安培力的综合应用27页PPT
合集下载
新版 第四节 安培力(共47张PPT)学习PPT

[问题]该磁场是否匀强磁场? 该磁场并非匀强磁场
[问题]该磁场的特点?
在以铁芯为中心的圆圈上,
各点的磁感应强度B的大小是相等的.
2、电流表的工作原理
1、蹄形磁铁和铁芯间的磁场是均匀地辐射分布的,不管
磁通铁对电桌面线的压力圈增大转,不到受桌面什摩擦么力作角用 度,它的平面都跟磁感应线平行,当
表盘的刻度均匀,θ∝I
b
(2)两个电流不平行时,总有作用到方
向相同的趋势。
3.电流元分析法:
把整段电流分成很多小段直线电流,其中每一小段 就是一个电流元。先用左手定则判断出每小段电流元 受到的安培力的方向,再判断整段电流所受安培力的 方向,从而确定导体的运动方向。
例:如图,把轻质导线圈用绝缘细线悬
挂在磁铁N极附近,磁铁的轴线穿过线 圈的圆心且垂直于线圈平面。当线圈内
导线拓在的平面与匀强磁场垂直,匀强磁场的
磁感应强度为B,求导线abc所受安培力的大
小和方向.
a
Fab BIL Fabc 2BIL
Fbc BIL
b
c
【例3】如图所示,两平行光滑导轨相距,与水平 面夹角为450,金属棒MN的质量为,处在竖直向上 磁感应强度为1T的匀强磁场中,电源电动势为6V, 内阻为1Ω,为使MN处于静止状态,则电阻R应为多 少?(其他电阻不计)
与导线的长度、电流强度 磁铁对桌面的压力减小,受桌面的摩擦力作用
通电线圈在磁场中受安培力的作用发生转动
都成正比,其比值与该处 F = ILBsinθ
欲使棒ab在轨道上保持静止,滑动变阻器的使用电阻R应为多大?(g取10m/s2,其它电阻不计)
的磁场强弱有关。导线与 如图所示,通电直导线A与通电导线环B固定放置在同一水平面上,通有如图所示的电流时,通电直导线受到水平向
[问题]该磁场的特点?
在以铁芯为中心的圆圈上,
各点的磁感应强度B的大小是相等的.
2、电流表的工作原理
1、蹄形磁铁和铁芯间的磁场是均匀地辐射分布的,不管
磁通铁对电桌面线的压力圈增大转,不到受桌面什摩擦么力作角用 度,它的平面都跟磁感应线平行,当
表盘的刻度均匀,θ∝I
b
(2)两个电流不平行时,总有作用到方
向相同的趋势。
3.电流元分析法:
把整段电流分成很多小段直线电流,其中每一小段 就是一个电流元。先用左手定则判断出每小段电流元 受到的安培力的方向,再判断整段电流所受安培力的 方向,从而确定导体的运动方向。
例:如图,把轻质导线圈用绝缘细线悬
挂在磁铁N极附近,磁铁的轴线穿过线 圈的圆心且垂直于线圈平面。当线圈内
导线拓在的平面与匀强磁场垂直,匀强磁场的
磁感应强度为B,求导线abc所受安培力的大
小和方向.
a
Fab BIL Fabc 2BIL
Fbc BIL
b
c
【例3】如图所示,两平行光滑导轨相距,与水平 面夹角为450,金属棒MN的质量为,处在竖直向上 磁感应强度为1T的匀强磁场中,电源电动势为6V, 内阻为1Ω,为使MN处于静止状态,则电阻R应为多 少?(其他电阻不计)
与导线的长度、电流强度 磁铁对桌面的压力减小,受桌面的摩擦力作用
通电线圈在磁场中受安培力的作用发生转动
都成正比,其比值与该处 F = ILBsinθ
欲使棒ab在轨道上保持静止,滑动变阻器的使用电阻R应为多大?(g取10m/s2,其它电阻不计)
的磁场强弱有关。导线与 如图所示,通电直导线A与通电导线环B固定放置在同一水平面上,通有如图所示的电流时,通电直导线受到水平向
1-1安培力及其应用课件(30张PPT)

I1
I1
I2
×
F×
12
×
×
×
×
×
×
×
×
· ·
· ·
F
· · 21
· ·
· ·
同向电流
I2
同向电流相互吸引,反向电流相互排斥。
I1
I1
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
F12
F21
I2
I2
反向电流
例 如图所示,两根平行放置的长直导线a和b载有大小相同、方向相反的电流,
a受到的磁场力大小为F1,当加入一与导线所在平面垂直的匀强磁场后,a受
C.在线圈转动的范围内,各处的磁场都是匀强磁场
D.在线圈转动的范围内,线圈所受安培力与电流有关,而与所处位置无关
谢 谢!
