常进入;(3)解:设B 点的横坐标为m AB AD CD ++的长度为l由题意知42BC m =-即42AD m =- 21242CD AB m m ==-++221224(42)2122l m m m m m ⎛⎫∴=⨯-+++-=-++ ⎪⎝⎭当212(1)m =-=⨯-时 l 最大 l 最大21211213=-+⨯+= ∴费用为1370910⨯=(元)答:仅钢支架一项 最多需要花费910元.【点睛】本题考查了二次函数的性质在实际生活中的应用.正确地求得函数解析式是解题的关键.考点七 用二次函数解决图形运动问题例题:(2022·全国·九年级课时练习)如图1 在Rt ABC △中 90ABC ∠=︒ 已知点P 在直角边AB 上 以1cm/s 的速度从点A 向点B 运动 点Q 在直角边BC 上 以2cm/s 的速度从点B 向点C 运动.若点P Q 同时出发 当点P 到达点B 时 点Q 恰好到达点C 处.图2是BPQ 的面积()2cm y 与点P 的运动时间()s t 之间的函数关系图像(点M 为图像的最高点) 根据相关信息 计算线段AC 的长为( )A .35cmB .45cmC .55cmD .65cm【答案】B【解析】【分析】根据题意 得出()cm PB a t =- 2cm BQ t = 在Rt PBQ ∆中 根据面积公式得到BPQ 的面积()2cm y 与点P 的运动时间()s t 之间的函数关系2y t at =-+ 利用顶点式2224a a y t ⎛⎫=--+ ⎪⎝⎭得出当2a t =时 y 有最大值为244a = 从而求出P Q 、运动时间是4t s = 求出4cm,8cm AB BC == 根据勾股定理即可得出结论. 【详解】解:设运动时间()s t cm AB a = 则cm AP t = 2cm BQ t =∴在Rt PBQ ∆中 90ABC ∠=︒ ()cm PB a t =- 2cm BQ t = 则()2221122224a a y PB BQ t a t t at t ⎛⎫=⋅=⨯-=-+=--+ ⎪⎝⎭ ∴当2a t =时 y 有最大值为244a = 解得4a = 即2t =根据BPQ 的面积()2cm y 与点P 的运动时间()s t 之间的函数关系可知抛物线与x 轴交于()0,0和()4,0两点 即P Q 、运动时间是4t s =4cm,8cm AB BC ∴==在Rt ABC △中 90ABC ∠=︒ 4cm,8cm AB BC == 根据勾股定理可得22224845cm AC AB BC +=+故选:B .【点睛】本题考查了几何图形中动点形成的图形面积的函数问题 涉及到三角形面积公式的运用、勾股定理、二次函数的图像与性质等知识点 看懂题意 将几何图形中点的运动情况与函数图像对应起来得到方程是解决问题的关键.【变式训练】1.(2022·宁夏·银川唐徕回民中学二模)如图 在矩形ABCD 中 BC >CD BC 、CD 分别是一元二次方程x 2-7x +12=0的两个根 连接BD 并过点C 作CN ⊥BD 垂足为N 点P 从B 出发 以每秒1个单位的速度沿BD 方向匀速运动到D 为止;点M 沿线段DA 以每秒1个单位的速度由点D 向点A 匀速运动 到点A 为止 点P 与点M 同时出发 设运动时间为t 秒(t >0).(1)求线段CN 的长;(2)在整个运动过程中 当t 为何值时△PMN 的面积取得最大值 最大值是多少?【答案】(1)125(2)当4t =时 2425S =最大 【解析】【分析】(1)首先解一元二次方程得到BC =4 CD =2 然后利用等积法求出CN ;(2)分0<t ≤165 和165<t ≤4两种情况列出函数解析式 利用二次函数的性质求出最大值. (1)解:27120x x -+=解得13x = 24x =∵BC CD >∴4BC = 3CD =∵四边形ABCD 是矩形 4BC = 3CD =∴5BD =∴113422BD CN ⋅=⨯⨯ ∴125CN =; (2) 由题可知 165BN =①当1605t <≤时 过点M 作MH ⊥BD 垂足为H设△PMN 的面积为S 则221116331638962255105105125S PN MH t t t t t ⎛⎫⎛⎫⎛⎫=⋅=-⋅=--=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∵816055<≤ ∴当85t =时96125S =最大 ②当1645t ≤<时 111632255S PN MH t t ⎛⎫=⋅=-⋅ ⎪⎝⎭ 此时 S 随t 的增大而增大∴当4t =时 2425S =最大 综合①②知 当t =4时 △PMN 的面积取得最大值 最大值是2425 . 【点睛】本题考查利用二次函数解决面积最大问题 解决问题的关键是根据t 值分情况列出函数解析式. 2.(2021·北京·九年级期中)如图 Rt ABC ∆中 90C ∠=︒ 6AC = 8BC =.动点P Q 分别从A C 两点同时出发 点P 沿边AC 向C 以每秒3个单位长度的速度运动 点Q 沿边BC 向B 以每秒4个单位长度的速度运动 当P Q 到达终点C B 时 运动停止.设运动时间为()t s .(1)①当运动停止时 t 的值为 .②设P C 之间的距离为y 则y 与t 满足 (选填“正比例函数关系” “一次函数关系” “二次函数关系” ).(2)设PCQ ∆的面积为S。

2023年中考数学复习难点突破专题18 二次函数与实际问题:拱桥问题(含答案)

2023年中考数学复习难点突破专题18 二次函数与实际问题:拱桥问题(含答案)

