第一章 热力学的基本规律(2014).
热力学统计物理第一章热力学的基本规律

p p1
p1
p2
§1.5 热力学第一定律
能量守恒定律:自然界一切物质都具有能量,能量有各种不 同的形式,可以从一种形式转化为另一种形式,从一个物体 传递到另一个物体,在传递与转化中能量的数量不变。
另一种表述:第一类永动机是不可能造成的。
热力学U系 BUA 统 W: Q W:以外界对系统所功作为的正 Q:以吸热为正
WW 'QRln V V 1 2(T1T2)
热机效率定义: W Q1
卡 诺 热 W T 1 机 T 21 : T 21
Q 1 T 1
T 1
§1.10 热力学第二定律 克劳修斯(克氏)表述: 不可能把热量从低温物体传到高温物体而不引起其他变化 卡尔文(开氏)表述: 不可能从单一热源吸热使之完全变成有用的功而不引起 其他变化
AT B T
A BdTQ A BdTQ r SBSA
SB SA
BdQ AT
dS dQ T
第二定律的数学表述
绝热过 :d程 Q0
SBSA0 ——熵增加原理的数学表述
熵增加原理:经绝热过程后,系统的熵永不减少,经可逆 绝热过程后熵不变,经不可逆绝热过程后熵增加,在绝热 条件下熵减少的过程是不可能实现的。
第一章 热力学的基本规律 §1.1 热力学系统的平衡状态及其描述
1.系统
孤立系 (极限概念) 闭系 开系
热力学系统的状态
平衡态 非平衡态
热力学平衡态:
(1)定义: 一个孤立系统,不论其初态如何复杂,经过 足够长的时间后,将会到达这样的状态,系 统的各种宏观性质在长时间内不发生任何变 化,这样的状态称为热力学平衡态。
n称 为 多 方 指 数: 。理 试想 证气 明体 多的 方热 过容 程
《热力学与统计物理》第四版(汪志诚)课后题答案

若,式(3)可表为(4)选择图示的积分路线,从积分到,再积分到(),相应地体积由最终变到,有即(常量),或(5)式(5)就是由所给求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。
问:(a )压强要增加多少才能使铜块的体积维持不变?(b )若压强增加100,铜块的体积改变多少?解:(a )根据1.2题式(2),有(1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。
如果系统的体积不变,与的关系为(2)在和可以看作常量的情形下,将式(2)积分可得11,T T pακ==11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰00(,)T p ()0,T p ,T pV V000ln=ln ln ,V T pV T p -000p V pV C T T ==.pV CT =11,T T pακ==0Cnp 51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和10Cnp np .T dVdT dp Vακ=-dVdTdpdpdT.Tdp dT ακ=αTκ(1)(2)(3)根据1.13题式(6),对于§1.9中的准静态绝热过程(二)和(四),有(4) (5)从这两个方程消去和,得(6)故(7)所以在是温度的函数的情形下,理想气体卡诺循环的效率仍为(8)1.14试根据热力学第二定律证明两条绝热线不能相交。
解:假设在图中两条绝热线交于点,如图所示。
设想一等温线与两条绝热线分别交于点和点(因为等温线的斜率小于绝热线的斜率,这样的等温线总是存在的),则在2111ln ,V Q RT V =3224ln,V Q RT V =32121214lnln .V V W Q Q RT RT V V =-=-1223()(),F T V F T V =2411()(),F T V F T V =1()F T 2()F T 3214,V V V V =2121()ln,V W R T T V =-γ2111.T WQ T η==-p V-CAB故电阻器的熵变可参照§1.17例二的方法求出,为1.19 均匀杆的温度一端为,另一端为,试计算达到均匀温度后的熵增。
第一章热力学的基本规律课后作业和答案

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为nRT pV = 由此得到 体胀系数TpV nR T V V p 11==⎪⎭⎫ ⎝⎛∂∂=α, 压强系数TpV nR T P P V 11==⎪⎭⎫ ⎝⎛∂∂=β 等温压缩系数2111()T T V nRT V p V p pκ⎛⎫∂⎛⎫=-=-= ⎪ ⎪∂⎝⎭⎝⎭ 1.2试证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:ln (d d )T V T k p α=-⎰如果1Tα=,1T k p =,试求物态方程。