圆柱间的磁场都沿半径方向,保持线圈转动时,
安培力的大小不受磁场影响,线圈所受安培力的
方向始终与线圈平面垂直,线圈平面都与磁场方
向平行,表盘刻度均匀。
S
N
(4)优缺点
优点:灵敏度高,可以测出很弱的电流。
缺点:线圈的导线很细,允许通过的电流很弱(量程小)。
要测较大的电流,必须进行改装。
磁电式电流表
例 图甲是磁电式电流表的结构示意图,蹄形磁铁和铁芯间的磁场均
(2)通电线圈转动到与磁场方向垂直的位置时(平衡位置),受力平衡,由于惯性继续转
动。(图b)
想一想
用什么办法能使线圈持续转动呢?
当线圈刚过平衡位置时,要及时改变线圈中导体ab和cd所受力的方向。
用什么办法能改变力的方向呢?哪种方法更方便?
I1
I2
×
F×
12
×
×
×
×
×
×
×
×
· ·
· ·
F
· · 21
· ·
· ·
同向电流
I2
同向电流相互吸引,反向电流相互排斥。
I1
I1
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
F12
F21
I2
I2
反向电流
例 如图所示,两根平行放置的长直导线a和b载有大小相同、方向相反的电流,
a受到的磁场力大小为F1,当加入一与导线所在平面垂直的匀强磁场后,a受
C.在线圈转动的范围内,各处的磁场都是匀强磁场
D.在线圈转动的范围内,线圈所受安培力与电流有关,而与所处位置无关
谢 谢!
圆柱间的磁场都沿半径方向,保持线圈转动时,
安培力的大小不受磁场影响,线圈所受安培力的
方向始终与线圈平面垂直,线圈平面都与磁场方
向平行,表盘刻度均匀。
S
N
(4)优缺点
优点:灵敏度高,可以测出很弱的电流。
缺点:线圈的导线很细,允许通过的电流很弱(量程小)。
要测较大的电流,必须进行改装。
磁电式电流表
例 图甲是磁电式电流表的结构示意图,蹄形磁铁和铁芯间的磁场均
(2)通电线圈转动到与磁场方向垂直的位置时(平衡位置),受力平衡,由于惯性继续转
动。(图b)
想一想
用什么办法能使线圈持续转动呢?
当线圈刚过平衡位置时,要及时改变线圈中导体ab和cd所受力的方向。
用什么办法能改变力的方向呢?哪种方法更方便?
高二物理选修课件安培力的应用

02
安培力在生活中的应用
电磁铁工作原理及类型
电磁铁工作原理
电磁铁是利用安培力原理工作的装置,当导线通电后,在导线周围产生磁场,使 得铁芯被磁化,从而产生强大的磁力。
电磁铁类型
根据用途和特性,电磁铁可分为直流电磁铁和交流电磁铁。直流电磁铁具有稳定 的磁力和较好的控制性能,而交流电磁铁则具有较大的磁力和较快的响应速度。
优势
磁悬浮列车具有无接触、无磨损、低 噪音、低能耗和高速度等优点,是未 来城市轨道交通的重要发展方向。
超导材料中安培力特性
超导材料中的安培力
在超导材料中,电流可以无阻力地流动,形成强大的磁场。安培力在这种环境下表现出独特的性质, 如超导磁悬浮和超导电机等。
应用前景
超导材料中的安培力特性为超导技术的应用提供了广阔的空间,如超导磁体、超导储能、超导电机和 超导量子干涉仪等。这些技术在能源、交通、医疗和科研等领域具有巨大的应用潜力。
扬声器和话筒中安培力作用
扬声器中安培力作用
扬声器是将电信号转换为声音信号的装置。在扬声器中,安培力使得音圈在磁场中振动,从而驱动振膜发出声音 。安培力的大小和方向决定了扬声器的音质和音量。
话筒中安培力作用
话筒是将声音信号转换为电信号的装置。在话筒中,声音信号通过振膜转换为机械振动,然后经过磁场的作用, 将机械振动转换为电信号。安培力在这个过程中起到了关键的作用,它使得话筒能够准确地捕捉声音并转换为相 应的电信号。
法拉第电磁感应定律联系
法拉第电磁感应定律表明,当穿过回 路的磁通量发生变化时,回路中就会 产生感应电动势。而安培力是磁场对 电流的作用力,因此安培力与电磁感 应现象密切相关。
当导体在磁场中运动时,如果导体中 的自由电荷随导体一起运动,那么这 些自由电荷就会受到洛伦兹力的作用 。洛伦兹力会使自由电荷发生定向移 动,从而形成感应电流。这个感应电 流又会受到安培力的作用,进一步影 响导体的运动状态。
高中物理新选修课件安培力的应用

安培力公式