专题18 二次函数与实际问题:拱桥问题一、单选题1.某涵洞的截面是抛物线形状,如图所示的平面直角坐标系中,抛物线对应的函数解析式为214y x =-,当涵洞水面宽AB 为16m 时,涵洞顶点O 至水面的距离为( )A .6m -B .12mC .16mD .24m2.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m .若水面再下降1.5m ,水面宽度为( )m .A .4.5B .C .D .3.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为( )A.B .C .6 D .4.我校门口道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P )以及点A ,点B 落上同一条抛物线上,若第1根栏杆涂色部分(EF )与第2根栏杆未涂色部分(PQ )长度相等,则EF 的长度是( )A .13米B .12米C .25米D .35米 5.如图所示的抛物线形构件为某工业园区的新厂房骨架,为了牢固起见,构件需要每隔0.4m 加设一根不锈钢的支柱,构件的最高点距底部0.5m ,则该抛物线形构件所需不锈钢支柱的总长度为( )A .0.8mB .1.6mC .2mD .2.2m6.有一拱桥洞呈抛物线形,这个桥洞的最大高度是16m ,跨度为40m ,现把它的示意图(如图)放在坐标系中,则抛物线的解析式为( )A .215252y x x =+B .18255x y x x =-+C .251825y x x =--D .21816255y x x =-++ 7.图(1)是一个横断面为抛物线形状的拱桥,当水面在L 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽为4m .如果水面宽度为6m ,则水面下降 ( )A .3.5 mB .3mC .2.5mD .2 m8.图2是图1中拱形大桥的示意图,拱桥与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,拱桥可以近似看成抛物线y =-1? 400?(x-80)2 + 16,拱桥与桥墩AC 的交点C 恰好在水面,有AC ⊥x 轴.若OA = 10米,则桥面离水面的高度AC 为( )A .16 9? 40?米B .1?7? 4?米C .16 7? 40?米D .1?5? 4?米 二、解答题9.如图,某隧道的截面由抛物线和长方形构成,长方形的长OA 为12m ,宽OB 为4m ,隧道顶端D 到路面的距离为10m ,建立如图所示的直角坐标系.(1)求该抛物线的解析式;(2)一辆货运汽车载一长方体集装箱,集装箱最高处与地面距离为6m ,宽为4m ,隧道内设双向行车道,问这辆货车能否安全通过?10.某工厂大门是抛物线形水泥建筑,大门地面宽AB为4m,顶部C距离地面的高度为4.4m,现有一辆货车,其装货宽度为2.4m,高度2.8米,请通过计算说明该货车能否通过此大门?11.如图,①为抛物线形拱桥,在正常水位下测得主拱宽24m,最高点离水面8m,以水平线AB为x 轴,AB的中点为原点建立直角坐标系(如图②).(1)求抛物线的解析式;(2)桥边有一浮在水面部分高4m,最宽处为18m的何鱼餐船,试探索此船在正常水位时能否开到桥下,并说明理由.12.如图,有一座抛物线形拱桥,桥下面在正常水位AB时宽20m,水位上升4m就达到警戒线CD,这时水面宽度为12m.(1)建立适当的直角坐标系,求抛物线的函数解析式;(2)若洪水到来时水位以0.1m/h的速度上升,从正常水位开始,再过几小时就能到达桥面?13.如图1,单孔拱桥的形状近似抛物线形,如图2建立所示的平面直角坐标系,在正常水位时,水面宽度AB为12,m拱桥的最高点C到水面AB的距离为6m.(1)求抛物线的解析式;(2)因为上游水库泄洪,水面宽度变为10m,求水面上涨的高度﹒14.某公园草坪的防护栏形状是抛物线形,为了牢固起见,每段防护栏需要间距0.4m加设一根不锈钢的A B的长度.支柱,防护栏最高点距离底部0.5m(如图),求其中防护支柱1115.有一个抛物线形的单向道路隧道,隧道离地面的最大高度为4m,跨度为10m,把它放在图示平面直角坐标系中.(1)求抛物线所对应的函数表达式;(2)通过计算说明,现有一辆宽4m,高3.2m的厢式货车能否安全通过此隧道?16.图中是抛物线形拱桥,点P处有一照明灯,水面OA宽4 m,以O为原点,OA所在直线为x轴建立平面直角坐标系,已知点P的坐标为(3,32).(1)点P与水面的距离是________m;(2)求这条抛物线的表达式;(3)当水面上升1 m后,水面的宽变为多少?17.如图所示的是一座拱桥,桥洞的拱形是抛物线的形状,当水面宽AB为12米时,桥洞顶部离水面4米,若水面上涨1米,求此时水面的宽.18.河上有一座桥孔为抛物线形的拱桥,水面宽6m时,水面离桥孔顶部3m.因降暴雨水位上升lm.(1)如图①,若以桥孔的最高点为原点,建立平面直角坐标系,求抛物线的解析式;(2)一艘装满物资的小船,露出水面的高为0.5m、宽为4m(横断面如图②).暴雨后这艘船能从这座拱桥下通过吗?请说明理由.19.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.20.有一个抛物线形的拱形桥洞,桥面离水面的距离为5.6米,桥洞离水面的最大高度为4m,跨度为10m,如图所示,把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式.(2)如图,在对称轴右边1m处,桥洞离桥面的高是多少?21.如图是美国开发西部的标志性建筑如果把拱门看作—条抛物线,其拱高和底宽都是192米,请建立适当的平面直角坐标系,并求出该抛物线的解析式.三、填空题22.如图,平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y=﹣13x2,桥下的水面宽AB为6m,当水位上涨2m时,水面宽CD为_____m(结果保留根号).23.如图,有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m.把它的截面边缘的图形放在如图所示的直角坐标系中,在对称轴右边1m处,桥洞离水面的高是______米.24.廊桥是我国古老的文化遗产,如图是某座抛物线形的廊桥示意图.已知抛物线的函数表达式为211020y x =-+,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是__________米.25.图1是苍南县中心湖公园里的一座彩虹桥两条抛物线型钢梁在桥面上的跨度分别为50AB =米和40CD =米(如图2所示),x 轴表示桥面,10BC =米.若两抛物线交y 轴于同一点,且它们的形状相同,则OB OC的值为__________.26.如图,一个拱形桥架可以近似看作是由等腰梯形ABD 3D 1和其上方的抛物线D 1OD 3组成.若建立如图所示的直角坐标系,跨度AB =44米,∠A =45°,AC 1=4米,点D 2的坐标为(-14,-1.96),则桥架的拱高OH =________米.27.如图是抛物线拱桥,当拱顶离水面2米时,水面宽度4米,水面宽度增加2米时,水位下降_________米28.单行隧道的截面是抛物线形,且抛物线的解析式为21 3.258y x =-+,一辆车高3米,宽4米,该车________(填“能”或“不能”)通过该隧道. 29.如图,是一座拱形桥的竖直截面图,水面与截面交于AB 两点,拱顶C 到AB 的距离为4m ,AB=12m ,DE 为拱桥底部的两点,且DE ∥AB ,点E 到AB 的距离为5cm ,则DE 的长度为______________ m .30.一座石拱桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系为2116y x =-,当水面的宽度AB 为16米时,水面离桥拱顶的高度OC 为________m .31.如图所示,桥拱是抛物线形,其函数解析式是2y x =-,当水位线在AB 位置时,水面宽为12米,这时水面离桥顶的高度h 是________米.32.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m,那么木船的高不得超过______m.专题18 二次函数与实际问题:拱桥问题一、单选题1.某涵洞的截面是抛物线形状,如图所示的平面直角坐标系中,抛物线对应的函数解析式为214y x =-,当涵洞水面宽AB 为16m 时,涵洞顶点O 至水面的距离为( )A .6m -B .12mC .16mD .24m【答案】C【分析】根据抛物线的对称性及解析式求解.【详解】解:依题意,设A 点坐标为(8,)y -, 代入抛物线方程得:164164y =-⨯=-,即水面到桥拱顶点O 的距离为16米.故选:C .【点睛】本题考查二次函数的应用,熟练掌握二次函数的解析式、图象与性质是解题关键.2.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m .若水面再下降1.5m ,水面宽度为()m .A.4.5B.C.D.【答案】D【分析】以AB所在直线为x轴,以过拱顶C且垂直于AB的直线为y轴,建立平面直角坐标系,由待定系数法求得二次函数的解析式,然后由题意得关于x的一元二次方程,解得x的值,用较大的x值减去较小的x值即可得出答案.【详解】解:如图,以AB所在直线为x轴,以过拱顶C且垂直于AB的直线为y轴,建立平面直角坐标系,则由题意可知A(-2,0),B(2,0),C(0,2),设该抛物线的解析式为y=ax2+2,将B(2,0)代入得:0=a×4+2,解得:a=-12.