解 以,T p 为自变量,物质的物态方程为(,)V V T p =其全微分为d d d p TV V V T p T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有d 11d d p TV V V T p V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T k 的定义,可将上式改写为d d d T VT k p Vα=- (2) 有ln (d d )T V T k p α=-⎰ (3)若1Tα=,1T k p =,式(3)可表示为11ln (d d )V T p T p=-⎰ (4)积分pV CT = (5)1.3测得一块铜块的体胀系数和等温压缩系数分别为514.8510K α--=⨯和71n 7.8*10p T κ--=,α和T κ可近似看作常量,今使铜块加热至10C ︒。
问(1压强要增加多少才能使铜块体积不变?(2若压强增加,铜块的体积改多少解:(1)有d d d T Vp p p V T V T ∂∂⎛⎫⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭知,当d 0V =时,有d 0d d d V Tp p T p T T T αβκ∂⎛⎫=+==⎪∂⎝⎭ 故 ()212121d T T TT p p T T T αακκ-==-⎰即 ()2121n 622p T p p p T T ακ∆=-=-= 分别设为V xp n ∆;,由定义得:4474.85810; 4.85101007.810T x V κ∆---=⨯=⨯-⨯⨯所以,44.0710V ∆-=⨯1.4 1mol 理想气体,在27C ︒的恒温下发生膨胀,其压强由n 20p 准静态地降到n 1p ,求气体所做的功和所吸取的热量。
热力学与统计物理学课后习题及解答

第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T k 。
解:由理想气体的物态方程为 nRT PV = 可得: 体胀系数:TP nR V T V V αp 111==⎪⎭⎫ ⎝⎛∂∂= 压强系数:TV nR P T P P βV 111==⎪⎭⎫ ⎝⎛∂∂=等温压缩系数:P P nRT V P V V κT 1)(112=−⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∂∂−=1.2 证明任何一种具有两个独立参量P T ,的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数T k ,根据下述积分求得:()⎰−=dP κdT αV T ln 如果PκT αT 11==,,试求物态方程。
解: 体胀系数:p T V V α⎪⎭⎫ ⎝⎛∂∂=1,等温压缩系数:TT P V V κ⎪⎭⎫ ⎝⎛∂∂−=1 以P T ,为自变量,物质的物态方程为:()P T V V ,= 其全微分为:dP κV VdT αdP P V dT T V dV T Tp −=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=,dP κdT αV dV T −= 这是以P T ,为自变量的全微分,沿任意的路线进行积分得:()⎰−=dP κdT αV T ln 根据题设 ,将P κT αT 1,1==,代入:⎰⎪⎭⎫ ⎝⎛−=dP P dT T V 11ln 得:C pT V +=lnln ,CT PV =,其中常数C 由实验数据可确定。
1.4 描述金属丝的几何参量是长度L ,力学参量是张力£,物态方程是()0£=T L f ,,,实验通常在1n p 下进行,其体积变化可以忽略。
线胀系数定义为:£1⎪⎭⎫ ⎝⎛∂∂=T L L α,等温杨氏模量定义为:TL A L Y ⎪⎭⎫ ⎝⎛∂∂=£,其中A 是金属丝的截面积。
一般来说,α和Y 是T 的函数,对£仅有微弱的依赖关系。
如果温度变化范围不大,可以看作常量。
热力学统计物理知识点复习大全

概 念 部 分 汇 总 复 习热力学部分第一章 热力学的基本规律1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。
