变压器油中溶解气体气相色谱分析流程
变压器油中溶解气体现象的分析

变压器油中溶解气体现象的分析变压器油中溶解气体现象的分析第一步:引言变压器油是一种用于绝缘和冷却变压器的重要介质。
然而,随着变压器运行时间的增加,变压器油中溶解气体的含量可能会逐渐增加。
本文将分析变压器油中溶解气体的现象,并探讨其对变压器性能和可靠性的影响。
第二步:溶解气体的来源变压器油中的溶解气体主要来自两个方面。
首先,变压器运行时,由于油和固体绝缘材料的老化或损坏,可能会产生气体。
这些气体可以是空气中的氧、氮等。
其次,变压器油中的溶解气体还可能来自油中的悬浮颗粒的气体释放。
这些颗粒可能是由于变压器运行时的摩擦和磨损或材料老化产生的。
第三步:溶解气体的影响变压器油中溶解气体的存在会对变压器性能和可靠性产生不利影响。
首先,氧是变压器油中常见的溶解气体之一。
氧的存在会导致油中产生氧化反应,使油质变差,进而降低绝缘性能。
其次,氮和氢等气体的存在会增加变压器中气体的总体积,从而增加内部压力。
如果压力过高,可能会导致油泄漏或甚至引发爆炸。
此外,溶解气体的存在还会降低油的介电强度,增加击穿的风险。
第四步:溶解气体的分析方法为了准确评估变压器油中溶解气体的含量,常用的方法是通过气相色谱法进行分析。
该方法可以快速、准确地检测油中的氧、氮、氢等气体含量。
通过定期进行油样分析,可以监测变压器油中溶解气体的变化趋势,及时采取相应的维护措施。
第五步:溶解气体的控制和维护为了保持变压器的正常运行和延长其使用寿命,需要控制和维护变压器油中的溶解气体含量。
首先,定期检查变压器的绝缘材料,及时更换老化或损坏的部件,以减少气体的产生。
其次,定期进行变压器油的维护,包括油的过滤和再生处理,以去除油中的悬浮颗粒和溶解气体。
此外,对于高压变压器,还可以考虑安装气体放散装置,以便及时排放变压器内部的气体。
第六步:结论变压器油中溶解气体的存在会对变压器性能和可靠性产生不利影响。
通过定期进行油样分析和维护,可以控制和减少溶解气体的含量,保持变压器的正常运行和延长其使用寿命。
DLT 722-2000 变压器油中溶解气体分析和判断导则

3.1 特征气体 对判断充油电气设备内部故障有价值的气体,即氢气(H2)、甲烷(CH4)、乙烷(C2H6)、
乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)。 3.2 总烃
烃类气体含量的总和,即甲烷、乙烷、乙烯和乙炔含量的总和。 3.3 游离气3 游离气体
5 检测周期
5.1 投运前的检测 按表 2 进行定期检测的新设备及大修后的设备,投运前应至少做一次检测。如果在现
场进行感应耐压和局部放电试验,则应在试验后再作一次检测。制造厂规定不取样的全密 封互感器不做检测。 5.2 投运时的检测
按表 2 所规定的新的或大修后的变压器和电抗器至少在投运后 1d(仅对电压 330KV 及 以上的变压器和电抗器、容量在 120MVA 及以上的发电厂升压变压器)、4d、10d、30d 各 做一次检测,若无异常,可转为定期检测。制造厂规定不取样的全密封互感器不做检测。 套管在必要时进行检测。 5.3 运行中的定期检测
于 300℃,在生成水的同时,生成大量的CO和CO2及少量烃类气体和呋喃化合物,同时被油
氧化。CO和CO2的形成不仅随温度而且随油中氧的含量和纸的湿度增加而增加。
概括上述的要点,不同的故障类型产生的主要特征气体和次要特征气体可归纳为表 1.