∴抛物线的解析式为y=-12x2+2,∴若水面再下降1.5m,则有-1.5=-12x2+2,解得:x=±7.-(,∴水面宽度为m.故选:D.【点睛】本题考查了二次函数在实际问题中的应用,明确二次函数的性质是解题的关键.3.如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为()A.B.C.6D.【答案】A【分析】y=-代入解析式结合已知条件先建立适当的坐标系,然后设出解析式,利用点的坐标求得解析式,再将3求得相应的x的值,进而求得答案.【详解】解:以拱顶为坐标原点建立坐标系,如图:∴设抛物线解析式为:2y ax =∵观察图形可知抛物线经过点()2,2B -∴222a -=⋅ ∴12a =- ∴抛物线解析式为:212y x =- ∴当水位下降1米后,即当213y =--=-时,有2132x -=-∴1x =,2x =∴水面的宽度为:.故选:A【点睛】本题考查了二次函数的应用,根据已知条件建立坐标系从而求得二次函数解析式是解决问题的关键. 4.我校门口道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P )以及点A ,点B 落上同一条抛物线上,若第1根栏杆涂色部分(EF )与第2根栏杆未涂色部分(PQ )长度相等,则EF 的长度是( )A .13米B .12米C .25米D .35米 【答案】C【分析】根据抛物线形状建立二次函数模型,以AB 中点为原点,建立坐标系xOy ,通过已知线段长度求出A(1,0)B(-1,O),由二次函数的性质确定y =ax 2-a ,利用PQ =EF 建立等式,求出二次函数中的参数a ,即可得出EF 的值.【详解】解:如图,令P 下方的点为H ,以AB 中点为原点,建立坐标系xOy ,则A(1,0)B(-1,O),设抛物线的方程为y=ax 2+bx+c∴抛物线的对称轴为x=0,则2b a=0,即b =0. ∴y =ax 2 +c .将A(1,0)代入得a+c =0,则c =-a .∴y=ax2-a.∵OH=2×15×12=0.2,则点H的坐标为(-0.2,0)同理可得:点F的坐标为(-0.6,0).∴PH=a×(-0.2)2-a=-0.96aEF=a×(-0.6)2-a=-0.64a.又∵PQ=EF=1-(-0.96a)=-0.64a ∴1+0.96a=-0.64a.解得a=58 -.∴y=58-x2+58.∴EF=(58-)×(-0.6)2+58=25.故选:C.【点睛】本题考查了二次函数的应用,解题的关键是能在几何图形中建立适当的坐标系并结合图形的特点建立等式求出二次函数表达式.5.如图所示的抛物线形构件为某工业园区的新厂房骨架,为了牢固起见,构件需要每隔0.4m加设一根不锈钢的支柱,构件的最高点距底部0.5m,则该抛物线形构件所需不锈钢支柱的总长度为()A.0.8m B.1.6m C.2m D.2.2m【答案】B【分析】根据题意建立平面直角坐标系,得出B 、C 的坐标,然后根据待定系数法求出抛物线解析式,然后求出当当0.2x =和0.6x =时y 的值,然后即可求解.【详解】如图,由题意得()0,0.5B ,()1,0C .设抛物线的解析式为2y ax c =+, 代入得12a =-,12c =, ∴抛物线的解析式为21122y x =-+. 当0.2x =时,0.48y =,当0.6x =时,0.32y =.∴()1122334420.480.32 1.6BC B C B C B C m +++=⨯+=,故选B .【点睛】本题考查了二次函数的拱桥问题,关键是要根据题意作出平面直角坐标系,并根据所建立的平面直角坐标系求出函数解析式.6.有一拱桥洞呈抛物线形,这个桥洞的最大高度是16m ,跨度为40m ,现把它的示意图(如图)放在坐标系中,则抛物线的解析式为( )A .215252y x x =+B .18255x y x x =-+ C .251825y x x =-- D .21816255y x x =-++ 【答案】B【分析】根据题意设出顶点式,将原点代入即可解题.【详解】由图可知该抛物线开口向下,对称轴为x =20,最高点坐标为(20,16),且经过原点,由此可设该抛物线解析式为()22016y a x =-+,将原点坐标代入可得400160a +=,解得:a =125-, 故该抛物线解析式为y =()21201625x --+ =218255x x -+ 故选:B .【点睛】 本题主要考查二次函数图像性质的实际应用、二次函数顶点式等.难度不大,找到顶点坐标设出顶点式是解题关键.7.图(1)是一个横断面为抛物线形状的拱桥,当水面在L 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽为4m .如果水面宽度为6m ,则水面下降 ( )A .3.5 mB .3mC .2.5mD .2 m【答案】C【分析】由图中可以看出,所求抛物线的顶点在原点,对称轴为y 轴,可设此函数解析式为:2y ax =,利用待定系数法求出解析式,再根据水面宽度为6m 时,求出当x=3时,对应y 值即可解答.【详解】解:设此函数解析式为:2y ax =,0a ≠;那么(2,2)-应在此函数解析式上.则24a -= 即得12a =-, 那么212y x =-.当x=3时,25132 4.y =--⨯=∴水面下降(-2)-(-4.5)=2.5(米)故选:C.根据题意得到函数解析式的表示方法是解决本题的关键,关键在于找到在此函数解析式上的点. 8.图2是图1中拱形大桥的示意图,拱桥与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,拱桥可以近似看成抛物线y =-1? 400?(x-80)2 + 16,拱桥与桥墩AC 的交点C 恰好在水面,有AC ⊥x 轴.若OA = 10米,则桥面离水面的高度AC 为( )A .16 9? 40?米B .1?7? 4?米C .16 7? 40?米D .1?5? 4?米 【答案】B【分析】先确定C 点的横坐标,然后根据抛物线上点的坐标特征求出C 点的坐标,从而可得到AC 的长;【详解】∠AC x ⊥轴,OA=10米,∠点C 的横坐标为10-,当10x =-时, ∠()218016400y x =--+()21171080164004=---+=-, ∠1710,4C ⎛⎫-- ⎪⎝⎭, ∴桥面离水面的高度AC 为174米.【点睛】本题主要考查了二次函数的应用,准确计算是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、解答题9.如图,某隧道的截面由抛物线和长方形构成,长方形的长OA 为12m ,宽OB 为4m ,隧道顶端D 到路面的距离为10m ,建立如图所示的直角坐标系.(1)求该抛物线的解析式;(2)一辆货运汽车载一长方体集装箱,集装箱最高处与地面距离为6m ,宽为4m ,隧道内设双向行车道,问这辆货车能否安全通过?【答案】(1)21(6)106y x =-+﹣;(2)能安全通过 【分析】(1)先求出抛物线顶点坐标,再按顶点式设出抛物线解析式,代入解析式;(2)令x =10,求出y 与6作比较.(1)根据题意,该抛物线的顶点坐标为(6,10),设抛物线解析式为:2(6)10y a x=+﹣, 将点B (0,4)代入,得:36104a +=, 解得:16a =-, 故该抛物线解析式为21(6)106y x =-+﹣; (2)根据题意,当x =6+4=10时,y 16=-⨯16+10223=>6, ∴这辆货车能安全通过.【点评】本题考查了二次函数的应用:构建二次函数模型解决实际问题,利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.10.某工厂大门是抛物线形水泥建筑,大门地面宽AB 为4m ,顶部C 距离地面的高度为4.4m ,现有一辆货车,其装货宽度为2.4m ,高度2.8米,请通过计算说明该货车能否通过此大门?【答案】能,理由见解析【分析】 首先建立适当的平面直角坐标系,并利用图象中的数据确定二次函数的解析式,进而得到装货后的最大高度,即可求解.【详解】解:以C为坐标原点,抛物线的对称轴为y轴,建立如下图所示的平面直角坐标系,根据题意知,A(﹣2,﹣4.4),B(2,﹣4.4),设这个函数解析式为y=kx2.将A的坐标代入,得y=﹣1.1x2,∵货车装货的宽度为2.4m,∴E、F两点的横坐标就应该是﹣1.2和1.2,∴当x=1.2时y=﹣1.584,∴GH=CH﹣CG=4.4﹣1.584=2.816(m),因此这辆汽车装货后的最大高度为2.816m,∵2.8<2.816,所以该货车能够通过此大门.【点睛】本题考查点的坐标的求法及二次函数的实际应用关键是建立数学模型,借助二次函数解决实际问题,注意根据线段长度得出各点的坐标,难度一般.11.如图,①为抛物线形拱桥,在正常水位下测得主拱宽24m ,最高点离水面8m ,以水平线AB 为x 轴,AB 的中点为原点建立直角坐标系(如图②).(1)求抛物线的解析式;(2)桥边有一浮在水面部分高4m ,最宽处为18m 的何鱼餐船,试探索此船在正常水位时能否开到桥下,并说明理由.【答案】(1)21818y x =-+;(2)不能开到桥下 【分析】 (1)设抛物线解析式为()()88y a x x =+-,代入(0,8)即可求解;(2)求出当x=9时,y 的值,判断其是否大于4即可.【详解】(1)∵AB=24,OC=8∴A (-12,0),B (12,0),C (0,8)设抛物线解析式为()()1212y a x x =+-代入C 点坐标,得()()8012012a =+-,解得118a =- ∴抛物线解析式为21818y x =-+;(2)当x=9时,得2198 3.518y =-⨯+= ∵3.5<4∴不能开到桥下.