安培力的大小可以通过公式F=BIL来计算,其中F为安培力,B为磁感应强度,I为电流强 度,L为导线在磁场中的有效长度。
安培力方向
安培力的方向可以用左手定则来判断,即伸开左手,使拇指与其余四个手指垂直,并且都 与手掌在同一平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的 方向就是通电导线在磁场中所受安培力的方向。
03
动生和感生电动势的计算方法
根据法拉第电磁感应定律和洛伦兹力公式,可以推导出动生和感生电动
势的计算公式,从而计算出相应的电动势大小。
03
安培力在磁场中运动规律
洛伦兹力与霍尔效应
洛伦兹力
运动电荷在磁场中所受到的力,其方向垂直于磁场方向和电 荷运动方向所构成的平面,遵循左手定则。
霍尔效应
当电流垂直于外磁场通过半导体时,载流子发生偏转,垂直 于电流和磁场的方向会产生一附加电场,从而在半导体的两 端产生电势差。
通过测量磁通量的变化率,可以计算出感应电动势的大小,从而了解电磁感应现 象的本质和规律。
动生和感生电动势计算
01 02
动生电动势
当导体在磁场中运动时,会在导体中产生动生电动势。动生电动势的大 小与导体的运动速度、磁场的磁感应强度以及导体与磁场的相对角度有 关。
感生电动势
当磁场发生变化时,会在导体中产生感生电动势。感生电动势的大小与 磁通量的变化率有关。
VS
无线电波接收
通过天线接收空中的电磁波,并将其转换 为高频电流。接收过程中的关键元件包括 接收器、解调器和放大器等。通过解调器 将高频信号还原为原始信号,实现信息的 接收和识别。
05
实验:测量安培力大小和方向
实验目的和器材准备
实验目的
安培力的大小可以通过公式F=BIL来计算,其中F为安培力,B为磁感应强度,I为电流强 度,L为导线在磁场中的有效长度。
安培力方向
安培力的方向可以用左手定则来判断,即伸开左手,使拇指与其余四个手指垂直,并且都 与手掌在同一平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的 方向就是通电导线在磁场中所受安培力的方向。
03
动生和感生电动势的计算方法
根据法拉第电磁感应定律和洛伦兹力公式,可以推导出动生和感生电动
势的计算公式,从而计算出相应的电动势大小。
03
安培力在磁场中运动规律
洛伦兹力与霍尔效应
洛伦兹力
运动电荷在磁场中所受到的力,其方向垂直于磁场方向和电 荷运动方向所构成的平面,遵循左手定则。
霍尔效应
当电流垂直于外磁场通过半导体时,载流子发生偏转,垂直 于电流和磁场的方向会产生一附加电场,从而在半导体的两 端产生电势差。
通过测量磁通量的变化率,可以计算出感应电动势的大小,从而了解电磁感应现 象的本质和规律。
动生和感生电动势计算
01 02
动生电动势
当导体在磁场中运动时,会在导体中产生动生电动势。动生电动势的大 小与导体的运动速度、磁场的磁感应强度以及导体与磁场的相对角度有 关。
感生电动势
当磁场发生变化时,会在导体中产生感生电动势。感生电动势的大小与 磁通量的变化率有关。
VS
无线电波接收
通过天线接收空中的电磁波,并将其转换 为高频电流。接收过程中的关键元件包括 接收器、解调器和放大器等。通过解调器 将高频信号还原为原始信号,实现信息的 接收和识别。
05
实验:测量安培力大小和方向
实验目的和器材准备
实验目的
《高三物理安培力》PPT课件

根据左手定则可判断导线c受到的安培力垂直ab边,
指向左边。
a
c
b
Ba
Bb
B合
gk015.2008年高考理综四川延考区卷23 23.(14分)图为一电流表的原理示意图。质量为m 的均质细金属棒MN的中点处通过一绝缘挂钩与一竖 直悬挂的弹簧相连,弹簧劲度系数为k。在矩形区域 abcd内有匀强磁场,磁感应强度大小为B,方向垂直 纸面向外。与MN的右端N连接的一绝缘轻指针可指 示标尺上的读数,MN的长度大于 ab 。当MN中没 有电流通过且处于平衡状态时,
F
S1 S2
mg
mg ( 1 cos 37 ) 0.0510 ( 1 0.8 )
图丙
I Bl sin 37 1 3 0.1 0.6 5A
请你判断,他们的解法哪个正确?