2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。
3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。
4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。
6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。
7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。
8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。
9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。
绝热过程中内能U 是一个态函数:A B U U W −=10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:Q W U U A B +=−;微分形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ∆+∆=∆,与热力学第一定律的公式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。
12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。
13.定压热容比:p p T H C ⎪⎭⎫⎝⎛∂∂=;定容热容比:VV T U C ⎪⎭⎫⎝⎛∂∂= 迈耶公式:nR C C V p =−14、绝热过程的状态方程:const =γpV ;const =γTV ;const 1=−γγTp 。
热力学与统计物理课后答案.docx

《热力学与统计物理学》课后习题及解答选用教材:汪志诚主编,高等教育出版社第一章热力学的基本规律1.1试求理想气体的体胀系数压强系数卩和等温压缩系数為。
解:由理想气体的物态方程为PV = uRT 可得:1.2证明任何一种具有两个独立参量T,尸的物质,其物态方程可由实验测得的 体胀系数Q 及等温压缩系数紡,根据下述积分求得:\nV = \(adT-K T dP)以八尸为自变量,物质的物态方程为:V = V(T,P)如耘〒 专’试求物态方程。
解: 体胀系数: 其全微分为:dV dT + p ar dP dP = aVdT-VK T dP, y- = adT-K T dP体胀系数:压强系数:0 =等温压缩系数: 丄P等温压缩系数:这是以八P 为自变量的全微分,沿任意的路线进行积分得:}nV = j (adT-K T dP ) 根据题设,将6(=丄,K T =丄,代入:ln/=f 丄dT -丄dPT T P }{T P 丿得:lnr = ln- + C, PV = CT,其中常数c 由实验数据可确定。
P1.5描述金属丝的儿何参量是长度厶,力学参量是张力£,物态方程是 ./、(£, L, r ) = o,实验通常在1几下进行,其体积变化可以忽略。
线胀系数定义为:“丄(学],等温杨氏模量定义为:Y = -(^},其中/是 L (打人 牡。
厶力金属丝的截面积。
一般来说,a 和Y 是厂的函数,对£仅有微弱的依赖关系。
如 果温度变化范围不大,可以看作常量。
假设金属丝两端固定。
试证明,当温度由 7;降至3时,其张力的增加为:\^ = -YAa (T 2-T^ 解:由/(£,厶,T )= 0,可得:£ = £(L, T )微分为:〃£ = (等)血+ (善]刃\由题意可知:dL = O.即:d£ = -aAYdT,积分得:A£ = -aAY(T 2 ・TJ1. 7在25 °C 下,压强在0至1000 p n 之间,测得水的体积为:K = (18.066-0.715x 10~3P + 0.046x 1 O'6P 2\m\mor [Q 如果保持温度不变,将 1 mol 的水从1几加压至1000 求外界所作的功。
第一章,热力学基本规律

一.几个基本概念:1.孤立系,闭系和开系:与其他物质既没有物质交换也没有能量交换的系统叫做孤立系;与外界没有物质交换但有能量交换的系统叫做闭系;与外界既有物质交换也有能量交换的系统叫做开系。
2.平衡态:经验表明,一个孤立系统,不论其初态多么复杂,经过足够长的时间后,将会达到这样的状态,系统的各种宏观性质在长时间内不会发生任何变化,这样的状态称为热力学平衡态。
3.准静态:所谓准静态过程,它是进行的非常缓慢的过程,系统所经历的每一个状态都可以看做是平衡态。