【点睛】 本题考查了二次函数的拱桥问题,重点是根据题目所给的坐标系求出函数解析式.12.如图,有一座抛物线形拱桥,桥下面在正常水位AB 时宽20m ,水位上升4m 就达到警戒线CD ,这时水面宽度为12m .(1)建立适当的直角坐标系,求抛物线的函数解析式;(2)若洪水到来时水位以0.1m/h 的速度上升,从正常水位开始,再过几小时就能到达桥面?【答案】(1)如图所示,2116y x =-;(2)1252小时 【分析】(1)设所求抛物线的解析式为y=ax 2.把D (6,b ),则B (10,b -4)代入解方程组即可;(2)由(1)可求得点B 坐标,进而可得拱桥顶O 到正常水位AB 的距离,进而求出时间.【详解】(1)如图所示:设所求抛物线的解析式为y=ax 2,设D (6,b ),则B (10,b -4),把D 、B 的坐标分别代入y=ax 2得:364100b a b a =⎧⎨-=⎩, 解得:11694a b ⎧=-⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为2116y x =-; (2)∵94b =-, ∴b -4= 944--= 254- ∴拱桥顶O 到正常水位AB 的距离为254m ∴2540.1 2510=41⨯ 125=2小时. 所以再持续1252小时到达拱桥顶. 【点睛】本题考查二次函数的应用,解题的关键是学会构建二次函数,学会利用二次函数的性质解决问题,属于中考常考题型.13.如图1,单孔拱桥的形状近似抛物线形,如图2建立所示的平面直角坐标系,在正常水位时,水面宽度AB 为12,m 拱桥的最高点C 到水面AB 的距离为6m .(1)求抛物线的解析式;(2)因为上游水库泄洪,水面宽度变为10m ,求水面上涨的高度﹒【答案】(1)2166y x =-+;(2)116m 【分析】(1)根据题意,C 点是抛物线的顶点且位于y 轴上,A 、B 点是抛物线与c 轴交点,所以抛物线的对称轴为y 轴,得A (-6,0)、B (6,0)、C (0,6)然后设二次函数解析式为2y ax k =+,,将点B 、C 带入解析式解出即可.(2)根据题意得,水面宽度的横坐标为5-和5,将其代入解析式求得y 值即可.【详解】解:(1)设二次函数解析式为2y ax k =+ 由题意得,()),6,006,BC ( 26y ax ∴=+2066a ∴=⋅+16a ∴=-∴解析式为2166y x =-+ (2)由题意得,水面宽度的横坐标为5-和5.212511566666y ∴=-⨯+=-+= ∴水面上涨的高度为116m . 【点睛】本题主要考查二次函数解析式的实际应用问题,运用数形结合的思想,正确理解图像上各点的含义是解题的关键14.某公园草坪的防护栏形状是抛物线形,为了牢固起见,每段防护栏需要间距0.4m 加设一根不锈钢的支柱,防护栏最高点距离底部0.5m (如图),求其中防护支柱11A B 的长度.【答案】防护栏支柱11A B 的长度为0.32m .【分析】设抛物线的解析式为:y=ax 2,由待定系数法求得解析式,再将点A 1的横坐标代入解析式,即可得出点B 1的纵坐标,则可得出答案.【详解】解: 如图所示,点C 坐标为(1,-0.5)设抛物线的解析式为:2y ax =,将点C 坐标代入得: 0.5a =-,∴抛物线的解析式为:20.5y x =-,由题意可得点1A 的横坐标为0.6-,∴点1B 的纵坐标为:20.5(0.6)0.18y =-⨯-=-,0.5-0.18=0.32,∴防护栏支柱11A B 的长度为0.32m .【点睛】本题考查了待定系数法在实际问题中的应用,数形结合、正确建立平面直角坐标系以及由待定系数法求得函数解析式是解题的关键.15.有一个抛物线形的单向道路隧道,隧道离地面的最大高度为4m ,跨度为10m ,把它放在图示平面直角坐标系中.(1)求抛物线所对应的函数表达式;(2)通过计算说明,现有一辆宽4m ,高3.2m 的厢式货车能否安全通过此隧道?【答案】(1)y=425-(x-5)2+4;(2)货船能从桥下通过,理由见解析.【分析】(1)先确定抛物线的顶点坐标以及x轴的的交点坐标,然后运用待定系数法解答即可;(2)根据货车宽度求出抛物线解析式中的x值,再求出对应的y的值,再与货车高度比较即可解答.【详解】解:(1)由题意得,抛物线的顶点坐标为(5,4),与x轴的两个交点坐标为(0,0)设抛物线解析式为y=a(x-5)2+4,把(0,0)代入,得:0= a(0-5)2+4,解得a=4 25 -所以抛物线解析式为:y=425-(x-5)2+4;(2)货船能从桥下通过,理由如下:∵货船宽为2米,高为3米,∴当x=6时,y=425-(6-5)2+4=3.84>3.∴货船能从桥下通过.【点睛】本题主要考查了二次函数的应用,解决本题的关键在于熟练运用二次函数解决实际问题.16.图中是抛物线形拱桥,点P处有一照明灯,水面OA宽4 m,以O为原点,OA所在直线为x轴建立平面直角坐标系,已知点P 的坐标为(3,32). (1)点P 与水面的距离是________m ;(2)求这条抛物线的表达式;(3)当水面上升1 m 后,水面的宽变为多少?【答案】(1)32(2)y =-12x 2+2x.(3)【分析】∠1)根据点P 的横纵坐标的实际意义即可得;∠2)利用待定系数法求解可得;∠3)在所求函数解析式中求出y=1时x 的值即可得.【详解】(1)由点P 的坐标为3(3,)2,知点P 与水面的距离为3m 2, 故答案为32; (2)设抛物线的解析式为2y ax bx =+,将点A (4,0)∠P 3(3,)2代入,得: 16403932a b a b +=⎧⎪⎨+=⎪⎩,解得:122a b ⎧=-⎪⎨⎪=⎩,所以抛物线的解析式为2122y x x =-+; (3)当y =1时,2121,2x x -+=即2420x x -+=,解得:2x =则水面的宽为2(2+=【点睛】考查二次函数的应用,掌握待定系数法求二次函数解析式是解题的关键.17.如图所示的是一座拱桥,桥洞的拱形是抛物线的形状,当水面宽AB 为12米时,桥洞顶部离水面4米,若水面上涨1米,求此时水面的宽.【答案】【分析】由题意建立适当的平面直角坐标系,用待定系数法可求抛物线的函数解析式,然后把y 3=-代入解析式即可求解.【详解】解:如图,以抛物线的顶点为原点,建立平面直角坐标系.由题意可知抛物线过点(6,-4)设抛物线的函数表达式为:2y a x = 把(6,-4)代入2y a x =,可得1a 9=- 则抛物线的函数表达式为:21y 9x =- 当水面上涨1米,水面所在的位置为直线y 3=-令y 3=-,则2139x -=-,解得:x =±∴此时水面的宽为:【点睛】此题主要考查二次函数的实际应用,建立适当的平面直角坐标系,求出抛物线的函数解析式是解题关键. 18.河上有一座桥孔为抛物线形的拱桥,水面宽6m 时,水面离桥孔顶部3m.因降暴雨水位上升lm. (1)如图①,若以桥孔的最高点为原点,建立平面直角坐标系,求抛物线的解析式;(2)一艘装满物资的小船,露出水面的高为0.5m 、宽为4m(横断面如图②).暴雨后这艘船能从这座拱桥下通过吗?请说明理由.【答案】(1)y=-213x (2)能【分析】∠1)根据点A的坐标,利用待定系数法即可求出抛物线的解析式;∠2)代入x=2求出y值,用其减去-2求出可通过船的最高高度,将其与0.5比较后即可得出结论.【详解】解:(1)设抛物线的解析式为y=ax2∠a≠0∠∠将A∠3∠-3)代入y=ax2∠-3=9a,解得:a=-1 3∠∴抛物线的解析式为y=-13x2∠∠2)当x=2时,y=-13×22=-43∠∠-43-∠-2∠=23∠0.5∠∴暴雨后这艘船能从这座拱桥下通过.【点睛】本题考查了待定系数法求二次函数的应用、二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点A的坐标,利用待定系数法求出抛物线的解析式;(2)根据二次函数图象上点的坐标特征结合水高求出可通过船的最高高度(宽度固定).19.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.【答案】正确. 22003x y =或236200y x =-+ 【分析】根据桥拱的对称性和已知数据,以对称轴为纵轴、水面为横轴建立坐标系,使拱顶在坐标原点最简单.【详解】抛物线依坐标系所建不同而各异,如下图.(仅举两例)①如图1建立坐标系,∵顶点在原点,∴设函数解析式为y=ax 2,∵图像过(20,6),∴6=a ×202,解得:a=-3200, ∴抛物线的表达式为y=-3200x 2. ②如图2建立坐标系,∵图像相当于图1的图像向上平移6,∴抛物线的表达式为y=-3200x 2+6.故正确,抛物线表达式为y=-3200x 2或y=-3200x 2+6. 【点睛】建立适当的坐标系是数学建模的关键,需认真分析图形特征.20.有一个抛物线形的拱形桥洞,桥面离水面的距离为5.6米,桥洞离水面的最大高度为4m ,跨度为10m ,如图所示,把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式.(2)如图,在对称轴右边1m 处,桥洞离桥面的高是多少?【答案】(1)二次函数解析式为24(5)425y x =--+;(2)桥洞离桥面的高是1.76米. 【分析】 (1)由题意可知抛物线的顶点坐标,设函数关系式为y=a (x-5)2+4,将已知坐标代入关系式求出a 的值.(2)对称轴右边1米处即x=6,代入解析式求出y=值.【详解】解:(1)由题意可知,抛物线的顶点坐标为()5,4,所以设此桥洞所对应的二次函数关系式为2(5)4y a x =-+, 由图象知该函数过原点,将(0,0)O 代入上式,得:20(05)4a =-+,。