分解出的气体形成气泡,在油中经流、扩散,不断地溶解在油中。这些故障气体的组 成和含量与故障的类型及其严重程度有密切关系。因此,分析溶解于油中的气体,就能尽 早发现设备内部存在的潜伏性故障,并可随时监视故障的发展状况。
运行中设备的定期检测周期按表 2 的规定进行。 5.4 特殊情况下的检测
当设备出现异常时(如气体继电器动作,受大电流冲击或过励磁等),或对测试结果有 怀疑时,应立即取油样进行检测,并根据检测出的气体含量情况,适当缩短检测周期。
油中溶解气体色谱分析

油中溶解气体色谱分析一、运行中充油设备中溶解气体色谱分析周期1.330KV及以上变压器、电抗器为3个月。
2.220KV变压器为6个月。
3.35KV级以上,容量为1000KV A及以上的电力变压器每年一次;对比较重要的变压器,可缩短检测周期。
4.电抗器检测周期同电力变压器。
5.66KV级及以上的CT、PT每2—3年检测一次,如有全密封者不用检测。
6.大修后和新投入的变压器,在投运前要做一次检测,投运后一段时期内多检测几次。
二、粗略判断将色谱分析结果的几项主要指标(总烃、乙炔、氢气)与注意值作比较:表1 各种充油电气设备油中气体含量的注意值注:1.乙炔是充油设备内部存在电性故障的特征气体。
2.总烃是热性故障的特征气体,其中乙烯往往作为高温过热的特征气体,甲烷在其含量大于氢时,可作低温过热的特性气体。
3.ppm为百万分率(10-6)1ppm=0.0001%。
4.500kv电力变压器乙炔含量的注意值为1ppm。
5.故障点温度较低时,油中溶解气体的组成主要是CH4,随着温度升高,产气率最大的气体依次为CH4、C2H6、C2H4、C2H2。
通常油中的C2H6含量小于CH4,是由于C2H6不稳定,在一定温度下极易分解为C2H6(气)= C2H4(气)+H2(气),即C2H4和H2是相伴产生的。
表2 氢、烃气体含量限值判断若分析结果超过油中溶解气体注意值,则表明设备处于非正常运行状态,进一步采用特征气体判断法确定故障性质和状态。
三、定性分析特征气体判断法:(过热性故障、放电性故障、过热和放电并存故障)表3 判断故障性质的特征气体法气体特征随着故障类型、故障能量及及其涉及的绝缘材料的不同而不同,即故障点产生烃类气体的不饱和度与故障源的能量密度之间有密切关系。
表4 气体中主要成份与异常情况的关系注:1.氢含量单值超标,主要是设备进水受潮所致,进行电气试验和微水分析。
2.氢含量超标,同时CO、CO2含量较大,固体绝缘受潮后加速老化的结果。
变压器油中溶解气体分析和判断导则DL精选T—精编

变压器油中溶解气体分析和判断导则编写:审核:批准:变压器油中溶解气体分析和判断导则Guidetotheanalysisandthediagnosisofgasesdissolvedintransformeroil1范围本导则推荐了利用气相色谱法分析溶解气体和游离气体的浓度,以判断充油电气设备运行状况的方法以及建议应进一步采取的措施。
本导则适用于充有矿物绝缘油和以纸或层压纸板为绝缘材料的电气设备,其中包括变压器、电抗器、电流互感器、电压互感器和油纸套管等。
2引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。
本标准出版时,所示版本均为有效。
所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。
GB7597—87电力用油(变压器油、汽轮机油)取样方法GB/T17623—1998绝缘油中溶解气体组分含量的气相色谱测定法DL/T596—1996电力设备预防性试验规程IEC567—1992从充油电气设备取气样和油样及分析游离气体和溶解气体的导则IEC60599—1999运行中矿物油浸电气设备溶解气体和游离气体分析的解释导则3定义本导则采用下列定义。