错误的请指出错在哪里。
答: 乙同学的解法正确,甲同学的错误
错误原因:认为物体速度为零时,一定处于平衡状 态,或者认为偏角最大的是平衡位置。
解:(1)
设弹簧的伸长为⊿x ,则有 mg=k⊿x ①
由①式得 x mg
②
k
(2)为使电流表正常工作,作用于通有电流的金属
棒MN的安培力必须向下。因此M端应接正极。
(3)设满量程时通过MN的电流强度为Im,则有
BIm ab mg k( bc x )
③
联立①③并代入数据得 Im=2.5 A
当两导线互相垂直时,用左手定则分别判定每半根导 线所受的安培力。
028.上海普陀区08年1月期末调研试卷 5 5、如图所示,用两条一样的弹簧秤吊着一根铜
棒,铜棒所在的虚线框范围内有垂直纸面的匀强磁 场,棒中通入自左向右的电流。当棒静止时,两弹 簧秤示数均为F1;若将棒中电流反向,当棒静止时, 两弹簧秤的示数均为F2,且F2>F1,根据上面所给 的信息,可以确定:( A C D)
安培力PPT教学课件

总结词
安培力是一个涉及磁场、电流和相对运动的基本物理现象。然而,尽管安培力的基本性质已经被研究了很长时间,但在实际应用中,尤其是在复杂环境和多物理场条件下,安培力的微观机制和演化过程仍存在许多未解决的问题。此外,现有的安培力调控方法往往局限于特定的材料和结构,缺乏普适性,这也限制了安培力在实际应用中的广泛使用。
安培力在电磁炉中的应用
加热原理
电磁炉利用安培力产生的涡流效应,将电能转化为热能,实现对锅具和食物的加热。
驱动电机
电动车的驱动电机利用安培力实现车辆的加速和减速,电机输出的转矩通过传动系统传递到车轮。
安培力在电动车中的应用
电磁制动器
电动车的电磁制动器利用安培力进行制动,通过在制动盘上产生制动力矩来实现车辆减速或停车。
通过实验数据验证安培力的计算公式:F=BILsinθ。
04
安培力的应用与案例
03
电动压缩机
电动压缩机使用安培力来驱动活塞运动,实现制冷剂的压缩和输送。
安培力在工业中的应用
01
直线电机
安培力驱动的直线电机能够实现精准的直线运动,广泛应用于机械加工、装配线等工业领域。
02
电磁起重机
利用安培力原理,电磁起重机可以轻松地提起和搬运重物,极大提高了工业生产效率。
安培力的定义
安培力的性质
安培力具有作用力与反作用力、共线性和左手定则等性质。
总结词
安培力是磁场对通电导线的相互作用力,满足牛顿第三定律,作用力与反作用力大小相等、方向相反;通电导线在磁场中受到的安培力与导线放置的方向有关,当导线放置方向与磁场方向平行时,安培力为零;当导线放置方向与磁场方向垂直时,安培力最大。
根据安培力公式,我们可以计算出安培力的大小为:$F = 0.5 \times 5 \times 2 \times \sin 30^{\circ} = 2.5 N$。
安培力是一个涉及磁场、电流和相对运动的基本物理现象。然而,尽管安培力的基本性质已经被研究了很长时间,但在实际应用中,尤其是在复杂环境和多物理场条件下,安培力的微观机制和演化过程仍存在许多未解决的问题。此外,现有的安培力调控方法往往局限于特定的材料和结构,缺乏普适性,这也限制了安培力在实际应用中的广泛使用。
安培力在电磁炉中的应用
加热原理
电磁炉利用安培力产生的涡流效应,将电能转化为热能,实现对锅具和食物的加热。
驱动电机
电动车的驱动电机利用安培力实现车辆的加速和减速,电机输出的转矩通过传动系统传递到车轮。
安培力在电动车中的应用
电磁制动器