4.可逆过程与不可逆过程:如果一个过程发生后,无论用任何曲折复杂的方法都不可能把它留下的后果完全的消除而使一切恢复原状,这过程称为不可逆过程;反之,如果一个过程发生后,它所产生的影响可以完全消除而令一切恢复原状,这过程称为可逆过程。
5.理想气体:我们把严格遵从玻意耳定律、焦耳定律和阿氏定律的气体称为理想气体。
二.热力学定律1.热平衡定律(即热力学第零定律):如果物体A和物体B各自与处在同一状态C达到平衡,若令A与进行热接触,他们也将处在热平衡,这个实验事实称为热平衡定律。
2.热力学第一定律:自认界的一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化成另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量不变。
第一定律也可以表述称为第一类永动机是不可能制成的。
3.热力学第二定律:1)克氏表述:不可能把热量从低温物理传到高温物体而不引起其他变化。
2)开氏表述:不可能从单一热源吸热使之完全变成有用功而不引起其他变化。
热力学第二定律也可表述为第二类永动机是不可能制成的。
关于热力学第二定律有几点需要说明:在两个表述中所说的不可能,不仅指【1】在不引起其他变化的条件下,直接从单一热源吸热而使之完全变成有用的功,或者直接将热量从低温物体送到高温物体是不可能的。
而且指【2】不论用多么复杂的方法,在全部过程终了时,其最终的唯一后果是从单一热源吸热而将之完全变成有用功,或者热量从低温物体传到高温物体是不可能的。
热力学

第一章热力学的基本规律热力学系统的分类(p3):孤立系统:无物质交换,也无能量交换;封闭系统:有能量交换,但无物质交换;开放系统:既有能量交换,又有物质交换。
热力学系统的状态可以分成两类(p3):平衡态:无外界影响,经足够长时间,系统趋于一中宏观性质不随时间变化的状态;非平衡态。
状态参量的分类(p5):按性质分:几何参量,力学参量,电磁参量,化学参量;按描述的范围分:内参量:描述系统内部状态的物理量,外参量:描述系统外界条件的物理量;按与系统总质量的关系分:广延量:与系统中质量成正比的量,强度量:与系统中质量无关的量。
准静态过程:是指如果从系统的初始态到新的平衡态的过程进行的如此缓慢,以至于其中的每一步都可以近似的认为系统是处于平衡态。
循环关系(p9):热力学第零定律(p6):两个系统与第三个系统处于热平衡时,则这两个系统之间也必然热平衡。
热力学第一定律(p19):热力学系统在任一热力学过程中,从外界吸收的热量等于系统内能的增加与对外界做功之和。
表达式:卡诺循环(p27):两个等温过程和两个绝热过程构成的准静态循环过程。
卡诺热机的效率(p29):热力学第二定律的两种表述(p30):克劳修斯氏表述:不可能吧热量从低温物理传到高温物体而不引起其他变化;考尔文表述:不可能从单一热源吸热使之完全变成有用的功而不引起其他变化。
(或第二类永动机不可能造成)数学表述(p42): 对不可逆过程: 对可逆过程:可逆系统:系统经历一个过程,有初态到达末态,如果能够找到一个使系统经历一个过程,由末态回到初态,而对外界不产生任何的影响的过程,则院过程就称为可逆过程不可逆过程:如果不存在这样的过程,称原过程为不可逆过程。
(p32)熵增加原理(p42):dS≥0,即绝热过程的熵不会减少,若是可逆绝热过程,则熵不变,而对不可逆过程,熵增加。
焦耳气体自由膨胀实验(p22) 实验目的:气体的内能是否与气体的体积有关;结果:水温不变;焦耳定律:理想气体的内能只是温度的函数,与体积无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单系统:仅需体积和压强两个参量就可以确定的系统。
五,均匀系、相
1,均匀系:系统各部分的性质完全一样的系统。
2,一个均匀的部分为一相,均匀系也叫单相系。 3,复相系:系统不是均匀的,但可以分为若干个均匀的 部分。
§1.2
热平衡定律和温度
实验现象
P1 V1 P2 V2
一,热平衡定律
P1 V1
P2 V2
§1.4 功
一,准静态过程
进行得非常缓慢的过程,系统在过程中经历 的每一个状态都可以看作平衡态。 系统的状态参量改变 ∆ 的时间远大于弛豫时间
p
p
∆V
dx
二,准静态过程中外界对系统所作的功
dW pdV系统由VA—VB:W pdVVAVB
P
A
Ⅰ Ⅱ B
V
外界对系统作的功跟过程有关。 功不是态函数。
1,
绝热壁
2,透热壁
C
3,热接触,4,热平衡
A
B