3.1特征气体characteristicgases对判断充油电气设备内部故障有价值的气体,即氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)。
3.2总烃totalhydrocarbon烃类气体含量的总和,即甲烷、乙烷、乙烯和乙炔含量的总和。
3.3游离气体freegases非溶解于油中的气体。
4产气原理4.1绝缘油的分解绝缘油是由许多不同分子量的碳氢化合物分子组成的混合物,分子中含有CH3*、CH2*和CH*化学基团,并由C—C键键合在一起。
由电或热故障的结果可以使某些C—H键和C —C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基,这些氢原子或自由基通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体,如甲烷、乙烷、乙烯、乙炔等,也可能生成碳的固体颗粒及碳氢聚合物(X-蜡)。
变压器油气相色谱分析

变压器油气相色谱分析一、基本原理正常情况下充油电气设备内的绝缘油及有机绝缘材料,在热和电的作用下,会逐渐老化和分解,产生少量的各种低分子烃类及二氧化碳、一氧化碳等。
这些气体大部分溶解在油中。
当存在潜伏性过热或放电故障时,就会加快这些气体的产生速度。
随着故障发展,分解出的气体形成的气泡在油里经对流、扩散,不断溶解在油中。
例如在变压器里,当产气量大于溶解量时,变有一部分气体进入气体继电器。
故障气体的组成和含量与故障的类型和故障的严重程度有密切关系。
因此,在设备运行过程中定期分析溶解与由衷的气体就能尽早发现设备内部存在的潜伏性故障并随时掌握故障的发展情况。
当变压器的气体继电器内出现气体时,分析其中的气体,同样有助于对设备的情况做出判断。
二、用气相色谱仪进行气体分析的对象氢(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)、氧(O2)、氮(N2)九种气体作为分析对象。
三、试验结果的判断1、变压器等充油电气中绝缘材料主要是绝缘油和绝缘纸。
设备在故障下产生的气体主要也是来源于油和纸的热裂解。
2、变压器内产生的气体:变压器内的油纸绝缘材料会在电和热的作用下分解,产生各种气体。
其中对判断故障有价值的气体有甲烷、乙烷、乙烯、乙炔、氢、一氧化碳、二氧化碳。
在正常运行温度下油和固体绝缘正常老化过程中,产生的气体主要是一氧化碳和二氧化碳。
在油纸绝缘中存在局部放电时,油裂解产生的气体主要是氢和甲烷。
在故障温度高于正常运行温度不多时,油裂解的产物主要是甲烷。
随着故障温度的升高,乙烯和乙烷的产生逐渐成为主要特征。
在温度高于1000℃时,例如在电弧弧道温度(3000℃)的作用下,油分解产物中含有较多的乙炔。
如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳和二氧化碳。
有时变压器内并不存在故障,而由于其它原因,在油中也会出现上述气体,要注意这些可能引起误判断的气体来源。
变压器油中溶解气体的检测与分析技术

变压器油中溶解气体的检测与分析技术变压器是电力系统中常用的设备之一,其正常运行对电力系统的稳定运行起着至关重要的作用。
然而,随着变压器运行时间的增长,变压器油中可能会溶解各种气体,这些气体可能对变压器的性能和安全性造成不利影响。
因此,准确检测和分析变压器油中的溶解气体成分,对变压器的运行状态进行评估和维护具有重要意义。
一、变压器油中溶解气体的来源及其影响1. 溶解气体来源变压器油中的溶解气体主要来源于以下几个方面:(1)变压器绝缘体的老化、降解过程中产生的气体;(2)变压器内部与油接触的活性金属表面(如铜、铁等)的腐蚀产物;(3)变压器内部存在的绝缘材料或固体绝缘层的气体释放;(4)变压器运行过程中,外界环境中进入变压器的气体。
