专题3.3 利用导数研究函数的最值、极值-2020届高考数学一轮复习学霸提分秘籍(解析版)

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三篇 导数及其应用

专题3.03 利用导数研究函数的极值、最值

【考点聚焦突破】

考点一 利用导数解决函数的极值问题 角度1 根据函数图象判断函数极值

【例1-1】 已知函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )

A.函数f (x )有极大值f (2)和极小值f (1)

B.函数f (x )有极大值f (-2)和极小值f (1)

C.函数f (x )有极大值f (2)和极小值f (-2)

D.函数f (x )有极大值f (-2)和极小值f (2) 【答案】 D

【解析】 由题图可知,当x <-2时,f ′(x )>0;当-22时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.

【规律方法】 由图象判断函数y =f (x )的极值,要抓住两点:(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性.两者结合可得极值点. 角度2 已知函数求极值

【例1-2】 (2019·天津和平区模拟)已知函数f (x )=ln x -ax (a ∈R ). (1)当a =1

2

时,求f (x )的极值;

(2)讨论函数f (x )在定义域内极值点的个数. 【答案】见解析

【解析】(1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x

2x ,

令f ′(x )=0,得x =2,

于是当x 变化时,f ′(x ),f (x )的变化情况如下表.

x (0,2) 2 (2,+∞)

f ′(x ) +

0 -

f (x )

ln 2-1

故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1

x -a =1-ax x

(x >0).

当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,

即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,当x ∈⎝⎛⎭⎫0,1

a 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1

a ,+∞时,f ′(x )<0, 故函数在x =1

a

处有极大值.

综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1

a

.

【规律方法】 运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.

角度3 已知函数的极(最)值求参数的取值 【例1-3】 (2019·泰安检测)已知函数f (x )=ln x . (1)求f (x )图象的过点P (0,-1)的切线方程;

(2)若函数g (x )=f (x )-mx +m

x 存在两个极值点x 1,x 2,求m 的取值范围.

【答案】见解析

【解析】(1)f (x )的定义域为(0,+∞),且f ′(x )=1

x .

设切点坐标为(x 0,ln x 0),则切线方程为y =1

x 0x +ln x 0-1.

把点P (0,-1)代入切线方程,得ln x 0=0,∴x 0=1. ∴过点P (0,-1)的切线方程为y =x -1.

(2)因为g (x )=f (x )-mx +m x =ln x -mx +m

x (x >0),

所以g ′(x )=1x -m -m x 2=x -mx 2-m

x 2=-mx 2-x +m x 2,

令h (x )=mx 2-x +m ,

要使g (x )存在两个极值点x 1,x 2,

则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.

故只需满足⎩⎪⎨⎪⎧h (0)>0,

12m >0,

h ⎝⎛⎭

⎫12m <0即可,解得0

2

.

【规律方法】已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.

【训练1】 (1)(2017·全国Ⅱ卷)若x =-2是函数f (x )=(x 2+ax -1)·e x -1

的极值点,则f (x )的极小值为( )

A.-1

B.-2e -

3

C.5e -

3

D.1

【答案】 A

【解析】 f ′(x )=[x 2+(a +2)x +a -1]·e x -

1, 则f ′(-2)=[4-2(a +2)+a -1]·e -

3=0⇒a =-1, 则f (x )=(x 2-x -1)·e x -

1,f ′(x )=(x 2+x -2)·e x -

1, 令f ′(x )=0,得x =-2或x =1, 当x <-2或x >1时,f ′(x )>0, 当-2

所以x =1是函数f (x )的极小值点, 则f (x )极小值为f (1)=-1.

(2)(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . ①若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; ②若f (x )在x =2处取得极小值,求a 的取值范围. 【答案】见解析

【解析】①因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x .

相关文档
最新文档