二次函数的应用(3)——拱桥问题+课件++++2024-2025学年人教版数学九年级上册

二次函数的应用(3)——拱桥问题+课件++++2024-2025学年人教版数学九年级上册

y2
y
y
2
2
2
1
1
1
–2
–1 O
1
2 x –2
1 y = 2 ∙x2 + 2
–1 O
1
2 x –2
–1 O
1
2x
1 y = 2 ∙x2 + 2
1 y = 2 ∙x2 + 2
法二:定高求宽,有空隙,方能过.(实际宽度要比计算宽度小)
问4:比较一下两种方法,你认为哪种方法更简便?
问5:开动小脑筋,请你设计解决方案,使船①②能够通过桥底.
2.能在拱桥类问题中建立函数模型,将实际问题转化为数学问题.
情境引入
新会玉湖公园环境优美,开辟有玉湖荡舟、喂金鱼等活动,是 新会市民最主要的休闲娱乐场所、度假圣地,玉湖夜色是江门地区 最为璀璨的夜景之一。
问1:在湖中央有一抛物线形拱桥, 当拱顶离水面2 m时,水面宽4 m, 由于最近几天连续下暴雨,当水位上 升1 m时,水面宽为多少?
1
2 x –2
1 y = 2 ∙x2 + 2
–1 O
1
2 x –2
1 y = 2 ∙x2 + 2
–1 O
1
2x
1 y = 2 ∙x2 + 2
法一:定宽求高,有空隙,方能过.(实际高度要比计算高度小)
ห้องสมุดไป่ตู้
追问5:还有其他方法判断船能否通过桥底吗?
分别令y 1.5,y 1.6,y 1.4代入y 1 x2 2,以下为船①②③的横截面
问1:在湖中央有一抛物线形拱桥, 当拱顶离水面2 m时,水面宽4 m, 当水位上升1 m时,水面宽为多少?
追问1:如何求线段CD长度?