电动车的电磁制动器利用安培力进行制动,通过在制动盘上产生制动力矩来实现车辆减速或停车。
通过实验数据验证安培力的计算公式:F=BILsinθ。
04
安培力的应用与案例
03
电动压缩机
电动压缩机使用安培力来驱动活塞运动,实现制冷剂的压缩和输送。
安培力在工业中的应用
01
直线电机
安培力驱动的直线电机能够实现精准的直线运动,广泛应用于机械加工、装配线等工业领域。
02
电磁起重机
利用安培力原理,电磁起重机可以轻松地提起和搬运重物,极大提高了工业生产效率。
安培力的定义
安培力的性质
安培力具有作用力与反作用力、共线性和左手定则等性质。
总结词
安培力是磁场对通电导线的相互作用力,满足牛顿第三定律,作用力与反作用力大小相等、方向相反;通电导线在磁场中受到的安培力与导线放置的方向有关,当导线放置方向与磁场方向平行时,安培力为零;当导线放置方向与磁场方向垂直时,安培力最大。
根据安培力公式,我们可以计算出安培力的大小为:$F = 0.5 \times 5 \times 2 \times \sin 30^{\circ} = 2.5 N$。
1.1安培力 课件-高中物理粤教版(2019)选择性必修第二册(共26张PPT)

电路实物图
电脑界面图
三、安培力的大小
1.表达式:
F=ILBsin θ
2.适用条件: 匀强磁场
3.理解:
• θ是导线与磁场方向的夹角
• F与B、I、L及θ均有关
• 对于弯曲导线,L是有效长度
L 等于连接两端点直线的长度,
相应的电流沿 L 由始端流向末端。
三、安培力的大小
3、解决问题
在如图所示的实验中,两根固定的金属导轨间距离为 L,处于蹄形磁铁两极中间的磁场可近似看成是
二、安培力的方向
3、判断安培力方向的理论方法
弗莱明的理论方法:
将左手的大拇指、食指和中指
伸直,使其在空间中相互垂直
,食指方向代表磁场方向,中
指代表电流方向,那拇指所指
的方向就是受力方向。
二、安培力的方向
4、左手定则
伸开左手,使拇指与其余四个手指垂直且都与手掌共面;让
磁感线从掌心进入,并使四指指向电流的方向,这时拇指所
根据左手定则,可知金属棒受到
的安培力方向为水平向右。
解决问题
在如图所示的实验中,两根固定的金属导轨间距离为 L,处
于蹄形磁铁两极中间的磁场可近似看成是匀强磁场,磁感应
强度为B且垂直导轨平面,金属棒长度为l(L<l),测得电路中
电流大小为I。金属棒由干受到安培力作用而沿轨道向前滚动,
忽略金属棒与导轨之间的摩擦。
同学丙:适当增大金属棒中的电流。谁的建议可行?为什么?
解决问题
在如图所示的实验中,两根固定的金属导轨间距离为 L,处
于蹄形磁铁两极中间的磁场可近似看成是匀强磁场,磁感应
分析:
导体棒作为研究对象
强度为B且垂直导轨平面,金属棒长度为l(L<l),测得电路中
【物理课件】选修3第四节安培力的应用ppt课件

大型和超大型直流电机的生产和维修
第四节 安培的应用 二. 磁电式电表
【说明】 由于磁场对电流的作用力跟电流成正比,因而安培力的
力矩也跟电流成正比,而螺旋形弹簧的扭矩与指针转过的角 度成正比,所以磁电式电表的表盘刻度是均匀的。
第四节 安培力的应用
【物理课件】选修3第四节安 培力的应用ppt课件
第四节 安培力的应用 直流电动机的运转过程:
第四节 安培力的应用 常见的直流电动机:
【说明】 大多数微型和小型直流电动机是用永磁铁提供磁场,而
大型和超大型直流电动机是用励磁电流来提供磁场的。
大型和超大型直流电机的生产和维修
大型和超大型直流电机的生产和维修