热平衡定律:各自与第三个物体处于热平衡的两个物体,它们 彼此也处于热平衡。也叫热力学第零定律。
二,状态函数温度的导出
设系统A和系统B分别 与系统C处于处于热平衡。 系统A和C处于热平衡:
A
C
B
解得:
f AC ( p A ,V A ; pC ,VC ) 0 pC FAC ( p A ,VA ;VC ) f BC ( pB ,VB ; pC ,VC ) 0
1 mol理想气体:
n mol理想气体:
pV RT pV nRT
理想气体 的物态方程
2,实际气体的物态方程
⑴ 范德瓦尔斯方程:
an ( p 2 )(V nb) nRT V
⑵ 昂尼斯方程:
2
nRT p V
n n 1 BT C T V V
五,学习热力学与统计物理学的意义
热力学与统计物理学是研究能量及其转换的科学。 六,重新认识世界 电子衍射实验
第一章 热力学的基本规律
§1。1热力学系统的平衡状态及其描述
借鉴经典力学的隔离体方法
相互作用
热力学系统
外界
一,热力学系统
1,孤立系 和外界无任何相互作用
2,闭系
3,开系
和外界有能量交换,但无物质交换
序
一,火与冰
二,蒸汽机与工业文明 三,热力学与统计物理学的任务 研究热运动的规律及热运动对物质宏观性质的影响。 四,热力学和统计物理学的比较 热力学是热运动的宏观理论。是一门实验科学,根据经 验总结出热力学三定律,具有高度的可靠性和普遍性。 统计物理学是热运动的微观理论,物质的宏观量是微观 量的统计平均,把热力学三定律归结为一个基本的统计原理 。
⑴ 等容过程: ⑵ 等温过程:
T2 p p1 T1 ' p2V1 p2V2
' 2
(根据理想气体 温度的定义) (玻-马定律)
p1V1 p2V2 C T1 T2
(反映两个状态之间的 关系,和过程无关)
根据阿氏定律,普适气体常数:
pnV0 1 2 R 8.3145 J mol K T0
1 V V T P 1 p p T V
和物态方程相关的几个物理量:
1,体胀系数:
2,压强系数:
1 V 3,等温压缩系数: T V p
V p
p T T V 1 V p T
和外界有能量交换,也有物质交换
二,热力学平衡态 孤立系统——足够长的时间——平衡态 系统的各种宏观性质长时间内不发生任何变化。 1,驰豫时间 三,平衡状态的描述 2,热动平衡 3,涨落现象
1, 状态参量:自变量
2,状态函数:其它物理量可表述为自变量的函数。 四,状态参量的分类 1,几何参量;2,力学参量;3,化学参量;4,电磁参量。
2
三,简单固体和液体
V (T , p) V0 (T0 ,0)1 T T0 T p
四,顺磁性固体
物态方程反映状态参量单位体积磁矩、磁场强度 和温度之间的关系:
f m, , T 0
C 居里定律: m T
总磁矩:
顺磁性固体的物态方程
mV
五,广延量与强度量
T
T p
二,气体的物态方程 玻-马定律:在固定质量,温度不变的条件下 理 PV=C 想 阿氏定律:在相同的温度和压强下,相等体积所包 气 含的各种气体的质量与他们各自的分子量成正比。 体 焦耳定律
1,理想气体的物态方程
设想气体由 变化到 设 想 过 程 中间状态 状态Ⅰ(P1,V1,T1) ’ ,V ,T ) ( P 状态Ⅱ(P2,V2,T2) 2 1 2
V E d P
l
使介质极化的功 激发电场的功
3,磁介质
外界电源克服反向电动势做功:
L
dW VIdt
A
+ -
0 dW Vd 2
2
V dm 0
使介质磁化所作的功
激发磁场的功
五,准静态过程外界功的一般形式
外界对系统所做的每一项功都可以写成
系统B和C处于热平衡:
解得:
pC FBC ( pB ,VB ;VC )
如果系统A、B同时和系统C处于热平衡,上述 压强应该相等:
FAC ( p A ,VA ;VC ) FBC ( pB ,VB ;VC )
根据热平衡定律,系统A、B也处于热平衡
1
f AB ( pA ,VA ; pB ,VB ) 0
(2)是(1)的推论,所以(1)式应该和
2
VC 无关
g A ( p A ,VA ) g B ( pB ,VB )
结论:互为热平衡的两个系统分别存在一个状态函 数,这两个函数数值相等,这个函数称为系 统的温度。
§1.3 物态方程
一,什么是物态方程
给出温度和状态参量之间关系的方程
对简单系统:
f ( p, V , T ) 0
三,特殊的非静态过程
1,等容过程:W=0
2,等压过程:W=-P(VB-VA)=-P∆V
四,外界对系统作功的其它形式
1,液体表面薄膜
外界克服表面张力所 作的功为:
σl
l dx
dW 2ldx dW dA
+
2,电介质
电 介 质
dW Vdq
0E dW Vd 2
2
A