二次函数拱桥应用题doc

二次函数拱桥应用题doc

二次函数拱桥应用题.doc 二次函数拱桥应用题拱桥是一种常见的建筑结构,在城市和乡村中都可以见到。

它不仅能够承载重量,还可以美化环境。

在设计和建造拱桥时,数学是一个重要的工具。

其中二次函数在解决与拱桥相关的问题时起到了重要的作用。

二次函数的一般形式为y=ax^2+bx+c,其中a、b和c是实数,且a不等于0。

二次函数的图像是一个抛物线,具有对称轴和顶点。

在拱桥的设计中,二次函数可以用来描述桥梁的曲线形状。

例如,我们可以用二次函数来描述一座拱桥的高度与横轴距离之间的关系。

假设我们要设计一座拱桥,使得拱桥的高度在横轴距离的不同位置上都能达到最大值,那么我们可以使用二次函数来描述这个关系。

首先,我们需要确定二次函数的顶点位置。

顶点是二次函数的最高点或最低点,它位于对称轴上。

对于拱桥来说,我们希望拱桥的高度在横轴距离的不同位置上都能达到最大值,因此我们需要找到二次函数的最高点。

假设拱桥的起点为原点(0,0),终点为坐标为(x,y)的点。

我们可以通过求解二次函数的顶点来确定拱桥的最高点。

顶点的横坐标可以通过求解二次函数的对称轴方程得到,对称轴方程为x=-b/(2a)。

将这个值代入二次函数的表达式中,我们可以求得顶点的纵坐标。

拱桥的高度与横轴距离之间的关系可以用二次函数来描述。

这个二次函数的顶点就是拱桥的最高点,拱桥的形状由这个二次函数的图像来表示。

在实际的拱桥设计中,我们需要考虑到许多因素,如桥梁的承重能力、材料的强度、施工的成本等。

因此,我们需要在满足这些要求的前提下,选择一个合适的二次函数来描述拱桥的形状。

例如,我们可以选择一个顶点为(0,0)的二次函数y=ax^2来描述拱桥的形状。

在确定a的值时,我们需要考虑到桥梁的承重能力。

如果a的值过大,那么拱桥的曲线将会很陡峭,不利于行人和车辆的通行。

如果a的值过小,那么拱桥的曲线将会很平缓,可能无法承受桥梁的重量。

因此,我们需要在满足这些要求的前提下,选择一个合适的a的值。

专题07 二次函数与实际应用(拱桥问题)-2024年中考数学之二次函数重点题型专题(全国通用版)(原

专题07 二次函数与实际应用(拱桥问题)-2024年中考数学之二次函数重点题型专题(全国通用版)(原

专题07 二次函数与实际应用(拱桥问题)一、填空题1.(2024·安徽肥东·中考二模)如图,一座悬索桥的桥面OA 与主悬钢索MN 之间用垂直钢索连接,主悬钢索是抛物线形状,两端到桥面的距离OM 与AN 相等.小强骑自行车从桥的一端O 沿直线匀速穿过桥面到达另一端A ,当他行驶18秒时和28秒时所在地方的主悬钢索的高度相同,那么他通过整个桥面OA 共需_____________秒.2.(2024·江苏工业园区·中考一模)如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州历史文化.如图②,“东方之门”的内侧轮廓是由两条抛物线组成的,已知其底部宽度均为80m ,高度分别为300m 和225m ,则在内侧抛物线顶部处的外侧抛物线的水平宽度(AB 的长)为_________m .第1题图 第2题图3.(2024·浙江·温州市中考一模)2024年1月12日世界最大跨度铁路拱桥——贵州北盘江特大桥主体成功合拢.如图2所示,已知桥底呈抛物线,主桥底部跨度400OA =米,以O 为原点,OA 所在直线为x 轴建立平面直角坐标系,桥面//BF OA ,抛物线最高点离路面距离10EF =米,120BC =米,CD BF ⊥,O ,D ,B 三点恰好在同一直线上,则CD =________米.第3题图 第4题图4.(2024·江苏工业园区·中考二模)如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,拱桥最高点C 到AB 的距离为8m ,24m AB =,D ,E 为拱桥底部的两点,且//DE AB ,若DE 的长为36m ,则点E 到直线AB 的距离为______.二、解答题5.(2024·浙江衢州·中考真题)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱项部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.6.如图,某水库上游有一单孔抛物线型拱桥,它的跨度AB为100米.最低水位(与AB在同一平面)时桥面CD距离水面25米,桥拱两端有两根25米高的水泥柱BC和AD,中间等距离竖立9根钢柱支撑桥面,拱顶正上方的钢柱EF长5米.(1)建立适当的直角坐标系,求抛物线型桥拱的解析式;(2)在最低水位时,能并排通过两艘宽28米,高16米的游轮吗?(假设两游轮之间的安全间距为4米)(3)由于下游水库蓄水及雨季影响导致水位上涨,水位最高时比最低水位高出13米,请问最高水位时没在水面以下的钢柱总长为多少米?7.(2024·山西·长治市实验中学九年级期末)景德桥,俗称西关大桥,是我国一座著名的古代石拱桥.景德桥位于山西省东南部的晋城西门外,横跨沁水河,过去,它是晋城通往沁水河阳城地区交通干道上的一座重要桥梁,故曾又名沁阳桥.桥下水面宽度AB是20米,拱高CD是4米,若水面上升3米至EF处.(1)把拱桥看作抛物线的一部分,建立如图1所示的平面直角坐标系,求水面宽度EF.(2)把拱桥看作圆的一部分,则可构造如图2所示的图形,求水面宽度EF.8.(2024·山东即墨·中考一模)即墨古城某城门横断面分为两部分,上半部分为抛物线形状,下半部分为正方形(OMNE为正方形),已知城门宽度为4米,最高处离地面6米,如图1所示,现以O点为原点,OM所在的直线为x轴,OE所在的直线为y轴建立直角坐标系.(1)求出上半部分抛物线的函数表达式,并写出其自变量的取值范围;(2)有一辆宽3米,高4.5米的消防车需要通过该城门进入古城,请问该消防车能否正常进入?(3)为营造节日气氛,需要临时搭建一个矩形“装饰门”ABCD,该“装饰门”关于抛物线对称轴对称,如图2所示,其中AB,AD,CD为三根承重钢支架,A、D在抛物线上,B,C在地面上,已知钢支架每米50元,问搭建这样一个矩形“装饰门”,仅钢支架一项,最多需要花费多少元?9.(·山东青岛·中考真题)某公司生产A 型活动板房成本是每个425元.图①表示A 型活动板房的一面墙,它由长方形和抛物线构成,长方形的长4AD m =,宽3AB m =,抛物线的最高点E 到BC 的距离为4m .(1)按如图①所示的直角坐标系,抛物线可以用()20y kx m k =+≠表示,求该抛物线的函数表达式;(2)现将A 型活动板房改造为B 型活动板房.如图②,在抛物线与AD 之间的区域内加装一扇长方形窗户FGMN ,点G ,M 在AD 上,点N ,F 在抛物线上,窗户的成本为50元2/m .已知2GM m =,求每个B 型活动板房的成本是多少?(每个B 型活动板房的成本=每个A 型活动板房的成本+一扇窗户FGMN 的成本) (3)根据市场调查,以单价650元销售(2)中的B 型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B 型活动板房.不考虑其他因素,公司将销售单价n (元)定为多少时,每月销售B 型活动板房所获利润w (元)最大?最大利润是多少?10.施工队要修建一个横断面为抛物线的公路隧道,其高度为8米,宽度OM 为16米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x 的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A .D 点在抛物线上.B 、C 点在地面OM 线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和的最大值是多少,请你帮施工队计算一下.11.