2. 影响变压器油中溶解气体的存在会对变压器的性能和安全性产生以下不利影响:(1)气体在变压器中积聚会导致电晕放电等异常现象,加剧设备老化;(2)有些溶解气体在变压器油中会发生化学反应,产生酸性物质,对变压器内部金属与绝缘材料的腐蚀加剧;(3)气体的存在会降低变压器油的绝缘性能,缩短变压器的使用寿命;(4)变压器油中气体增加会导致油的体积变大,进而影响变压器油的流动性和传热性。
二、变压器油中溶解气体的检测技术1. 气体浓度检测气体浓度检测是评估变压器油中溶解气体含量的主要方法之一。
常用的气体浓度检测技术包括:(1)气体色谱法:利用气体色谱仪检测变压器油中各种气体的含量,通过对色谱图的解析和比对,确定各种气体的浓度。
(2)红外光谱法:利用红外传感器对变压器油中的溶解气体进行检测,通过红外光谱的吸收峰进行气体浓度的定量分析。
(3)超声波法:通过超声波传感器对变压器油进行扫描,测定气体的传递速度以及声速的变化,进而计算出气体的浓度。
2. 气体成分分析除了检测气体的浓度外,对气体成分进行精确分析也是重要的一步。
常用的气体成分分析技术有:(1)质谱法:利用质谱仪对变压器油中溶解气体进行定性和定量分析,通过碰撞诱导解离(CID)技术,实现气体分子的碎片化,进而确定气体成分。
变压器油中的溶解气体分析方法

变压器油中的溶解气体分析方法随着变压器的使用年限逐渐增长,变压器油中的溶解气体也会越来越多。
这些溶解气体会导致油的劣化和变压器内部部件的氧化腐蚀,从而影响变压器正常运行。
因此,分析变压器油中的溶解气体,了解其类型和含量,对变压器的维护和管理非常重要。
那么,变压器油中的溶解气体分析方法有哪些呢?一、气相色谱法气相色谱法是目前应用较广泛的溶解气体分析方法之一。
该方法适用于水、空气、油和气体中的溶解气体的分析。
变压器油中的溶解气体分析中,气相色谱法可以分析二氧化碳、乙烯、甲烷等气体。
气相色谱法的分析原理是将混合气体样品与气相色谱柱中填充的固定相分离。
气相色谱法具有分离效果好、分离速度快、分析灵敏度高等特点。
但是,气相色谱法需要有较高的分析仪器设备和专业技术,使用成本相对较高。
二、傅里叶变换红外光谱法傅里叶变换红外光谱法是一种将样品吸收红外辐射产生的光谱进行处理以获取样品化学结构信息的分析方法。
在变压器油中的溶解气体分析中,该方法适用于氢气、氧气、氮气、二氧化碳等气体的检测。
傅里叶变换红外光谱法的分析原理是通过改变样品中各种化学键所吸收的红外光的频率来对样品分析。
该方法具有快速、准确、不需要分离样品等优点。
但是,傅里叶变换红外光谱法需要对样品进行前处理,如稀释、过滤等,同时也需要高质量的样品和分析仪器设备。
三、电化学分析法电化学分析法是一种利用电化学方法进行分析的技术。
在变压器油中的溶解气体分析中,该方法适用于氢气、氧气、二氧化碳等气体的检测。
电化学分析法的分析原理是利用电极反应与被测物质间的作用,测定电荷变化或者释放的能量,并进一步计算出被测物质的含量。
该方法具有实时、便捷、经济等优点,但也存在着变压器油中其他成分对溶解气体分析的干扰问题。
综上所述,变压器油中的溶解气体分析方法有多种,每种方法具有不同的优缺点和适用范围。
因此,在实际应用中需要根据分析要求和条件选择合适的分析方法,综合考虑分析精度、成本和可操作性等因素,以实现对变压器油中溶解气体的高效分析和准确检测,提升变压器的正常运行和使用寿命。
变压器油中溶解气体的分析与故障判断

变压器油中溶解气体的分析与故障判断随着变压器运行时间的延长,变压器可能产生初期故障,油中某些可燃性气体则是内部故障的先兆,这些可燃气体可降低变压器油的闪点,从而引起早期故障。
变压器油和纤维绝缘材料在运行中受到水分、氧气、热量以及铜和铁等材料催化作用的影响而老化和分解,产生的气体大部分溶于油中,但产生气体的速率是相当缓慢的。
当变压器内部存在初期故障或形成新的故障条件时,其产气速率和产气量则十分明显,绝大多数的初期缺陷都会出现早期迹象,因此,对变压器产生气体进行适当分析即能检测出故障。