(2024·辽宁海城·九年级月考)如图,隧道的横截面由抛物线形和矩形OABC 构成.矩形一边OA 的长是12m ,另一边OC 的长是1m .抛物线上的最高点D 到地面OA 的距离为7m .以OA 所在直线为x 轴,以OC所在直线为y 轴,建立平面直角坐标系.(1)求该抛物线所对应的函数表达式;(2)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度为5m ,求两排灯之间的水平距离;(3)隧道内车辆双向通行,规定车辆必须在中心线两侧行驶,并保持车辆顶部与隧道有不少于1m 3的空隙.现有一辆货运汽车,在隧道内距离道路边缘2m 处行驶,求这辆货运汽车载物后的最大高度.12.(·陕西·子长县齐家湾中学九年级期末)小明将他家乡的抛物线型彩虹桥按比例缩小后,绘制成如下图所示的示意图,图中的三条抛物线分别表示桥上的三条钢梁,x 轴表示桥面,y 轴经过中间抛物线的最高点,左右两条抛物线关于y 轴对称,经过测算,右边抛物线的表达式为21(30)520y x =--+. (1)直接写出左边抛物线的解析式; (2)求抛物线彩虹桥的总跨度AB 的长;(3)若三条钢梁的顶点M 、E 、N 与原点O 连成的四边形OMEN 是菱形,你能求出钢梁最高点离桥面的高度OE 的长吗?如果能,请写出过程;如果不能,请说明理由.13.(2024·山东黄岛·九年级期末)为促进经济发展,方便居民出行.某施工队要修建一个横断面为抛物线的公路隧道.抛物线的最高点P离路面OM的距离为6m,宽度OM为12m.(1)按如图所示的平面直角坐标系,求表示该抛物线的函数表达式;(2)一货运汽车装载某大型设备后高为4m,宽为3.5m.如果该隧道内设双向行车道(正中间是一条宽1m 的隔离带),那么这辆货车能否安全通过?(3)施工队计划在隧道口搭建一个矩形“脚手架”ABCD,使A,D点在抛物线上.B,C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根支杆AB,AD,DC的长度之和的最大值是多少?请你帮施工队计算一下.14.(2024·福建厦门·九年级期末)某海湾有一座抛物线形拱桥,正常水位时桥下的水面宽为100m(如图所示).由于潮汐变化,该海湾涨潮5h后达到最高潮位,此最高潮位维持1h,之后开始退潮.如:某日16时开始涨潮,21时达到最高潮位,22时开始退潮.该桥的桥下水位相对于正常水位上涨的高度随涨潮时间t 变化的情况大致如表所示.(在涨潮的5h 内,该变化关系近似于一次函数) 涨潮时间t (单位:h )1 2 3 4 5 6桥下水位上涨的高度(单位:m )4585 1251654 4 (1)求桥下水位上涨的高度(单位:m )关于涨潮时间t (06t ≤≤,单位:h )的函数解析式; (2)某日涨潮期间,某船务公司对该桥下水面宽度进行了三次测量,数据如表所示: 涨潮时间t (单位:h ) 5452 154桥下水面宽(单位:m )202420232022现有一艘满载集装箱的货轮,水面以上部分高15m ,宽20m ,在涨潮期间能否安全从该桥下驶过?请说明理由.15.(·河北·中考一模)有一座抛物线型拱桥,在正常水位时水面AB 的宽为18米,拱顶O 离水面AB 的距离OM 为9米,建立如图所示的平面直角坐标系. (1)求此抛物线的解析式;(2)一艘货船在水面上的部分的横断面是矩形CDEF .①如果限定矩形的长CD 为12米,那么要使船通过拱桥,矩形的高DE 不能超过多少米? ②若点E ,F 都在抛物线上,设L EF DE CF =++,当L 的值最大时,求矩形CDEF 的高.16.(·安徽无为·九年级期末)如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同,正常水位时,大孔水面常度AB=20米,顶点M距水面6米(即MO=6米),小孔水面宽度BC=6米,顶点N距水面4.5米.航管部门设定警戒水位为正常水位上方2米处借助于图中的平面直角坐标系解答下列问题:(1)在汛期期间的某天,水位正好达到警戒水位,有一艘顶部高出水面3米,顶部宽4米的巡逻船要路过此处,请问该巡逻船能否安全通过大孔?并说明理由.(2)在问题(1)中,同时桥对面又有一艘小船准备从小孔迎面通过,小船的船顶高出水面1.5米,顶部宽3米,请问小船能否安全通过小孔?并说明理由.17.(2024·贵州安顺·中考真题)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA 可视为抛物线的一部分,在某一时刻,桥拱内的水面宽8m OA =,桥拱顶点B 到水面的距离是4m .(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m 的打捞船径直向桥驶来,当船驶到桥拱下方且距O 点0.4m 时,桥下水位刚好在OA 处.有一名身高1.68m 的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线()20y ax bx c a =++≠,该抛物线在x 轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移()0m m >个单位长度,平移后的函数图象在89x ≤≤时,y 的值随x 值的增大而减小,结合函数图象,求m 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2023中考数学专题复习:二次函数应用之拱桥问题(提优篇)1.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A.4√3米B.5√2米C.2√13米D.7米2.如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按x2+bx+c表示.在抛物线形拱壁上照如图所示的平面直角坐标系,抛物线可以用y=−16需要安装两排灯,使它们离地面的高度相等.如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是( )A.2m B.4m C.4√2m D.4√3m3.【测试2】如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面上升1.5m,水面宽度为( )A.1m B.2m C.√3m D.2√3m4.【例4】如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加( )A.1m B.2m C.3m D.6m5.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为( )的关系式为y=−125A.−20m B.20m C.10m D.−10m6.某大学的校门(如图所示)是抛物线形水泥建筑物,大门的宽度为8米,两侧距地面4米高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6米,那么校门的高是米.7.如图,一个横截面为抛物线形的隧道底部宽12米、高6米.车辆双向通行,若规定车辆必须米的空在中心线两侧、距离道路边缘2米的能围内行驶,并保持车辆顶部与隧道有不少于13隙,则通过隧道的车辆的高度限制应为米.8.闵行体育公园的圆形喷水池的水柱(如图1),如果曲线APB表示落点B离点O最远的一条水,流(如图2),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式为y=−x2+4x+94那么圆形水池的半径至少为米时,才能使喷出的水流不落在水池外.9.中国石拱桥是我国古代人民建筑艺术上的智慧象征.如图所示,某桥拱是抛物线形,正常水位时,水面宽AB为20m,由于持续降雨,水位上升3m,若水面CD宽为10m,则此时水面距桥面距离OE的长为.10.