1、变压器油中的气体类别气相色谱法正是对变压器油中可燃性气体进行分析的最切实可行的方法,该方法包括从油中脱气和测量两个过程。
矿物油是由大约2871种液态碳氢化合物组成的,通常只鉴别绝缘油中的氢气(H2)、氧气(O2)、氮气(N2)、甲烷(CH4)、一氧化碳(CO)、乙烷(C2H6)、二氧化碳(CO2)、乙烯(C2H4)、乙炔(C2H2)9种气体,将这些气体从油中脱出并经分析,证明它们的存在及含量,即可反映出产生这些气体的故障类型和严重程度。
油在正常老化过程产生的气体主要是一氧化碳(CO)和二氧化碳(CO2),油绝缘中存在局部放电时(如油中气泡击穿),油裂解产生的气体主要是氢气(H2)和甲烷(CH4)。
在故障温度高于正常运行温度不多时,产生的气体主要是甲烷(CH4),随故障温度的升高,乙烯(C2H2)和乙烷(C2H6)逐渐成为主要物征气体;当温度高于1000℃时(如在电弧弧道温度300℃以上),油裂解产生的气体中含有较多的乙炔(C2H2),如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳(CO)和二氧化碳(CO2)。
2、如何判断电气设备的故障性质运用五种特征气体的三对比值判断电气设备的故障性质:(1)C2H2/C2H4≤0.1 0.1<CH4/H2<1C2H4/C2H6<1时,属变压器已正常老化。
(2)C2H2/C2H4≤0.1 CH4/H2<0.10.1<C2H4/C2H6<1时,属低能量密度的局部放电,是含气空腔中的放电,这种空腔是由于不完全浸渍、气体饱和或高湿度等原因造成的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、贮气玻璃注射器的准备:取5ml 玻璃注射器A ,抽取少量试油冲洗器筒内壁1~2次
后,吸入约0.5ml 试油,套上橡胶封帽,插入双头针头,针头垂直向上。
将注射器内的空气和试油慢慢排出,使试油充满注射器内壁缝隙而不致残存空气。
2、试油体积调节:将100ml 玻璃注射器B 中油样推出部分,准确调节注射器芯至40.0ml
刻度(V 1),立即用橡胶封帽将注射器出口密封。
为了排除封帽凹部内空气,可用试油填充其凹部或在密封时先用手指压扁封帽挤出凹部空气后进行密封。
操作过程中应注意防止空气气泡进入油样注射器B 内。
3、加平衡载气:取5ml 玻璃注射器C ,用载气清洗1~2次,再准确抽取5ml 载气,然
后将注射器C 内气体缓慢注入有试油的注射器B 内,操作示意如下图。
含气量低的试油,可适当增加注入平衡载气体积,但平衡后气相体积应不超过5ml 。
4、振荡平衡:将注射器B放入恒温定时振荡器内的振荡盘上。
注射器放置后,注射器头部要高于尾部约5°,且注射器出口在下部(振荡盘上按此要求设计制造)。
启动振荡器振荡操作钮,连续振荡20 min ,然后静止10 min 。
室温在10℃以下时,振荡前,注射器B 应适当预热后,再进行振荡。
5、转移平衡气:将注射器B从振荡盘中取出,并立即将其中的平衡气体通过双头针头转移到注射器A内。
室温下放置2 min ,准确读其体积V g(准确至0.1mL),以备色谱分析用。
为了使平衡气体完全转移,也不吸入空气,应采用微正压法转移,即微压注射器B的芯塞,使气体通过双针头进入注射器A。
不允许使用抽拉注射器A芯塞的方法转移平衡气。
注射器芯塞应洁净,以保证其活动灵活。
转移气体时,如发现注射器A卡涩时,可轻轻旋动注射器A的芯塞。
三、开机(以中分2000色谱仪为例)
1、拧下进样口压帽,检查进样胶垫是否需要更换进样胶垫.(进针次数较多时此处容易漏气、一般进针40次左右必须更换进样垫。
)注意进样压帽不要拧的太松或太紧,一般拧紧后再松半圈即可。
2、打开载气钢瓶气总阀,氢气和空气发生器的电源开关,通气十分钟左右(长期不用要通气至少20分钟),在通气期间,检查气体压力表参数是否正常.
载气1 ____ Mpa 载气2 ____ Mpa
氢气1 ____Mpa 氢气2 ____Mpa
空气0 Mpa(由电磁阀阀控制,未通电处于关闭状态)
3、打开色谱仪电源开关,观察空气压力表应为____Mpa,检查仪器面板上温度设定值和载气流量是否正常.
柱箱65 热导70氢焰150 转化360
流量____ ml/min 左右(温度全部到设定值后)
4、打开电脑和工作站
5、升温:直接按运行键,此时温度指示灯亮、仪器显示器上:柱箱热导、氢焰、转化,四路前面多了一个“■”,说明四路温度开始升温,直到温度升到设定值。
6、点火:直接按红色点火键点火.此时通道二的信号会自动由TCD(热导)切换到FID2(氢焰2)上去,氢焰指示灯亮(注:仪器氢焰指示灯代表信号切换,并不代表氢焰点火与否)。
判断点火是否成功,方法:1、用光亮的金属表面或玻璃片分别放到氢焰的两个出口,看是否有水蒸气产生,有则说明点火成功(最准确也最常用);2、看基线跳跃,基线有一个较大的跳动并且基线缓慢回落且会落的位置比原来的基线要高1MV以上,证明点火成功;3、十秒钟后点击工作站上的状态可显示点火是否成功0.5--1MV)。
7、加桥流:按热导键进入热导界面,观察桥流为70 ,然后按运行键此时热导指示灯亮说明桥流已经加上。
8、等基线稳定后即可做标样。
四、标定
1. 点标样按扭,弹出窗口,点确定后即可进针做标样。
2. 标样采集结束后,谱图会自动保存到数据库----标样谱图库中去
注意:1.每次开机后,都要做标样,对仪器进行标定。
2.至少标定2针以上。
3.标定的重复性误差要符合要求(3%以内)
五、分析
1. 从数据库-----标样谱图库中调出一个合格的标样。
2. 点样品按扭,弹出窗口
在窗口中正确选择所做油样的气体来源(绝缘油)、单位、设备名称,准确输入取样日期,气体来源,试油体积,脱气量,进样量,室温,大气压等影响计算结果的参数,之后点确定,即可进样品气。
3. 样品采集结束后,会自动保存到数据库---样品谱图库中去,同时会自动弹出计算结果窗口,一般先取消该窗口,观察一下样品谱图的认峰情况,如认错了或者没有认峰,请在该峰上
点鼠标的右键,选择正确的组份,然后再点按扭,会再次弹出修改后的样品计算结果窗口。
4. 在该窗口上,点打印计算结果按扭,即可将报告打印出来.
点确定按扭,即可将该结果保存到数据库-----样品记录库中去,便于日后查询原始结果。
六、关机
1.关闭工作站。
2.关闭氢气钢瓶总阀或氢气发生器开关。
3.关闭空气气源
4.关闭色谱仪电源开关。
5.约30分钟后,关闭载气。
附:注意事项
1.使用气源的纯度应在99.99%及以上。
如果使用钢瓶,当钢瓶压力小于2Mpa时需要更换钢瓶。
2. 氢气发生器要定期观察液位,及时补充蒸馏水;空气发生器要定期排水。
3.标气的有效为1年。
4.仪器长时间不用时需要定期升温保养,至少每周升温一次,(只需升温即可,不点火加桥流也行。
)大约两到三个小时。
5.仪器在升温、加桥流前一定要检查四路温控、桥流值、压力、载气流量等是否正常,如不正常,要查明原因后调整,并对仪器进行全面检查。
6.要经常检查进样垫是否漏气,如有漏气尽快更换。
7. 仪器所用的电脑应专用,不上网和玩大型游戏,避免中病毒引起数据丢失。
定期做好数据备份。
8.经常检查注射器针管、针头是否漏气。
特别是针管和针头连接处容易漏气。
9.影响色谱柱寿命的主要原因是进油污染,所以您在进针时应尽可能避免针头带油。
10、建议不要让不熟悉仪器操作的人接触仪器,只有正常的操作才能保证仪器的正常工作。