如图,这是一传媒公司寓意为“大鹏展翅”的大门建筑截面图,它是两条关于线段AB的中垂线对称的抛物线,开口朝向左右,顶点是边长为4米的正方形中心,且分别过正方形的两个顶点.若入口水平宽BE为10.5米,则最高点F到地面的高度FE为米.11.一个拱形桥架可以近似看做是由等腰梯形ABD8D1和其上方的抛物线D1OD8组成的.若建立如图所示的直角坐标系,跨度AB=44米,∠A=45∘,AC1=4米,点D2的坐标为(−13,−1.69),则桥架的拱高OH=米.12.有一抛物线形拱桥,其最大高度为16米,跨度为40米,现将它的示意图放在平面直角坐标系中,如图,则抛物线的解析式是.13.如图,某广场设计的一座建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无须证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时,点O,P之间的距离是多少?(请写出求解过程)14.如图①,地面BD上两根等长立柱AB,CD之间悬挂一根近似成抛物线y=110x2−45x+3的绳子.(1) 求绳子最低点离地面的距离.(2) 因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图②),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长.(3) 将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系,设MN离AB的距离为m,抛物线F2的顶点离地面距离为k,当2≤k≤2.5时,数始终为14求m的取值范围.15.在篮球比赛中,东东投出的球在点A处反弹,反弹后球运动的路线为抛物线的一部分(如图(1)所示建立直角坐标系),抛物线顶点为点B.(1) 求该抛物线的函数表达式.(2) 当球运动到点C时被东东抢到,CD⊥x轴于点D,CD=2.6m.①求OD的长.②东东抢到球后,因遭对方防守无法投篮,他在点D处垂直起跳传球,想将球沿直线快速传给队友华华,目标为华华的接球点E(4,1.3),东东起跳后所持球离地面高度ℎ1(m)(传球前)与东东起跳后时间t(s)满足函数关系式ℎ1=−2(t−0.5)2+2.7(0≤t≤1);小戴在点F(1.5,0)处拦截,他比东东晚0.3s垂直起跳,其拦截高度ℎ2(m)与东东起跳后时间t(s)的函数关系如图(2)所示(其中两条抛物线的形状相同).东东的直线传球能否越过小戴的拦截传到点E?若能,东东应在起跳后什么时间范围内传球?若不能,请说明理由(直线传球过程中运动时间忽略不计).16.如图,排球运动员站在点O处练习发球,将球从O点正上方2 m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x−6)2+ℎ.已知球网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m.(1) 当ℎ=2.6时,求y与x的关系式(不要求写出自变量x的取值范围);(2) 当ℎ=2.6时,球能否越过球网?球会不会出界?请说明理由;(3) 若球一定能越过球网,又不出边界,求ℎ的取值范围.17.在水平的地面BD上有两根与地面垂直且长度相等的电线杆AB,CD,以点B为坐标原点,直线BD为x轴建立平面直角坐标系,得到图1.已知电线杆之间的电线可近似地看成抛物线y=1100x2−45x+30.(1) 求电线杆AB和线段BD的长.(2) 因实际需要,电力公司在距离AB为30米处增设了一根电线杆MN(如图2),左边抛物线F1的最低点离MN为10米,离地面18米,求MN的长.(3) 将电线杆MN的长度变为30米,调整电线杆MN在线段BD上的位置,使右边抛物线F2的二次项系数始终是140,设电线杆MN距离AB为m米,抛物线F2的最低点离地面的距离为k米,当20≤k≤25时,求m的取值范围.18.如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系.求:(1) 以这一部分抛物线为图象的函数解析式,并写出x的取值范围;(2) 一辆宽2.8米,高1米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?19.如图①,一个横截面为抛物线形的隧道,其底部的宽AB为8m,拱高为4m,该隧道为双向车道,且两车道之间有0.4m的隔离带,一辆宽为2m的货车要安全通过这条隧道,需保持其顶部与隧道间有不少于0.5m的空隙,以AB的中点O为原点,按如图②所示建立平面直角坐标系.(1) 求该抛物线对应的函数关系式;(2) 通过计算说明该货车能安全通过的最大高度.20.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示x2+bx+c表示,且抛物线上的点C到OB的水平的平面直角坐标系,抛物线可以用y=−16m.距离为3m,到地面OA的距离为172(1) 求抛物线的函数表达式,并计算出拱顶D到地面OA的距离.(2) 一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?(3) 在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少?21.秋风送爽,学校组织同学们去颐和园秋游,昆明湖西堤六桥中的玉带桥非常令人喜爱,如图所示,玉带桥的桥拱是抛物线形,水面宽度AB=10m,桥拱最高点C到水面的距离为6m.(1) 建立适当的平面直角坐标系,求抛物线的表达式;(2) 现有一艘游船高度是4.5m,宽度是4m,为了保证安全,船顶距离桥拱顶部至少0.5m,通过计算说明这艘游船能否安全通过玉带桥.22.如图1,某穿山隧道纵截面为半圆形,圆心O的左右两边各有一条宽为3.75m的机动车道(OC,OD)和宽为1.25m的非机动车道(AC,BD).(备注:机动车与非机动车通行时都只能在各自车道行驶,不能越线)(1) 若有一辆宽3.3m的卡车载物从该隧道通行,则其最大高度不能超过多少米?(结果精确到0.1m)(2) 为改善通行条件,地方政府另外修建了一条单向隧道,并打算将如图1所示的隧道改建成如图2所示的抛物线形隧道,并要求:①隧道宽度AB及最大高度均保持不变;②只需保留一条单向机动车道(MN);③两条非机动车道(AM,BN)均拓宽为2m.问:改建后,若有一辆宽3.8m的卡车载物从该隧道通行,则其最大高度不能超过多少米?(结果精确到0.1m)23.某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示的坐标系中始于原点O的一段抛物线,图中数据为已知条件.在跳某个规定动作时,正常米,入水处距池边的距离为4米,同时,运情况下,这个运动员在空中的最高处距水面1023动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1) 求这段抛物线的表达式.(2) 在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中米,问此次跳水是否会失误,为什么?调整好入水姿势时,距池边的距离为33524.校园景观设计:如图1,学校计划在流经校园的小河上建造一座桥孔为抛物线的小桥,桥孔的跨径为8m,拱高为5m.(1) 把该桥拱看作一个二次函数的图象,建立适当的平面直角坐标系,写出这个二次函数的表达式;(2) 施工时,工人师傅先要制作如图2的桥孔模型,请你帮助工人师傅设计计算模型中左侧第二根立柱的高.25.如图是立交路上方一座抛物线型拱桥的示意图,桥的跨度AB=12米,拱高OM=4米.按规定,汽车通过桥下时,车顶与桥拱之间的距离CD不小于0.5米.(1) 以AB为x轴,以OM为y轴建立平面直角坐标系,求拱桥所在抛物线的表达式.(2) 一辆宽4米、高2.5米(车顶与地面AB的距离)的平顶货车能否通过拱桥?为什么?。

相关文档
最新文档